
Patterns of Agile Practice Adoption Am
r Elssam

adisy

ID: 737216
www.lulu.com

FREE ONLINE EDITION
(non-printable free online version)

If you like the book, please support

the author and InfoQ by

purchasing the printed book:
http://www.lulu.com/content/737216

(only $24.95)

Brought to you

Courtesy of

This book is distributed for free on InfoQ.com, if

you have received this book from any other
source then please support the author and the

publisher by registering on InfoQ.com.

Visit the homepage for this book at:

http://www.infoq.com/minibooks/agile-patterns

Patterns of Agile Practice Adoption
The Technical Cluster

Amr Elssamadisy

© 2007 C4Media Inc
All rights reserved.

C4Media, Publisher of InfoQ.com.

This book is part of the InfoQ Enterprise Software Development series of
books.

For information or ordering of this or other InfoQ books, please contact
books@c4media.com.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical,
photocopying, recoding, scanning or otherwise except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher.

Designations used by companies to distinguish their products are often
claimed as trademarks. In all instances where C4Media Inc. is aware of a
claim, the product names appear in initial Capital or ALL CAPITAL
LETTERS. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Managing Editor: Floyd Marinescu
Cover art: Nasser Elssamadisy
Composition: Adam Mehling

Library of Congress Cataloguing-in-Publication Data:

ISBN: 978-1-4303-1488-2

Printed in the United States of America

To Samiha and Maha

Thank you.

Acknowledgements

I want to sincerely thank all of the people who have been part of
putting together the ideas that went into this book.

First on the list is my wife Maha who has been encouraging me,
pushing me, pulling me, and generally getting me to write. She also
has spent hours of her time editing this book and many of the papers
and articles I’ve written this year leading up to this book.

Next on my list are Ashley Johnson, Dave West, and Ahmed Elshamy
with whom I spent two and a half days with in Arizona in the spring of
2006 during the ChiliPLoP conference discussing patterns, agile
practices, and adoption. The four of us shared our experiences over
the years and put them in pattern format. After that initial work,
Ahmed helped me run a workshop at XP2006 where we presented our
ideas and gathered more data for the patterns from over 40 practioners
around the world. Ashley spent countless hours discussing the ideas
and refining the ideas in this book.

Dave and I took the ChiliPLoP work and refined it to present at PLoP
2006 where it was reviewed yet again by another group. Special
thanks to Ademar Aguiar for taking the time and effort to shepherd our
work for PLoP. Linda Rising and Mary Lynn Manns have also read
early versions of this work. Richard Gabriel lead the workshop that
reviewed this work, the reviewers were Donald Little, Rebecca Rikner,
James F. Kile, Till Schümmer, Lise B. Hvatum, Joseph Bergin, and
Guy Steele.

Jean Whitmore co-authored a paper with me earlier this year that was
the basis for the Functional Tests pattern and Test Driven
Requirements cluster. Special thanks to Jason Yip for shepherding this
pattern and helping us refine the work for presentation at PLoP. The
group that reviewed this pattern included Ralph Johnson, Jason Yip,
Hesham Saadawi, Dirk Riehle, Paddy Fagan.

The patterns collected in this book are the result of my own

experiences and those of many others. This work would not have been

possible without the participation of the people who were willing to

spend their time, share their knowledge, and struggle to find the

commonalities in the ChiliPLoP workshop, XP2006 workshop, and

XPDay Montreal 2006 Open Space session (in alphabetical order):

Soile Aho, Görge Albrecht, Walter Ambu, Giovanni Asproni,

Emine G. Aydal, Meir Ben-Ami, Gilad Bornstein, Filippo

Borselli, Ole Dalgaard, Ian Davies, Vasco Duarte, Emmanuel

Gaillot, Gabor Gunyho, Janne Hietamäki, Mina Hillebrand,

Ashley Johnson, Kan Karkkainen, Tuomas Karkkainen, Maaret

Koskenkorva, Krisztina Kovacs, Juha Laitinen, Andreas

Larsson, Mikko Levonmaa, Youri Metchev, Aivar Naaber,

Paul Nagy, Keijo Niinimaa, Loua Nordgvist, Virva Nurmua,

Marko Oikarinen, Jukka Ollakka, Paolo Perrotta, Dimitri

Petchatnikov, Ron Pijpers, Aussi Piirainen, Ilja Preus, Timo

Pulkkinen, Niko Ryytty, Abdel Aziz Saleh, Aki Salmi, Meelis

Salvvee, Timo Taskinen, Olavi Tiimus, Ingmar van Dijk, Jussi

Vesala, Daniel Wellner.

Filippo Borselli, John Mufarrige, Ron Jeffries, Floyd Marinescue,

Deborah Hartmann, and Kurt Christenson took the time to read drafts

of this work and give their feedback to make this a much better work

that it was originally.

Finally, thanks to Floyd Marinescue and Deborah Hartmann from

InfoQ for giving me the opportunity to write this book and make it

available to the public.

Amr Elssamadisy

Amherst Massachusetts

December 9
th

 2006

Table of Contents

Foreword by Ron Jeffries ii

Foreword by Craig Larman vi

Is This Book for You? xiii

Introduction xv
The Plan xv

Scope xvi

How to Read this Book xvii

Part 1: Business Value, Smells, and

an Adoption Strategy 19
1. Business Value 20

Reduce time to market 21

Increase value to market 22

Increase quality to market 22

Increase flexibility 23

Increase visibility 23

Reduce cost 24

Increase product lifetime 24

Theory to Practice:

 Determining Your Organization’s Business Values 25

2. Smells 27

Business Smells 28

Process Smells 30

Theory to Practice: What Smells Can You Find? 34

3. Adopting Agile Practices 37

Pattern to Business Value Mappings 38

Pattern to Smell Mappings 40

Be Business-Value Focused 41

Be Goal-Oriented 42

Adopt Iteratively 42

Be Agile About Your Adoption 43

Test-Driven Adoption Strategies 43

Theory to Practice:

 Building Your Own Agile Practice Adoption Strategy 45

Part 2: The Patterns 47
4. Introduction 49

What is a Pattern? 49

Using Patterns Effectively 51

5. Automated Developer Tests (Abstract Pattern) 55

6. Test-Last Development

 (Implements Automatic Developer Tests) 67

7. Test-First Development

 (Implements Automatic Developer Tests) 73

8. Refactoring 81

9. Continuous Integration 87

10. Simple Design 97

11. (Automated) Functional Tests 105

12. Collective Code Ownership 123

Part 3: The Clusters 129
13. Clusters of Practices 131

14. Evolutionary Design 133

15. Test Driven Development 141

16. Test Driven Requirements 149

Conclusion 157

Appendices 159
17. Pattern to Business Value Mappings 161

18. Pattern to Smell Mappings 163

19. Adoption Strategy Case Study 167

Introduction 167

Crafting an Agile Practice Adoption Strategy 168

20. Patterns of Agile Practices

 Referenced but Not Defined 175

21. Getting the Most from Agile Practice Patterns 177

22. Reading a Pattern Effectively 179

Bibliography 183

About the Author 185

 vii

Foreword by Ron Jeffries

Amr has drawn us a map and shows us how to use it. This book is a

travel guide for your software projects.

A few years ago, when my wife Ricia and I were traveling in Italy, we

spent a few days traveling with Martin Fowler and his wife Cindy.

They didn’t know their way around any more than we did, but they are

experienced travelers, and Martin is an excellent map-reader even in

the most hectic Italian traffic. In our few days with them, we saw more

interesting sights, had more fun, and got lost much less often than

when we were on our own. And after Martin and Cindy left us, we did

better because we had learned from what they had showed us.

Whenever we travel in an area we don’t know, it’s great to have a

guide who knows the area. When there’s no guide available, it helps to

have someone who understands how to read the maps, tracks, signs,

and indications. When we’re on our own, it helps to learn how to do

those things ourselves.

Software projects are always traveling in areas they don’t know. Parts

of them will be familiar, and we’ll do well in those areas. Other parts

will be less familiar, and we need help. Agile projects, especially when

we are just starting out with Agile, offer familiar-seeming situations,

but Agile thinking often would have us approach those situations in

new ways.

viii | PATTERNS OF AGILE PRACTICE ADOPTIONS

Agile projects center on the delivery of business value, and that’s

where Amr begins. He describes various kinds of business value, and

helps us select our own organization’s business values.

Amr then moves on to helping us to identify business and process

“smells”, indications of things that may be going wrong. This section

reads to me like the story of my life in software. I’ve seen all these

things go wrong – and so have you. The good news is that next, Amr is

going to help us improve those areas!

Amr helps us improve, first by identifying which Agile practices help

us reach the business objectives listed earlier, and by identifying which

Agile practices help us resolve the trouble areas. He is telling us how

to get where we want to go, and how to deal with trouble along the

way. He closes this section by helping us decide which Agile practices

we should adopt at the beginning of our project, based on what we

most need to accomplish.

Once our project is under way, are we on our own? Not at all. All that

I’ve talked about so far is in the first twenty percent of the book. Now,

in Part Two, Amr describes the technical patterns that make up the

fundamental activities of developing in the Agile style, including

testing, refactoring, and more. Each pattern comes with a description

of the business value of the pattern, and a story showing how it fits

into the process. Then Amr describes the context for the pattern’s use,

and the forces we’ll feel acting on us in the situation. He helps us

recognize what we need to do, and how to get started doing it.

Finally, in Part Three, Amr talks about pattern clusters. He gives

examples of how the separate patterns work together, providing a

stronger and safer approach to delivering value than just using

individual patterns separately.

Just as there’s nothing like an experienced guide, or an experienced

traveler, when you’re traveling in a new area, there’s nothing quite like

FOREWORD BY RON JEFFRIES | ix

having an experienced coach with you when you’re traveling for the

first few times into Agile software development. If you can get a

coach, by all means do so.

With or without a guide, you still need maps and books on how to

travel. Amr has written the travel book for Agile, and if you’re still

finding your way with Agile, I suggest that you bring this book along

on your journey.

Agile is a great way to do software, and I hope to see you along the

trail somewhere. Enjoy this book!

xi

Foreword by Craig Larman

The adoption of agile methods and practices, such as Scrum, Agile

Modeling and Test-Driven Development (TDD), is rapidly

accelerating. Yet ‘adopting fast’ and ‘adopting well’ are most

definitely not the same thing! Many confuse the heart of ‘agile’ with

practices rather than values; yet the essence of agile methods is the

four values (“People and interactions over processes and tools”, ...)

described in the Agile Manifesto. As a result, when they try to adopt a

concrete practice (such as TDD or a daily Scrum meeting) various

problems arise because they are focused on the surface practice, which

is situationally dependent, rather than the underly principle that guides

and informs the adoption of agile methods. At their heart, adopting an

agile method is about a change of values and principles – a change of

mindset – not about a specific practice.

A critical related point is that agile methods are meant to be adopted

by a self-organizing team where “developer controls the process” (to

quote Jim Coplien) – where the team themselves decides what to

adopt, and how. Yet increasingly, we see “top down” mandated or

forced adoption of these methods or practices (“You will adopt

Scrum”). These are signs of people not understanding the core values

and principles of the Agile Manifesto, and instead focusing on the

myriad surface practices that may support agility. This is a grave

mistake.

Amr understands that mistake, and he understands how to help people

successful adopt concrete practices while being informed and guided

xii | PATTERNS OF AGILE PRACTICE ADOPTIONS

by the deeper vision of agile values. You can save time, money, pain,

and suffering by following the skillful advice that Amr shares in these

patterns, honed through his years of coaching and collaborating with

other coaches.

Craig Larman

chief scientist, Valtech

(Denver, USA)

xiii

Is This Book for You?

Are you adopting one or more Agile practices or seriously thinking

about trying out one or more practices on your team? Have you read

any of the Agile methodology books on Extreme Programming,

Scrum, or Test Driven Development and are theoretically convinced of

at least trying the practices?

Or perhaps you’re coming off your first project and you’ve been asked

to join another team to help them succeed as you have done

previously. Of course every project is different. So, are the same

practices you used last time going to be as effective on the next

project? It depends! This book will help you get past “it depends” in

order to determine what practices should be adopted and give you

some hints on how they may need to be adapted.

Maybe you are unlucky enough to have been part of a failing Agile

project (or possibly are still on one). Read this book to get an idea

why the practices you are using may not be applicable. Be agile about

your Agile practices.

If any of the scenarios above fit, then this book is for you – it will help

you look at the individual practices, their relationships, and give you a

strategy that has been used several times on multiple projects by

multiple companies successfully. It will also give you warnings of

how practices have gone wrong before and how you can recognize and

respond to the problems that occur. This is not just one person’s

opinion or an untried method – the patterns you will read here all come

from several real world project experience.

xiv | PATTERNS OF AGILE PRACTICE ADOPTIONS

Finally, this book isn’t for:

• Advanced practitioners who already get agile practices and are

looking for new theories or practices. All of the information

here is collected from experience of multiple projects – so

chances are you’ve already heard about everything here.

• Beginners who want to start from zero. This book does not

adequately describe the practices from ground zero. It is a

good companion to other works that delve more deeply into

full agile practices.

• Those only interested in the non-technical practices of Agile

development. These are important practices but they are not

covered.

xv

Introduction

In this book you and I will focus on adoption of agile practices. I will

help you answer basic questions that are on your mind:

• Where do I start?

• What practice(s) are best for my particular environment?

• How can I adopt these practices incrementally?

• What pitfalls should I watch out for?

The Plan
In addition to providing the guidance to answer the above questions, I

will give you more questions that you should consider and answer on

your journey in adopting agile practices. Does this sound too good to

be true? It isn’t really. Many of us who have been in the Agile

community for several years have figured this out the hard way – trial

and error. This book shares those experiences. Here is an overview of

what you will be able to accomplish by reading this book:

1. Focus on business value to the customer. List important areas

of value to many customers. An example of a business value

would be ‘reduce cost’.

2. Identify symptoms that occur when business value is not

being delivered. I’ll call these symptoms ‘smells’. An

example of a smell related to the ‘reduce cost’ business value

is ‘customer asks for everything including the kitchen sink’

3. Tie these business values and smells to individual agile

practices.

xvi | PATTERNS OF AGILE PRACTICE ADOPTIONS

4. Use the information in 1, 2, and 3 to decide which practices to

adopt in order to increase your business value and remove the

smells present at your company. At this point you will be

able to come up with a coarse-grained adoption strategy for

your environment.

5. Provide a detailed description of each practice in pattern

format and include adoption information for each practice.

6. Call out practices that work very well together as clusters.

Relate these clusters to business values and smells also.

Describe the clusters and adoption strategies as done for the

practices.

Scope
This book covers an adoption strategy in Part 1 that is applicable for

all development practices. Part 2 and 3 cover technical practices and

useful groupings of those practices which I’ll call ‘clusters’. To keep

the book small and release it soon I’ve restricted coverage of the

practices to:

• Automated developer tests

• Test-last development

• Test-first development

• Refactoring

• Continuous integration

• Simple Design

• Functional tests

• Collective code ownership

And the clusters:

• Evolutionary design

• Test driven development

• Test driven requirements

Other practices such as Iterations, Stand up meetings, Customer part of

team, and others are not covered in this book. Many of them are

briefly described in the appendix Patterns of Agile Practices

Referenced but Not Defined.

INTRODUCTION | xvii

How to Read this Book
So, enough about what you are going to do, how do you do it? The

first thing you have to do is come up with a set of agile development

practices for you and your team. You can do that by reading Part 1

(which is under 20 pages) and taking the time to do the exercises at the

end of each chapter. It is very important that you spend the time to

solve the exercises. After completing these chapters you will have a

list of prioritized practices to consider.

At that point you can start with the second part of the book that

includes the patterns and clusters of Agile practices. You will use the

list of practices on your list to ‘dig deep’ by reading each pattern and

deciding if it is really applicable to your environment. When you find

a practice that matches then you and your team will start adopting it

incrementally using the guidance in that pattern. You’ll also watch out

for symptoms of that practice going bad by using the guidance in the

‘smells’ documented in each pattern.

Finally, you’ll continuously evaluate the effectiveness of the practices

you’ve adopted and adapt them to obtain greater value for your

organization. Start right now by turning to the next chapter.

Part: 1
Business Value, Smells,

and an Adoption Strategy

So, you are interested in Agile development. Why? Chances are you

want to improve your software development process. Why? Many

will answer ‘to build better software’. Again, why is this? Why do

you want to build better software? In the Agile community, our focus

is on the customer - we want our software to deliver more value to our

customers.

In this part I will focus on the idea of delivering more value to

customers. Not all customers value the same things. What does your

customer value? The chapter on Business Values will introduce

several common business values that customer’s find important. After

reading this chapter and doing its exercises you will have a solid

understanding of what your customer values. This knowledge will

help you choose the practices to adopt to deliver the most value to

your customer.

The focus of this book is on adoption. Not everyone will adopt new

development practices to improve the current status. If you are like

me and only look for new solutions when there is a problem then the

chapter on Smells is for you. Read this chapter to get an idea of what

things ‘smell’ like when a software development process goes wrong.

Do the exercises at the end of this chapter to prepare for creating an

adoption strategy that will alleviate your team’s pains.

The final chapter in Part 1 is entitled Adopting Agile Practices and

shows you how to use business value and smells to successfully adopt

a set of agile practices that will address issues that your customers

value. At the end of this chapter the exercises will lead you into

creating an initial prioritized list of practices to adopt tailored for your

environment.

1
Business Value

Delivering value to the customer is the main driver for all Agile

development practices. How many of us know concretely what

specific values are most important to our customer’s business? How

many of us know what business value is delivered by the software

development practice we use? In this and the following chapter I will

show you how you can answer these questions and use those answers

to decide what practices you should adopt.

In this chapter you and I will examine different areas of business

value. The remainder of the chapter is a simple list of seven of the

most common business values and their description. Read them to get

an overview of what customers find valuable.

The exercises at the end are a necessity – if you really want to adopt

the correct agile practices then do the exercises. The exercises will

lead you into discovering what business values your customer finds

important.

Reduce time to market
Reducing time to market of developing software brings more value to

the customer because they can begin to use the product earlier. A

company producing the software can start to earn money earlier if it is

a commercial product. This is straight-forward.

Furthermore, consider this: would your customers find any value in

partially delivered functionality (e.g. 2 out of a possible 5 use cases)?

Often your customers will be able to get some early use out of a subset

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

22 | PATTERNS OF AGILE PRACTICE ADOPTIONS

of functionality that you can deliver early rather than rolling

everything out in a single release. So not only is the overall reduction

in time to market valuable, but frequent, incremental releases can also

increase business value and utility.

Practices that help you and your team release early and often provide

business value to customers who are concerned with time to market.

Increase value to market
Software development involves taking abstract requirements and

building a system to satisfy those requirements. Going from the

abstract concepts to running software is a type of invention – the

development team comes up with a solution to meet the business need.

However, there are multiple possible solutions that can conceivably

meet the business needs. Which one is best? Practices that help make

this decision correctly create business value.

So how do you determine what is a better solution than the other?

Ultimately it is the most useful software to the customer. Does it help

them do their job better? Practices that help the customer determine

what the better solution is and communicate that to the team correctly

will deliver business value as well.

Finally, increasing value to market is related to reducing time to

market. Products that get to market faster have the potential of getting

market feedback earlier. So there is an opportunity for the team to

increase the product’s usefulness to the customer by frequently

incorporating concrete feedback. Practices that help you and your

team take advantage of this information will also increase the value to

market.

Increase quality to market
Quality to market has to do with issues such as defects, usability, and

scalability. These are probably the most visible issues to your

software development team. Practices that help improve these issues

increase the business value delivered.

BUSINESS VALUE | 23

Increase flexibility
How easy is it to respond to changes in business direction? This is the

business value behind the buzzword ‘Agile’. It is an increasingly

important issue in today’s market. So, for example, if tax regulations

change in one state where your financial software is being used – you

need to be able to modify your software to comply.

This value is not always directly visible to the customer. The lack of

this factor appears in other business values like slow time to market, or

low quality to market. So why do I describe this as a separate value?

The notion of flexibility – of being agile – is one that more and more

businesses are aware of directly. Customers want to know your ability

to respond to changes they request.

Practices that help your software development effort adapt to business

changes will increase the business value that you can deliver.

Increase visibility
This is the customer’s ability to see the true state of the project as it

progresses. This is important because it allows the customer to steer

the software project and also manage their risk and expectations.

Lack of visibility results in the customer’s surprise and disappointment

when a project doesn’t meet its deadline. This is, in turn, engenders

lack of trust, blame, and CYA
1
 cultures.

On the other hand, software practices that increase visibility will allow

customers to get the most benefit throughout the project development

cycle and engender trust and cooperation with customers.

1
 For readers not familiar with this acronym it stands for ‘cover your ass’ and is used

to indicate a state where someone is focused on avoiding personal blame instead of

providing value to their team.

24 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Reduce cost
Faster, better, cheaper. That’s what we must all do to survive. We’ve

already covered faster (time to market) and better (quality and value to

market). This business value is about building the system for less.

Some of the costs associated with software development include man-

hours to build the system, maintenance of the system over time, and

hardware as well as software platform costs. Practices that reduce any

or all of these costs without equally sacrificing quality will reduce the

overall cost of the system.

Another way to reduce cost is to write less code. The 80/20 rule says

that roughly 20% of the product is used 80% of the time. Practices

that help a team build only what is needed in a prioritized manner will

greatly reduce the cost of the product and provide business value to the

customer.

Increase product lifetime
Longer product lifetime directly affects the product’s ROI.

Unfortunately, software tends to age poorly. Maintenance becomes

more difficult and it acquires inertia. Companies that support multiple

aging versions of a product spend a large amount of effort keeping

those products alive and then finally have to discontinue support

because of the cost.

For many product companies this is an important business value to

address. Many of the agile development practices will improve the

maintainability and flexibility of the code base that, in turn, increases

the ability of the development team to keep the product alive. These

practices that directly and indirectly increase product lifetime have

business value to the customer.

BUSINESS VALUE | 25

Theory to Practice: Determining Your
Organization’s Business Values

Answer the questions below to get a realistic understanding of what

business values are important to your customers and organization.

Once gathered, share with others – there is a good chance they are not

aware of this information.

1. Which business value factors are most important to your

clients? Rank them.

2. Invite your business customers to rank the importance of the

business value factors. How do their rankings compare to

yours? What might you do differently based on business’

rankings?

3. What other business value factors are key in your business?

After answering this yourself, ask your business customers.

(Some examples are “personal growth” and “supporting open

source development”.)

4. Given your awareness of business value, are you focused on

issues that increase business value? Are members of your team

aware of where business value really lies? If not, then by all

means, spread the word!

5. Given the information you discovered above about business

value factors in your organization, how can you adjust your

practices to deliver greater value to your customers?

6. For each business value come up with at least one way that you

can take a measurement of progress made. That is, if you are

to implement a practice to improve a particular business value

you will need to take a periodic reading to verify that the

practice is working. This does not have to be quantitative. It

may be qualitative in nature. Make it as simple as possible.

For example, if you want to take a measurement to reduce cost,

a simple (and rough) reading would be the number of hours put

in for a major release.

27

2
Smells

The agile community has adopted the word “smell” as an indicator of

something that has gone wrong. Smells are indicators that business

value is not being delivered where it should be. They are a useful

concept when deciding what issues need to be addressed and in what

order. It is more natural for many to recognize and respond to painful

issues (smells) than to put in the effort to improve working processes

The relationship between smells and business value is not necessarily a

one-to-one relationship. Every smell is a symptom of one ore more

business values that can be improved. Conversely, every major

business value that can be improved will cause one or more smells to

be present.

In this chapter I will introduce two different types of smells. Business

smells are smells that can be perceived by the customer. Process

smells, on the other hand, are only visible to the development team and

not to the customer. Even though they are not visible to the customer,

process smells have a direct effect on the business value delivered.

The remainder of this chapter contains a listing and description of

several business smells and process smells. These are your indicators

that something is not right with the development process. They are

good starting points in determining what practices should be adopted –

namely those that will be effective in removing the smells. Read

through the smells in this chapter and see if you recognize any of them

at your organization.

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

28 | PATTERNS OF AGILE PRACTICE ADOPTIONS

As always, please take the time to do the exercises at the end of the

chapter to tie the ideas in this chapter to your organization’s

environment.

Business Smells
Business smells are the flip-side of the business value coin. They are

the pains that a customer when the software does not meet their needs.

Listed below are five common smells and their descriptions: The

descriptions are written from the development organization’s

perspective.

Quality Delivered to
Customer is Unacceptable
Our customers are not happy with the quality of our product. In fact,

we have a hard time getting them to upgrade to our latest versions.

They have, unfortunately, learned by experience that upgrading to the

latest version means having to deal with several bugs that we didn't

catch. We are losing customers and getting a bad reputation in the

market. We have to be able to deliver better quality code. It is

beginning to affect our bottom line.

Delivering New Features to
Customer Takes Too Long
We are having trouble adding new features that our customers request.

It takes too long to add a new feature, fully test it, and then deploy it to

our customers. Competitors have added new features faster than we

can keep up - we are losing the race. Our release cycle is long because

of many issues that just can't be changed:

• Features rely on expert resources that are bottle-necked.

• The testing cycle takes significant time.

• Features required were unforeseen and are hard to add given

the existing architecture.

SMELLS | 29

Features Are Not Used By Customer
Our studies show us that many of the new features we add are not used

by our customers and are ignored. This has happened because of

several compound reasons:

• Customers didn't know what they really needed at the

requirement phase – we therefore built the system upon wrong

assumptions.

• Our organization’s marketing department sometimes proxies

for customers. Requirements from marketing are just a

forecast. The forecast isn't always on-track.

• Some features are used much less frequently than we

anticipated. We believe this is an indication that our priorities

are not inline with the customers' priorities.

• Developers have been known to add features that they were

sure would be useful but were not.

• Requirements changed.

Software Is Not Useful To Customer
Our software has not really helped them do their work in a more

efficient manner. In fact, we are flooded with usability complaints.

There are key functional areas that are incomplete. This is not our

fault - we built what were in the requirements. To be fair it is not our

client's fault either - they told us what their problem was. We both

didn't know how to solve the problem completely when we set the

requirements in the beginning. We only learned later but then it was

too late – we were already committed to the requirements we have set

earlier.

We now have a system that we've spent time and effort building and

our clients have paid for. The end-users are frustrated and see our

software as a burden - not a useful tool.

Software Is Too Expensive To Build
The software process is very expensive. The costs for building a

successful project involve a large amount of highly-paid professionals

over several months (sometimes several years). The value returned on

30 | PATTERNS OF AGILE PRACTICE ADOPTIONS

each of these projects does not always validate the amount of

investment we put in building them. We are losing much of our

business to overseas where the cost is significantly cheaper (but this

comes with its own set of serious problems).

Process Smells
Process smells are symptoms of internal software process problems.

They are not visible to the customer. They are indirectly related to

business value because software process problems negatively affect

the business value delivered to the customer.

Process smells are generally easier to diagnose than business smells.

But, because they are not directly related to business value they should

not be the main drivers of adoption. If you find one of these smells

then relate it back to its business value(s) to ensure that you address

the smells with the most important business values for your

organization.

Us vs. Them
Those customers don't know what they want! Those developers never

give us what we need when we need it. The testers are not team

players - they just don't understand how crucial it is to deliver on-

time. Marketing always promises things that we cannot possibly

deliver. Do any of these sentiments sound familiar?

Software development involves an incredibly diverse set of people. If

they are blaming each other then problems are exacerbated. Each

individual subteam - the developers, the customers, the testers, etc…

will optimize for their team and not the business value(s) which the

organization needs. This wreaks havoc with the organizations goals

and achievements. Us vs. Them at any level indicates that there are

communication barriers and that business value is not on the radar.

The most successful teams, agile or traditional, have a 'whole team'

mentality.

SMELLS | 31

Customer Asks for Everything
Including the Kitchen Sink

The relationship between customers and software development

organizations is not always based on trust. In fact, the typical situation

today is that the requirements are done upfront and there is an official

sign-off as a contract. Any new requirement changes must be put

through an extensive change-management process that puts an

extremely high barrier on change requirements. The end product may

satisfy the requirements 'by the letter of the law' but do not meet the

customer’s real needs.

Customers understand this. Therefore they ask for everything they can

possibly think of because they know they have one chance of getting it

right. This smell indicates that we are not giving the customer exactly

what they need and not giving them the opportunity to learn, refine,

and really find out what they need and want. In the end all participants

pay dearly. Business smells like software is too expensive to build,

and features are not used by customer result because there is not

enough feedback for the proper system to be built.

Customer – What Customer? Direct and
Regular Customer Input is Unrealistic.

Scenario 1: We are a product company. We do not have real

customers available to us. Our marketing team is our pseudo-

customer. They are separate and have their own work to do. They

cannot (will not) spare the time to be part of the development team.

So they work with managers who in turn work with their underlings

who work with us, the development team, to build the correct

functionality.

Scenario 2: Our customers are the business members of the company,

we are their support. They do not have time to work with us. Every so

often they will spend a little time with us and we take notes. We have

their contact information and are free to contact them by email and

have regular meetings. This is good enough. They are busy people

and it is our job to build the software.

32 | PATTERNS OF AGILE PRACTICE ADOPTIONS

In both of the above scenarios, there is little customer input. This is a

process smell that is highly related to leads to the business smells

features are not used by customer, software is not useful to customer,
and software is a burden to use. That is, to solve the right problem,

constant customer input and feedback are required.

Management is Surprised – Lack of Visibility
Management has very little visibility into the real progress of a

project’s development. Development teams are optimistic – despite

the fact that several pieces have had problems they are sure they will

be able to pull things together at the last minute with heroic efforts.

Unfortunately, the details of what might go wrong are not only

unknown to management – the development team members

themselves aren’t quite sure. Integration is coming up in a few months

time. The development team knows it will be painful but not exactly

how painful.

Of course when the actual deadline rolls around, and the team can no

longer deny that the deadline will be missed – it is too late for

management to respond effectively. This happens all too often and

management has learned to buffer any promises made by project

teams. A lack of trust evolves.

Bottle-Necked Resources (Software Practitioners
are Members of Multiple Teams Concurrently)
In order to get the best quality of software, all members of a

development team are encouraged to specialize their skill-set. The

side effect of this is that these skills are almost always needed in more

than one place at a time. A few key practitioners become bottle-necks

in the progress of more than one project. It is also difficult to move

members of the development teams to other projects. This results in

members of the organization assigned to multiple development teams

concurrently. That’s the nature of the beast when you are in a large

organization and there are multiple projects to complete – isn’t it?

There is significant research showing that multi-tasking is significantly

less efficient than single-tasking. Working on multiple projects

SMELLS | 33

concurrently is a much less productive use of time. If time to market

and ability to respond quickly to changes are important then these

bottle-necks must be removed.

Churning Projects
Projects miss their deadlines multiple times. One deadline is missed,

then another, then another. Major design decisions did not foresee

issues that later surfaced. The project churns as several different

attempts are made to deliver useful, high quality software to the

business. Sometimes these projects are discontinued, but only after a

significant investment. Other times, the project churns away until

finally a working system is built.

Hundreds (Possibly Thousands)
of Bugs in Bug-Tracker

When a bug is found it is entered in our bug tracking tool and then

prioritized. We resolve all Showstopper bugs before release and most

of the high priority ones. Anything of lower priority goes to bug

purgatory and stays forever. Sometimes in a new release a portion of

the medium level bugs are addressed - but many times they are stale

by that point.

A large set of bugs in a bug tracker indicates wasted work. The effort

is made to find, locate, and identify these bugs - but no business value

is delivered until that bug is solved, integrated, and finally released to

the customer. A large number of bugs in the bug tracking system is a

direct indicator of a significant investment in work that is never

released to the customer and thus has zero value.

"Hardening" Phase Needed
At End of Release Cycle

Before releasing code, there needs to be a period where no "new

feature" check-ins are made to the code base. The code base must be

"frozen", branched, and closely tested. Only high level bugs can be

fixed and each one must be approved before doing so. After a

sufficient time, typically anywhere between one to three iterations, the

code is released.

34 | PATTERNS OF AGILE PRACTICE ADOPTIONS

This is a good practice right? Why is it under the Smells section? If

iterations are done properly - that is at the end of each iteration a

working, integrated, tested system is demonstrated - then there should

be no need for the hardening phase. The hardening phase indicates

that our iterations are not true iterations but are merely time blocks of

work. Hardening iterations indicate that the previous iterations let

defects go unfound and unaddressed.

Integration is Infrequent
(Usually because it is Painful)
Integration is done a few iterations before releasing because it is a very

difficult and time-consuming task. Specialized teams work on the

different parts of the application. Documentation and design

documents are created upfront to ensure that the parts fit together at

release time. Of course they are rarely (if ever) integrated smoothly.

This seems to be the natural way of building applications for most

development teams. Although it would be nice to integrate and test

the fully working system, it is just not possible. Many of the parts the

teams work on will not integrate until the very end. The actual build

and link time takes such a large effort that it would be too time

consuming to do regularly. What can be gained by integrating more

frequently? Why is this a smell?

The lack of integration results in a significant amount of untested

code. Integration is key to the feedback cycle – without full

integration a significant number of errors, miscommunications, and

misconceptions lie undiscovered until the end of the release cycle.

This inhibits the team’s ability to evolve the system as a coherent

whole and accurately determine project progress.

Theory to Practice:
What Smells Can You Find?
Answer the following questions to discover, understand, and rank the

different smells at your organization:

SMELLS | 35

1. Find as many business smells as you can in your organization.

A good place to start would be with your customers, customer-

support staff, and marketing staff. They know what is wrong.

Rank these smells according to their importance and the

amount of pain they cause.

2. Relate those smells to business values. Are they the same

business values you identified in the previous chapter as ones

that are important to your customer?

3. Find and rank as many process smells as you can. Relate them

to business values.

4. Is your smell ranking different than your business value

ranking? For example, is the most painful smell related to the

most important business value? What does this indicate?

5. Based on your environment, would it be more useful to address

value or smells? Why?

6. Re-rank your smells with the information you have just

gathered. Is it different than your original rankings? If so,

what changed?

37

3
Adopting Agile Practices

So far you have read about business value and smells. You have also

done the exercises at the end of each chapter and come up with a

prioritized list of business values and a prioritized list of smells that

need fixing. If you have not done so yet then please stop now and go

back and do so. Armed with an understanding of your customer’s

priorities, and the main pains your company is experiencing, you are

ready to determine what practices you should consider adopting to

alleviate those pains and get the most value for your efforts.

In this chapter I will give you direction on how to go about

successfully choosing which practices to consider adopting. I’ll also

ask you to benchmark your work – even if subjectively – so you can be

‘agile’ about your adoption. This is, however, only advice on how to

come up with your own priorities and your own list of practices to

adopt. If you are looking for a prescription – do practice A, then B,

but not C – you won’t find it here. (And if you do find it elsewhere,

my advice to you is not to trust it.)

Free Online Version.

Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

38 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Pattern to Business Value Mappings
Let’s start with the real meat of the chapter, below are two tables that

relate practices and clusters to business value and smells respectively.

Use these tables to determine what practices to consider adopting.

Table 1 Practices and Clusters that Improve Business Value

Business Value Clusters of Agile

Practices

Agile Practice

Patterns

Reduce time to

market

Test Driven

Development,

Evolutionary Design,

Test Driven

Requirements

Simple Design,

Refactoring, Test-

First Development,

Test-Last

Development,

Continuous

Integration,

Functional Tests

Increase value to

market

Test Driven

Requirements

Functional Tests

Increase quality to

market

Test Driven

Development, Test

Driven

Requirements,

Evolutionary Design

Test-First

Development, Test-

Last Development,

Refactoring, Simple

Design, Continuous

Integration

Increase

flexibility

Evolutionary Design,

Test Driven

Development, Test

Driven

Requirements

Automated

Developer Tests,

Refactoring,

Collective Code

Ownership,

Functional Tests

Increase visibility Test Driven

Requirements

Functional Tests,

Continuous

Integration

Reduce cost Evolutionary Design,

Test Driven

Development, Test

Driven

Simple Design,

Refactoring,

Collective Code

Ownership, Test-

ADOPTING AGILE PRACTICES | 39

Requirements. First Development,

Test Last

Development,

Functional Tests

Increase product

lifetime

Test Driven

Development,

Evolutionary Design,

Test Driven

Requirements

Refactoring,

Automated

Developer Tests,

Functional Tests,

Simple Design

The table above is to be read by row. Each row represents a business

value. The ‘Clusters of Agile Practices’ column contains an ordered

list of the clusters that improve that business value. Therefore to

increase quality to market you should consider the Test Driven
Development cluster first. If the entire cluster is not applicable in your

environment or too large a step then consider individual practices.

The ‘Agile Practice Patterns’ column contains an ordered list of

practices that improve that value. For example, if you want to reduce

time to market then the first practice you should consider is Simple
Design first.

40 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Pattern to Smell Mappings

Table 2 Practices and Clusters that Alleviate Smells

Smell Clusters of Agile

Practices

Agile Practice

Patterns

Quality delivered to

customer is

unacceptable

Test Driven

Development, Test

Driven

Requirements,

Evolutionary

Design

Test-First

Development, Test-

Last Development,

Refactoring, Simple

Design, Continuous

Integration

Delivering new

functions to

customer takes too

long

Test Driven

Development,

Evolutionary

Design, Test Driven

Development

Simple Design,

Refactoring, Test-

First Development,

Test-Last

Development,

Continuous

Integration,

Functional Tests

Features are not

used by customer

Test Driven

Requirements

Functional Tests

Software is not

useful to customer

Test Driven

Requirements

Functional Tests

Software is too

expensive to build

Evolutionary

Design, Test Driven

Development, Test

Driven

Requirements.

Simple Design,

Refactoring,

Collective Code

Ownership, Test-

First Development,

Test Last

Development,

Functional Tests

Us vs. Them Test Driven

Requirements

Functional Tests

Customer asks for

everything

including the

kitchen sink

Test Driven

Requirements

Functional Tests

ADOPTING AGILE PRACTICES | 41

Customer? What

customer?!

Test Driven

Requirements

none

Management is

surprised

Test Driven

Requirements

Functional Tests

Bottle-necked

resources

 Collective Code

Ownership

Churning projects Test Driven

Development, Test

Driven

Requirements

Automated

Developer Tests,

Functional Tests,

Continuous

Integration

Hundreds of bugs

in bug-tracker

Test Driven

Development, Test

Driven

Requirements

Automated

Developer Tests,

Functional Tests,

Continuous

Integration

Hardening phase

needed

 Continuous

Integration

Integration is

infrequent

 Continuous

Integration

The smells table is to be read and used exactly like the business value

table. Empty clusters indicate the clusters do not give an improvement

over the single practices in alleviating this smell. Please keep in mind

there are many more agile practices than those covered in this book.

These tables only reflect the patterns described in this book.

I have now given you all the pieces of the puzzle to devise an adoption

strategy tailored directly to your environment. For the remainder of

the chapter I’ll discuss how to use these pieces together effectively.

Be Business-Value Focused
Remember that the goal of software development is to provide value to

the customer. Respect that. If you do not have access to the customer

then you should do your best to get that access. Work with your

customer to really understand their needs. Use the exercises in the

previous chapters to have conversations with your customer. Once

42 | PATTERNS OF AGILE PRACTICE ADOPTIONS

you have a prioritized list of business values that are important to your

customer, spread the knowledge. Make sure your team is aware of that

information. Put it up in an Information Radiator for the entire

development to see and remember.

Be Goal-Oriented
I did not have you work hard to determine and prioritize your

organization’s business values and smells arbitrarily. You will now

use those lists to determine the goals for your adoption of agile

practices.

When adopting a practice do so knowing why you are adopting that

practice. Are you doing so to reduce time to market? Or is it to

increase the quality of the product? Or is it to alleviate the pain of

‘hardening iterations’?

Do not make these decisions alone – involve your customer so that

they understand why you are making these changes. Make these

decisions with business value in mind. Marketing doesn’t care if you

are adopting Test First Development or not. They care that the product

has fewer defects. Let them know that you are adopting Test First
Development to reduce defects and that you expect them to see results

in the next release.

If your adoption is driven by customer needs, and you track your

progress in that area (even if subjectively) you may get their support.

If you include them in your reviews instead of hiding your faults they

may start to trust you and work with you. If you deliver improved

results then you’ll have raging fans.

Adopt Iteratively
Adopt in small steps. Start with a small team and get experience in

adoption. Most small teams that get appropriate coaching make the

transition to agile practices well. Learn as you go. What you have in

this book will help – but it is only a start. You need to experience the

practices for yourself and build up your own body of experience.

ADOPTING AGILE PRACTICES | 43

After your first successful adoption project, ramp up to more people

and more projects. Share your experiences. Share this book. Take

periodic readings of your business values and smells – they will

change with successful adoption. Use the information here to help you

watch out for pitfalls by recognizing and responding to smells as they

appear.

Be Agile About Your Adoption
As you adopt iteratively have periodic retrospectives about your

adoption. Use the feedback from those retrospectives to modify your

development process. Tweak the practices. Drop the ones that don’t

work. Adopt new ones to complete a cluster of practices.

Test-Driven Adoption Strategies
You can use the information you have gathered so far about business

value and smells to determine which practices you should consider

adopting:

1. Choose practices solely based on business value delivered.

In this scenario there are no severe pains that you are suffering

from and you just want to improve your software development

process by increasing the business value your team delivers.

Use the business value to practices and clusters table in Table 1

to decide which practices to adopt.

2. Choose practices to alleviate smells that have been

prioritized by business value. This technique focuses on

alleviating pains that you have while keeping business value in

mind. Smells are prioritized according to the business values

that are valued by your customers. Then, from the prioritized

smell list, you choose the appropriate practices to adopt with

the help of

3. Table 2.

4. Choose practices to address the most visible smells. This is

common although I wouldn’t recommend it. This is plain and

simple ‘fire-fighting’ – trying to get rid of the biggest pain

regardless of the business value it delivers. This is all too

44 | PATTERNS OF AGILE PRACTICE ADOPTIONS

common when the technical team determines the priority

without the customer’s input (I’ve been guilty of this often.)

The information found in the tables in the beginning of this section is

prioritized by effectiveness. Therefore the first practice in the list is

the most effective practice for increasing the business value or

alleviating the smell. Get your feet wet with the first practice and after

that is successfully adopted come back and take another look at the

remaining practices and clusters related to your business value or

smell.

No matter how you prioritize your list of practices to adopt you should

adopt those practices as iteratively as possible. Armed with the list of

practices here is how you can successfully adopt the agile practices on

your list:

1. Start with an evaluation of the status quo. Take readings (even

if subjective) of the current business value(s) you want to

improve and the smell(s) you want to alleviate.

2. Set goals that you want to reach. How much do you want to

increase the business value? How much do you want to reduce

the smell? What is the timeframe? Take a guess initially and

modify it as you know more through experience.

3. Pull the first practice or cluster off of the list you created.

4. Read the pattern that is related to that cluster or practice.

Decide if it is applicable or not by matching the context and

forces to your working environment. (More details on what

patterns are and their different sections in Part 2: The Patterns

on page 47.) If the practice is not applicable in your

environment go back and pick the next one off of the business

value/smells table.

5. Once you have determined that the pattern is applicable in your

environment then read the pattern thoroughly. Follow the

advice in the adoption section in the pattern in order to get

started.

6. Periodically evaluate that the business value you are addressing

is improving or that the smell you are addressing is being

ADOPTING AGILE PRACTICES | 45

resolved. If it is not, adapt your practice for your environment

using hints from the variations section and the ‘but’ section in

the pattern.

7. Go back to step (1) and re-evaluate your business value or

smell. If it needs more improvement (i.e. you still have not

met your goal set in (2)) consider adding another practice or an

entire cluster to resolve the issue. If it has met your goals then

move on to the next one.

So where is the ‘test-driven’ part of this approach? Your tests are your

goal values that you set in step (2). In step (6) you check your

readings after adopting a practice. This is a ‘test’ of how effective the

practice(s) you adopted have already met the goal set earlier. This

loop - set a goal, adopt a practice, then validate the practice against the

expected goal – is a ‘test driven’ adoption strategy
2
.

Theory to Practice: Building Your Own Agile

Practice Adoption Strategy
Answer the following questions to build an adoption strategy: (Use

the answers from the business values and smells chapter exercises

here.) Also, see the appendix named Adoption Strategy Case Study

for a real world example of how this might be done.

1. What are your goals for adopting agile practices? Do you want

to alleviate smells or add business value? Be specific. If there

is more than one then prioritize them.

2. Take readings of the current business value(s) and smell(s) you

want to address. Don’t worry if they are subjective or fuzzy.

Know, to the best of your ability, where your organization is

today with respect to business values and smells.

3. Choose an adoption strategy. Choose practices using that

strategy to adopt.

2 In management practices this is commonly referred as the PDCA cycle (Plan, Do,

Check, Act), originally developed by Walter Shewhart at Bell Laboratories in the

1930’s and promoted effectively in 1950’s by the quality management guru W.

Edward Deming.

46 | PATTERNS OF AGILE PRACTICE ADOPTIONS

4. Read the next chapter that introduces the patterns. Then start

following the steps outlined in this chapter to adopt your first

practice. Don’t forget to periodically take readings of your

business value/smell to make sure that the practice is effective.

5. Congratulations and good luck! You’ve started on your path to

agile practice adoption!

Part: 2

The Patterns

 49

4
Introduction

What is a Pattern?
In general, a pattern describes a particular problem and its solution

context. Specifically in this book, a pattern describes a (set of)

problematic situation(s) on a development team that can be fixed by

applying an agile practice. Patterns are to be trusted because each one

has been used several times on real development teams and projects –

they are not one-off solutions or ‘good ideas’ that might or might not

work. Patterns are ‘discovered’ and not ‘created’.

The pattern format used in this book is as follows:

Name

Description: a brief overview of the practice or cluster.

{Dependency Diagram:} A diagram showing inter-practice

dependencies (for practices) and grouping (for clusters).

Business value: A sorted description of the business values

this practice or cluster improves.

Sketch: A fictional story that describes this pattern being used

on a software development project in context.

Context: The preconditions and environment where this

pattern is useful. The context is a collection of

invariants – issues that do not change by applying the

pattern.

Forces: Used to elaborate context and give specific issues that

are problems (partially) resolved by this pattern. In

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

50 | PATTERNS OF AGILE PRACTICE ADOPTIONS

fact, correct application of the pattern should remove

many of the forces.

Therefore: The pattern description.

Adoption: Steps, ordering, guides to adopting this pattern.

But: Negative consequences that can occur from applying this

pattern.

{Variations:} Different ways this pattern has been

implemented successfully other than that described in

the Therefore section.

{References:} Where to read more.

Use the name, description, and dependency diagram to get a quick

overview of the pattern. You may find yourself browsing the pattern

descriptions and dependency diagrams to get a feel of what the

different practices are and how they are related to each other. Read the

Sketch to get a ‘big picture’ example of how this pattern may be used

in practice.

If you find yourself considering the applicability of a pattern to your

environment then the context is the section for you. This section

contains any preconditions that must be met and environments where

this pattern is useful. If your environment does not match the context

then the pattern may not be effective.

The forces section documents the issues and problems that drive the

type of solution that this pattern represents. Similar to the context

section, use the forces to help you make a decision about whether or

not to adopt this pattern. If you find some of the forces present in your

project then that is a good indication that this pattern will have a

positive affect and will help you resolve these problems.

The next section, the ‘therefore’ section, is the solution – it is a

description of the practice itself. Use this information to understand

the practice and its details. But also remember that this book is not

meant as a tutorial. If you have no idea what the practice is, you may

need to go to other sources to get more in-depth discussion of the

practice.

INTRODUCTION | 51

The next three sections are going to be very helpful in your actual
adoption of the practice. The adoption section will give you an
incremental strategy to successfully start using this pattern. The ‘but’
section will let you know what may go wrong as you go about
adopting a pattern. And the variations section will give you non-
standard ways others have successfully used this pattern. Use these
three sections as step-by-step instructions to help you get to the point
where you are practicing the pattern as described in the ‘therefore’
section.

Where applicable, references section gives you pointers to material
where others have documented this practice. Instead of having these
references in the bibliography in a jumble for the entire book, each
pattern has its own pointers on where to go read more.

Using Patterns Effectively
There are several ways to read a pattern. Here are some ways that the
patterns can be used depending on the situation:

• I am already practicing the pattern. There are no problems. I just
want to see how others have used the same pattern.
o Look up the pattern by name.
o Read the context to see if you are using the pattern in the same

environment as others have done.
o Read the therefore and variations sections to match to the way

you are using the practice.

• I am practicing a pattern but it doesn’t seem to be very useful. Am
I incorrectly using the pattern? Or is the pattern just not useful in
my environment?
o Look up the pattern by name.
o Read the context – if your environment doesn’t match the

context then maybe you should consider modifying the practice
or dropping it all together.

o Read the forces – are you trying to solve the same type of
problems? If not then consider that the practice might be
working but that you need another practice to solve the
problems you have in mind.

52 | PATTERNS OF AGILE PRACTICE ADOPTIONS

o Check out the But section. You will find how others have gone
wrong and some advice on correcting the problems to get the
full benefits from the practice.

• I have problems on my team that I want to solve by adopting agile
practices.
o Go back to the chapter on smells and try to match your

problems to smells.
o Read the practice(s) that address that smell.
o For each practice

� Read the context and to make sure it applies to your
environment.

� Read the rest of the pattern.
� If you decide to adopt the practice then follow the advice in

the Adoption section.
� Periodically check for any of the smells documented in the

But section.

• I couldn’t find the problems I want to solve in the Smells chapter.
Does that mean that none of the practices can help?
o No. Read the forces of the individual patterns and see if you

can find similar problems to the ones you want to address.
You will probably find a match.

• We are adopting a particular practice. Are we there yet? Have we
successfully used the pattern to its fullest?
o Find the practice pattern by name.
o Check the forces – are any of the problems in the forces still

problems on your team?
o Check the But section, are any of the smells in that section

present? If so address them.
o If none of the problems occur then you have gone beyond what

is documented in this book. You probably have enough
experience and intuition to tailor the patterns on your own.
Congratulations!

Finally, please treat these patterns with a modicum of disrespect. The
pattern format is an excellent format to help you tailor your own
solution. Every one of these patterns is based on multiple projects
using the practices. They are proven in the field several times over.

INTRODUCTION | 53

Nevertheless, there is no silver bullet. These patterns will be wrong in
some instances. Use these patterns as guidance, but when reality
contradicts theory – choose reality.

 55

5
Automated Developer Tests

(Abstract Pattern)

A set of tests that are written and maintained by developers to

reduce the cost of finding and fixing bugs – thereby improving

code quality – and to enable the change of the design as

requirements are addressed incrementally. Disciplined writing of

tests encourages loosely coupled designs.

Automated

Developer Tests

Test-First

Development

Test-Last

Development

Collective Code

Ownership

{required in

a team environment}

Business value:

Automated Developer Tests help increase quality to market by

catching errors early in development cycle. Flexibility and product

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

56 | PATTERNS OF AGILE PRACTICE ADOPTIONS

lifetime are improved by creating a ‘safety net’ of tests and enabling

Refactoring. The previous values are obvious, what is not as obvious

is that Automated Developer Tests also reduce the time to market and

cost of development by actually reducing the development time.

Sketch:

Waterfall Will and Uthman UpfrontDesign joined Scott
ScrumMaster’s agile development team at the beginning of their third
release cycle. Scott’s team had two spectacular successes under their
belts and some of the developers went to other teams to ‘spread the
agile disease’. Will and Uthman came from traditional development
backgrounds where testing was done by the QA department and the
only times that developer tests that were written were adhoc tests on
an as-needed basis.

As they joined Scott’s team they practiced Pair Programming with
others on the team who had a disciplined testing regimen. Some of
them, like Cindy Coder, would write their tests first and practiced
Test-First Development while others like Dave Developer usually
wrote unit tests after doing some coding – but always would have them
done before checking into the code repository.

Because Scott’s team was a self-organizing team they chose not to
enforce writing tests but very highly recommended that developers
write tests for all of the code base to support the fact that there were
no ‘sub-teams’ and every developer had access to change any part of
the code base.

Uthman and Will ran head-first into this problem as they took on the
invoicing subsystem of their application. They paired to incrementally
build upon the invoicing system (which unfortunately had no tests) and
were very happy of the design and flexibility of the functionality.
Aparna Analyst was also very pleased with the work they added and
signed off on the work being done and passing all her (manual)
acceptance tests. Dave and Cindy were pairing to modify how the
‘charge’ object worked (which was heavily used by the invoicing

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 57

subsystem). They also added their work to the system successfully. As
Aparna was preparing her work for the next Iteration she noticed that
the invoices produced by the system were no longer working. When
Will and Uthman discovered this issue they went to Cindy and Dave
and asked “why didn’t you tell us you were making such significant
changes?!” Dave and Cindy’s answer was “where were the tests?
We rely on tests to tell us if we’ve broken anyone’s functionality.”

That was an annoying lesson in one of many aspects Automated
Developer Tests. Will and Uthman took a significant part of the next
Iteration rewriting the invoice work to make it work with the new
charge code and added developer tests.

Context:

There are many contexts where this particular pattern is effective. Any

or all of the following are environments that will benefit from this

practice:

You are on a development project that needs to significantly improve

its quality – i.e. reduce its bug count.

Or, you are on a development team that has decided to adopt Iterations
and Simple Design and will need to evolve your design as new

requirements are taken into consideration.

Or, you are on a development team that wants to build code using a

distributed team. The lack of face to face communication and the

constant feedback is causing an increase in bugs.

Or, you are on a development team that is practicing Collective Code
Ownership and need to compensate for the fact that not everyone

knows the entire code base but may touch any part of the system at a

given point in time.

58 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Forces:

• Checking in code to the source tree to be tested by QA

significantly increases the cost to find and fix a bug.

o There is the simple act of now both a QA person and a

developer must both find the bug and communicate via a tool

to document the work being done.

o There are also the many times that bugs go back and forth

between QA and development until it is clear enough to be

‘reproducible’.

o The time for a bug to be found, discovered, and fixed is usually

at least one order of magnitude greater than if the developer

discovered and fixed it before checking in the code. During

that time other developers have checked out that faulty code

base, and built upon it.

• Fixing one bug frequently causes another bug. Cycles and chains

sometimes occur where one bug causes another that in turn causes

another, etc…

• Complex parts of the system tend to have more bugs than others.

Their bugs also tend to be recurring because not everyone

understands the code base.

• Systems are designed to be general so that when requirements

change the system can accommodate the changes. Unfortunately

this extra flexibility doesn’t come for free – there is a cost to the

extra complexity. Every time a developer works with a complex

piece of code it takes time to understand it and time to properly use

it. This is known as ‘cost of design carry’.

• “Band-aid” fixes are made because changing the design of the

system is prohibitively expensive – if you change something you

probably will break something that is dependent on that. This

eventually leads to code duplication, poor and brittle design, and

less maintainable code. It takes a long time to get it through QA

before release – and even then problems get through. Therefore

we minimize the amount of things our fixes affect out of fear.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 59

Therefore:

Reduce the overall effort for finding and fixing bugs by finding them

earlier – have developers test their code more rigorously. Have that

testing automated and available for all other developers so they can

test for bugs that may have been introduced by their changes but

outside of the tests they just wrote. Introduce a practice of always

running all developer tests before checking in any code into the source

repository. Help make complex systems more understandable by

documenting them – make sure that the documentation changes with

the system – the best way to do that is to make documentation

executable (i.e. well written tests). Finally, whenever a bug is

discovered, write a test first to reproduce that bug, then add it to the

test suite, then fix that bug and check in both the fix and the tests to the

code repository. You have now ensured that that particular bug will

not come back because any developer who reintroduces it will fail

your test and not check in the code until it is fixed.

If you are working in a team environment then eventually some of the

code you write may break existing tests – after all, one of the main

benefits of tests is to act as a ‘safety net’ and warn you when you

break assumptions made by other parts of the system. Remember that

you have to get all tests passing before you check in your code change

– therefore you will have to change the affected parts of the system to

pass the tests. Both Collective Code Ownership and Pair
Programming are helpful to solve this problem.

By introducing Automated Developer Tests and making them easy to

run by grouping them in test suites you can address all of the problems

introduced in the forces section. Be aware that once you have started

writing tests regularly you will see a change in the way that developers

attack problems on their team. They will be much more confident and

courageous and will make design changes when needed relying on the

tests that have been written to catch their mistakes. Therefore you

must be diligent in writing good tests for all of your code or you might

find yourself in the position of Will and Uthman in the sketch at the

top of this pattern.

60 | PATTERNS OF AGILE PRACTICE ADOPTIONS

What are good tests? That is a nebulous question – almost as difficult

in answering ‘what is good code?’ Tests are best treated as any other

code – not as a second class citizen – so everything you know about

good design should be adhered to. The best way to learn is to start

writing tests. Learn by doing. Read what others are writing. Keep

very close attention to all the problems that occur and modify your test

writing technique to avoid those problems.

Adoption:

We will not cover exactly how to write a developer test – there are

many books that do so in great detail – what we will cover is the steps

that you need to perform so that you and your team have the maximum

likelihood of successful adoption with this practice:

1. Commit as a team to the discipline of writing tests.

a. Realize that this is first and foremost a human issue and not a

tool issue.

b. Agree that tests are just as important as production code.

c. Agree that it is better to miss a feature completion than to have

a feature complete without tests.

d. Agree to be patient. Depending on your current project it may

take anywhere between two to six months for this practice to

become a habit and for the real benefits of Automated
Developer Tests to become obvious.

2. Find a tool that is easy to use. The ease should be with respect to

the amount of effort it takes to write a test and not whether or not

you have to write that test.

a. JUnit and TestNG are available for java. NUnit and Visual

Studio’s built in testing tool are available for .NET. CXXTest

and CPPUnit are available for C/C++.

b. Use automatic testing tools as auxiliary testing and not your

primary form of testing. If you rely only on test-generation,

then you will lose the thought process that goes along with

making code more ‘testable’ and the gain of more loosely

coupled, better designed code.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 61

3. Treat your test code as you would your production code. Tests

should be well designed also.

4. Get as much help as you can on this.

a. Bring in an experienced consultant or two if you can.

b. Try to get others at your company who have successfully

participated on projects who have been disciplined about either

Test-First Development or Test-Last Development.
c. Buy several copies of books specifically on TDD and xUnit

testing. (recommendations provided at the end of this chapter)

Encourage your development team to take time to read these

books.

d. Get involved with online communities and local user groups

focused on TDD, Agile Development, etc…

5. Don’t worry about Mock Objects and pure Unit Testing to start off

with (if you don’t know what these are then don’t worry about it –

they are not important at this point). As a starting point, write tests

for each non-trivial method in each class. There is no need to write

a test for simple getters and setters.

6. Adopt Collective Code Ownership to support team development.

This will enable you to always fix tests when they are broken.

7. Consider adopting Pair Programming as a support practice to ease

the learning curve for the team. It is easier to be disciplined about

tests when you are working with someone else.

8. Start writing tests with the current Iteration. Expect a slowdown

of up to 50% if you are working on a new project. If you are on a

project that already has a large amount of untested code your

slowdown will be more pronounced. Your testing time will go

down over time to about 20%-30% of the total development effort.

You will eventually hit a ‘critical mass’ point where existing tests

help you write new code. This will speed up your overall

development time. Believe it or not you will develop faster even

with the testing overhead!

9. Within a few Iterations your team will come up against the

problem of setup data. As you write objects that rely on other

objects, that in turn rely on even more objects the amount of code

written to ‘setup’ for a test increases. There are two approaches to

this problem:

62 | PATTERNS OF AGILE PRACTICE ADOPTIONS

a. Pull out the common setup code into common classes. These

classes have the responsibility of creating classes and test data

– they are a special type of factory. They create business

objects in a given state. Martin Fowler gives a brief overview

and links to the original ObjectMother paper presented at

XPUniverse 2001 here

http://www.martinfowler.com/bliki/ObjectMother.html.

ObjectMother is a common evolution of complex setup code.

Your tests are always exercising real business objects (a good

thing). On the other hand the ObjectMother creates a

maintenance burden and can easily become unwieldy from

supporting too many special cases. Tests based on this solution

may become brittle because one test relies on many business

objects.

b. Use Mocks and Stubs to keep away from the complexity of

ObjectMother. Mock objects and stubs are place holders for

the business objects under test. They can be used to cut off the

thread of one object pulling another several objects for testing

purposes. A very good paper describing the correct use for

Mocks and Stubs is Mock Roles, Not Objects which was

written by the group who created the jMock framework.

Mocks can be used to make your tests much more readable and

less fragile. On the down side, mock are a form of duplication

– a proper mock object mirror’s the business object it mocks.

That comes along with all of the dangers of duplication. If the

business object changes then a mock must change also, if it

does not then a test will continue to pass even though it should

really fail.

10. Both approaches – mocks and ObjectMother – work well. The

important part is consistency – agree as a team on an approach and

follow it. This will make it easier for team members to work with

each other’s code.

11. Use Mock objects and Stubs to test classes that communicate with

external systems.

12. If you are brand new to this type of development start with

ObjectMother to keep from adding too many new tools at once.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 63

After the team is comfortable with Automated Developer Tests

then the team can shift towards mock objects.

But:

There are several ways that new adopters of this practice go wrong:

• This practice is fragile – it needs everyone on the team to be

onboard.

o If one person breaks a test and does not fix it then it is much

easier for others to do so. That one break – usually with a ‘its

not in my part of the code’ or ‘I’ll get to it later’ is the

beginning of the end for Automated Developer Tests.
o Developers must get used to fixing tests that they broke even if

they did not write them. This will mean that they will need to

touch parts of the system they are not used to working with

instead of creating a bug in the bug tracker and moving on.

• The fact that tests are written says absolutely nothing about the

quality of the production code. Badly designed code can be

written in any language and in any technique. Tests encourage

loosely coupled code and a good developer writes better code

using this technique. But bad code can still be written, consider

adopting Pair Programming if you have this problem or

performing regular code reviews of the tests.

• Tests sometimes end up as second class citizens – we break all the

rules of good design. What this inevitably ends up causing brittle

and hard to write tests. Treat your test code as you would your

production code. Refactor it when the design is no longer

adequate. Be mindful of coupling and cohesion and all of the other

principles you already know and practice.

• Writing tests – especially for existing systems that have been

written without testing in mind – is very hard. Don’t give up –

figure out how to put in tests incrementally. Be prepared to slow

down significantly before you start speeding up again in your

development. Pick up a copy of Working Effectively with Legacy
Code by Michael Feathers for some suggestions on how to

proceed.

64 | PATTERNS OF AGILE PRACTICE ADOPTIONS

• All tests should be running and passing all the time – no excuses.

Sometimes teams will check in something that breaks a test. It will

not be fixed – “we’ll get to it later” – that one broken test becomes

10 and then 100 and then 400 broken tests within a few Iterations.

This should be unacceptable. You’ve just lost one of the major

advantages of this type of testing – catching bugs early and

keeping other bugs from being introduced based on faulty code.

You are also desensitizing your team to broken tests. Fix this

immediately – pull out all the broken tests into their own suite.

Impose/convince/beg your team not to break any more tests. Any

broken tests should force an immediate rollback. Incrementally

start to migrate the broken tests over to the functioning test suite by

fixing them and then moving them to the live test suite.

• Code coverage becomes an overly important metric. Managers

drive from code coverage. Although using code coverage to

indicate areas of code that need more attention is valid, using code

coverage to drive development is not. It can (and often is) easily

‘gamed’.

o The fact that a test calls a method says nothing about the

quality of that test. Code coverage statistics are often

mistakenly used as ‘test quality’ statistics – they are not.

o The relationship between tests and methods on a class should

not be one-to-one but many-to-many if indeed we are writing

tests to verify the code’s conformance to requirements.

Coverage encourages a one-to-one form of testing – write a

method – and then make sure you have a test that exercises that

method.

Variations:

There are two types of Automated Developer Tests that are patterns in

their own right – but they both address the forces described here

adequately. This abstract pattern gives a context and a set of forces

that can are addressed by both Test-First Development and Test-Last
Development. There is therefore quite a bit of overlap.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 65

Instead of using Collective Code Ownership to share code, some teams

will adopt Pair Programming instead. They have very specialized

team members and it is unrealistic for them to have everyone learn

enough to modify all parts of the code. Their solution is to rely more

heavily on Pair Programming and have a culture that encourages this.

The problem here is obvious; you’ve just put more tasks in the lap of

some of your bottlenecks. This type of pain needs to be resolved,

either by augmenting the staff if or by giving in and moving towards

Collective Code Ownership.

This practice is also known as Automated Unit Tests in the community.

The reason I’ve chosen the word ‘developer’ instead of ‘unit’ is that

there is a debate whether they should be true unit tests – tests that

exercise only one class at a time - or not. It is not important for

adoption. In fact, it is easier not to write true unit tests until you ‘get

your feet wet’. At that point you will have enough information to

make your own decision about unit testing.

References:

Automated Developer Tests are discussed in books on Test Driven

Development and ones written specifically for JUnit (the leading

testing tool in Java). Michael Feather’s book below is about testing

and test driven development with existing systems:

Beck, Kent, Test-Driven Development By Example, Pearson

Education, Boston, MA. 2003.

Rainsberger, J.B., JUnit Recipes: Practical Methods for Programmer
Testing, Manning Publications, Greenwich, CT, 2004.

Feathers, Michael, Working Effectively with Legacy Code, Prentice

Hall, Upper Saddle River, NJ, 2005.

Astels, David, Test-Driven Development: A Practical Guide, Prentice

Hall, Upper Saddle River, NJ, 2003.

Jeffries, Ron, Extreme Programming Adventures in C#, Microsoft

Press, Redmond, WA, 2004.

Massol, Vincent, JUnit in Action, Manning Publications, Greenwich,

CT, 2004.

 67

6
Test-Last Development (Implements

Automatic Developer Tests)

Test-Last Development involves writing tests after writing the code
to support the requirements for a particular task. They exercise

the system as it has already been built.

Business value:

Test-Last Development addresses the same business values as
indicated in Automated Developer Tests. These values are quality to
market, flexibility, product lifetime, time to market, and cost.

Sketch:

When Uthman UpfrontDesign joined Scott ScrumMaster’s team along
with Waterfall Will they both had agreed to Pair Program with other
developers on Scott’s team and to do their best to pick up the
development practices that the team had adopted. One of those
practices was to always create Automated Developer Tests for each
and every piece of code written.

After a few Iterations of pairing with others on the team, Uthman and
Will paired up on the invoicing subsystem. Since they were new to the
Automated Developer Testing practice they planned to write tests after
writing some code (i.e. Test-Last Development). So they designed and
coded and added to the already existing invoicing subsystem
incrementally. It turned out that this was a piece of the code that had
absolutely no tests – and since they had already completed the code

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

68 | PATTERNS OF AGILE PRACTICE ADOPTIONS

(close to the end of the Iteration) – they called the task done and
skipped the tests instead of having the task be marked as incomplete.
The next Iteration they signed up for more work on the invoicing
system. And unfortunately it came down to the wire and tests were
dropped. (This was an independent system anyway – so they weren’t
hurting anything by not adding tests and as long as they were working
on the subsystem it would be alright.)

So, when Dave Developer and Cindy Coder modified a piece of the
system that the invoicing subsystem depended on, they ran and passed
all of the tests and checked their code. The invoicing system stopped
working (silently). Aparna Analyst noticed this as she was running the
system to prepare for the next Iteration’s invoicing requirements and
told Will and Uthman. Needless to say they were upset and when they
confronted Dave and Cindy to ask them why they weren’t more careful
they got a “well our code ran all of the tests – how were we supposed
to know your invoicing work would fail?!”

This particular incident cost Will and Uthman a large portion of the
next Iteration to correct and back-add the developer tests that they
should have written earlier. On the bright side they picked up the
habit/discipline of always writing their developer tests. To keep from
making the same mistake again they wrote their tests more
incrementally – that is after every development step they would write
the tests for the code just written.

Context:

You are on a development team that has decided to implement
Automated Developer Tests and therefore the context from that pattern
applies. Furthermore:

Most (all) of the members of your team have no experience with Test-
First Development and you want to adopt a practice that is not
completely different than what they were used to previously.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 69

Or maybe your company has purchased a tool that helps with creating
developer tests. The generation of tools for developer testing can only
generate tests for code that has already been written.

70 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Forces:

All of the forces in Automated Developer Tests apply plus:

• Writing tests for existing code takes a smaller learning curve than
learning to write tests before writing the production code.

Therefore:

Develop your production code in small steps. After every small step
write a developer test using your tool of choice to exercise the code
that you have written. Collect the tests that you and others write in
Test Suites so that they can be run in groups easily. Do not check any
code into the source repository that has not been fully tested. Run all
developer tests before checking in your code base to make sure that
you have not broken anyone else’s tests by your change.

This type of development is not only about tests – it is about the
production code that results from this practice. Production code will
be, by design, more testable. The ‘testability’ will drive a design that
has far less coupling than code written without this in mind. The code
produced, including the tests reduce the cost of change – design will
be modifiable instead of something static that we will only ‘band-aid’
for fear of introducing more bugs than we fix.

Adoption:

The adoption strategy in the parent practice pattern, Automated
Developer Tests is sufficient to cover the adoption of Test Last
Development. Be aware that this is practice is less effective than Test-
First Development but easier to adopt. Many have used this practice
as a stepping stone towards Test-First Development to ‘get your feet
wet’ with disciplined testing.

But:

This type of testing is not new. In fact, developer tests written in this
manner have been around long before their emerging popularity with

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 71

eXtreme Programming. In addition to all of the problems in the But:
section in Automated Developer Tests these problems are unique to
Test-Last Development:

• Testing is dropped during crunch time. Although this is a problem
in both Test-Last Development and Test-First Development, it is
much more common here because the code is seen as ‘done’ before
the tests are written. Will and Uthman in the sketch above are not
uncommon.

• Testing is seen as an overhead and the practice is sometimes
dropped as a whole.

• Tests are biased towards the solution. A developer writes the code
which is a solution to the problem defined by the requirements.
The tests should logically make sure that the code conforms to the
requirements but often makes sure that the code conforms to the
code.

References:

Test Driven Development by Dave Astels is a proponent of
Test-Last development:

Astels, David, Test-Driven Development: A Practical Guide, Prentice

Hall, Upper Saddle River, NJ, 2003.
Rainsberger, J.B., JUnit Recipes: Practical Methods for Programmer

Testing, Manning Publications, Greenwich, CT, 2004.
Feathers, Michael, Working Effectively with Legacy Code, Prentice

Hall, Upper Saddle River, NJ, 2005.
Massol, Vincent, JUnit in Action, Manning Publications, Greenwich,

CT, 2004.

 73

7
Test-First Development (Implements

Automatic Developer Tests)

Test-First Development involves writing tests before writing the

production code that will support and eventually pass that test.

Tests resulting from this practice tend to be a developer’s

understanding of requirements because there is no ‘design’ at its

inception.

Business value:

Test-Last Development addresses the same business values as

indicated in Automated Developer Tests. These values are quality to

market, flexibility, product lifetime, time to market, and cost.

Sketch:

Uthman UpfrontDesign and Waterfall Will joined Scott
ScrumMaster’s development team earlier this year. As they Pair
Programmed with others on their team Uthman and Will got a taste
for Automated Developer Tests and had their own run-in with what
happens when someone does not write tests for their code on an agile
team. (See the sketches for Automated Developer Tests and Test-Last
Development.)

After fixing the invoicing system code that they had coded without tests
and back-filling the tests for that part of the system Will and Uthman
decided to do one more Iteration together on some invoicing tasks.

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

74 | PATTERNS OF AGILE PRACTICE ADOPTIONS

They decided to try to write their tests first (they had done so
previously with others on the team on other tasks but they had never
led an effort). So they struggled with doing so. It was very difficult
and awkward to come up with tests to code that hasn’t been written
yet. What they ended up doing was talking through a design on paper
and/or white board, discussing both the static and dynamic structure,
and then writing a test for the ‘virtual solution’ they came up with in
their heads. At the end of the iteration they had a very small piece of
production code working that was tested. But they were far from
happy with their experience.

On the subsequent Iterations Will went back to Test-Last Development
– and was very disciplined in writing tests incrementally with the
production code. Uthman, on the other hand, decided that there was
something to this Test-First Development and tried to pair with as
many people who were already doing Test-First Development as he
could. He picked up a Kent Beck’s TDD book and went through the
exercises. He ‘suspended his disbelief’ because he saw that there were
many people who he highly respected using this practice exclusively.
He also learned about mock objects via the Mock Roles, not Objects
paper and learned to use JMock effectively. After several slow
Iterations the light bulb finally went on for Uthman and he became
hooked!

The next time Uthman and Will teamed up on a set of tasks Uthman
drove in a Test-First manner and explained to Will what he was doing.
When Will drove he developed in a Test-Last manner. Uthman felt
that the quality of tests were much better with Test-First Development
when comparing Test-First and Test-Last but he kept it to himself…

Context:

You are on a development team in an environment that matches the

context of the Automated Developer Tests pattern. Furthermore:

• You want to get the most benefit out of the developer tests.

o You want to increase your development speed.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 75

o You want to increase the benefit of tests in creating and

promoting loosely coupled designs.

o You want to have full test coverage of your requirements

instead of test coverage of the design.

• You may have already adopted Test-Last Development and have

noticed that tests are not always written – especially during ‘crunch

time’. Unfortunately this is when you need tests the most.

• Your team is willing and able to struggle through an awkward

stage while this practice becomes natural. (Usually one to three

months.)

Forces:

Test First Development resolves all of the forces documented

Automated Developer Tests. The following forces are also resolved by

Test-First Development:

• Tests that are written after the code are more likely not to be

written. In crunch time it is very easy (and common) for

developers to move on to the next development task before writing

the tests for the current task.

• Tests written after code drive code indirectly. A developer writing

production code keeps the fact that he must be able to test this code

in the back of his head while developing. So, in that way, the

design is affected by the tests to be written.

• Tests written after the production code is written are (usually)

biased towards the solution when they should be validating the

problem. That is, a developer test should verify that the production

code written satisfies the requirements. But, when the production

code is written first, the developer has already solved the problem

– and tests written reflect that fact as they exercise the production

code. All this really verifies is that the code written works as the

developer thinks it should. The requirements have gone by the

wayside untested.

• Tests written after code may or may not test all of the requirements

that drove that code to be written.

76 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Therefore:

Write your developer tests before writing the production code to

support the requirements. At this point, since you have not solved the

problem yet by writing the production code, the only information

available to you will be the requirements. By forcing yourself to write

this test you will need to make decisions about classes that will support

the required functionality – you will make design decisions to support

the requirements at hand. Your test therefore will mirror these

requirements and will be a form of ‘executable requirements’. This

test should be failing – probably failing to compile also – that is as

expected.

You will then write the production code to satisfy the one test you

have written. You have already made decisions regarding

responsibility assignment to classes and now you only write the code

needed to make that test pass. The test you wrote earlier will ‘drive’

the creation of classes, methods on those classes, and their

relationships to other classes in your system (i.e. object oriented

design).

Once you have made the test pass you now have a passing test and

production code that satisfies the requirements. You have not written

one line of code that has not been driven by requirements. If you are

strict about never writing code without a failing test to drive that code

then you have ‘requirements coverage’ – that is you have a test that

exercises each and every requirement supported by your code.

The last step is to Refactor – that is to modify the structure of your

code without changing its behavior. You have the passing test that

verifies the behavior – therefore any change that you make that does

not break the test you have written means that the behavior is still the

same. Do not add new functionality but feel free to ‘clean up’ any

sloppy work and use the existing tests to ensure that the behavior is the

same after you’ve done your cleanup work.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 77

What we have just described is the Red-Green-Refactor loop in the

Test Driven Development pattern
3
. It is a mandatory part of Test-First

Development.

Adoption:

here are people that have successfully adopted Test-First Development
completely by themselves. Many have written about their experiences

doing so in online articles, conference papers, and blogs. They are the

minority. By far, most of us who have successfully adopted this

practice have done so with outside help. Here is how to go about

doing so:

1. {Required} Commit to learning this practice as a team and being

patient while individuals on your team internalize this practice.

Agree to ‘suspend your disbelief’ for at least two months and plan

for a significant slow-down in development speeds of up to 50%

(75% if you are on a project with legacy code that was written

without tests in mind).

2. {Recommended} Send your developers to a TDD Immersion

class
4
 - these types of classes are typically 80% to 90% hands on

work using the Test-First Development approach and other

practices under experienced practitioners’/instructors’ tutelage.

They will give the attendees a good head start in a controlled

environment.

3. {Highly Recommended} Bring in help until this practice catches

on (an outside consultant is best, but if you have internal resources

who have successfully practiced Test-First Development they can

carry out this task). You will need someone who has ‘been there

done that’ with respect to these practices. They need to be able to

3
 Automated Developer Tests and especially Test-First Development are big parts of

Test Driven Development although they are only part of TDD in a team environment.
4
 Many are offered by consulting companies in open enrollment or onsite format.

Check www.valtech.com, www.objectmentor.com and others. Get recommendations

from people you know or in the community who have attended any of these classes.

Do your best to get into a class where the instructors have real-world development

experience.

78 | PATTERNS OF AGILE PRACTICE ADOPTIONS

pair with the developers to help them learn this technique hands

on. Typically you will need at least 1 person per 4-5 developers

for at least one week out of every month for several months. They

will be there to keep morale up, show ways that tests can be

written, and help the team adapt and adopt this practice to your

particular environment.

4. {Highly Recommended} The parent pattern, Automated

Development Tests, encourages that you adopt Pair Programming.

This practice is very important to ease the learning curve.

But:

This is one of the most difficult practices to adopt of all of the

commonly know Agile practices. All of the problems listed in

Automated Developer Tests apply here also. In addition this way of

development is ‘backwards’ to many developers and very non-

intuitive. It takes a significant amount of practice for the ‘light bulb’

to go on of why this is a superior method of development. Developers

must ‘suspend their belief’ long enough to figure out how to perform

Test-First Development efficiently. This practice has a high drop-out

rate.

Variations:

Distributed teams use Test-First Development as a form of

requirements documentation. The tests are written by someone with

face-to-face contact with the customer and then those tests are given to

the developers who are to build the production code.

References:

Test-First Development is almost synonymous with Test Driven

Development in published works:

Beck, Kent, Test-Driven Development By Example, Pearson

Education, Boston, MA. 2003.

AUTOMATED DEVELOPER TESTS (ABSTRACT PATTERN) | 79

Rainsberger, J.B., JUnit Recipes: Practical Methods for Programmer

Testing, Manning Publications, Greenwich, CT, 2004.

Feathers, Michael, Working Effectively with Legacy Code, Prentice

Hall, Upper Saddle River, NJ, 2005.

Jeffries, Ron, Extreme Programming Adventures in C#, Microsoft

Press, Redmond, WA, 2004.

Massol, Vincent, JUnit in Action, Manning Publications, Greenwich,

CT, 2004.

 81

8
Refactoring

To Refactor code is to change the structure (i.e. the design) of that

code while maintaining its behavior.

Business value:

Refactoring increases flexibility and the product lifetime by allowing

and encouraging developers to change the design of the system as

needed. Quality to market and costs are reduced because continuous

Refactoring keeps the design from degrading over time and thus

making it harder to modify the product correctly.

Sketch:

Uthman UpfrontDesign jokingly told people that he was considering
changing name Rashid Refactoring after a few months on Scott
ScrumMaster’s team. As he learned about other agile practices such

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

82 | PATTERNS OF AGILE PRACTICE ADOPTIONS

as Pair Programming and Automated Developer Tests he became
aware of an option that has never been open to him before – he could
re-design his code when requirements were changed or added. After
reading Refactoring: Improving the Design of Existing Code by
Martin Fowler and with the Automated Developer Tests present he
learned how to incrementally change the design of his code to
accommodate new information.

He no longer put together elaborate designs to at the start of a new
piece of functionality. This wasn’t really as bad as he had thought
because he found himself doing a little design each and every day.
The practice of Refactoring had quickly replaced Upfront Design as
his favorite practice.

Context:

You are on a development team that is practicing Automated
Developer Tests. You are currently working on a requirement that is

not supported by the current design well. Or you may have just

completed a task (with its tests of course) and want to change the

design for a ‘cleaner’ solution before checking in your code to the

source repository.

Forces:

These are problems are a natural result of software development:

• Traditionally, software gains entropy over time. Requirements

change, the software is ‘band-aided’ with less than perfect

solutions because of the increasing cost of making a change to the

old, fragile code base.

• Quick fixes quickly build up a design debt that charges interest

daily in the form of code that is more difficult to understand and

modify.

• Code duplication is almost unavoidable to avoid changing working

code and possibly introducing a bug.

REFACTORING | 83

• Requirements are added and/or modified and the current design is

no longer a good solution to the problem.

• Software development is a learning process and the design

decisions that make sense today are incorrect when seen with

tomorrow’s information.

Therefore:

Incrementally change the design of the code instead of a quick and

dirty fix. Do not add new functionality and change the design at the

same time – that complicates the issue. Change the design of the code

while maintaining the behavior. Ensure that you are maintaining the

behavior by relying on Automated Developer Tests and Functional
Tests. Start with a passing set of tests, change your design and fix any

broken tests by changing production code (not the tests). At this point

– from passing tests to passing tests – you have changed the design

and maintained the behavior. This process is called Refactoring.

Refactoring is a very simple and elegant activity. It is best when

practiced regularly – before and after every task. That is, before you

start a new task read the existing code and determine if it will support

the requirements of the task you are working on. If it does not then

make the necessary change(s) to design before starting on your task.

At this point go ahead and code the task and its tests. After you are

done reexamine the resulting design. If the design can be improved

then go ahead and improve it by Refactoring the design again so that

you do not leave any design debt for the next person down the line.

Adoption:

This is one of those ‘just do it!’ patterns (well almost…). One of the

things to keep in mind is that Refactoring is a practice and not a tool –

although tool support helps. With that in mind, here is how you

should go about adopting this practice:

1. Start Automated Developer Tests until you are comfortable with

the discipline of writing tests for all of your tasks. Do not attempt

84 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Refactoring any piece of code until there are adequate tests

covering the particular segment to be modified.

2. In a team environment, adopt Collective Code Ownership on your

team – agree on how to handle broken tests from Refactorings in a

timely manner.

3. Pick up a copy of Refactoring: Improving the Design of Existing
Code by Martin Fowler and a book about Test Driven

Development that is exercise driven.

4. Start. Perform the steps as described above. For every task inspect

the design to see if it needs changing to accommodate the new

work. After completing the work inspect your own solution and

clean it up if needed. Be disciplined in Refactoring mercilessly –

that is before and after every task if applicable.

5. Run a bi-weekly study-group to share different refactorings that

have been performed.

6. As you become comfortable with the canonical refactorings as

defined in Martin Fowler’s book, be courageous and make

significant changes – work towards large design changes that you

and your team have known was needed when appropriate. Get a

copy of Refactoring To Patterns by Joshua Kerievsky and run a

study group around that book to expose yourself to larger

refactorings.

But:

Refactoring is one of the most powerful practices in a developer’s

toolbox. Nevertheless, here are some things to watch out for:

• Refactoring delivers no direct business value. By definition

Refactoring maintains behavior – therefore it is completely

transparent to users. Therefore Refactoring without a requirement

that causes the code being refactored to change is wasteful from

the Customer’s perspective.

• Many missed small Refactorings build up over time causing the

need for large Refactorings. Large Refactorings are much more

difficult to perform. Therefore be diligent in constantly

REFACTORING | 85

Refactoring your code and cultivate your sense of code and design

smells.

• In a team environment you will eventually Refactor code that

causes tests to break that you have not written. Some new to agile

practices may check in this code and rely on the developers who

have written the tests to fix the broken test. In this path lies the

danger breaking down the Automated Developer Tests practice. It

is unacceptable to check in code that breaks existing tests. Make

sure to practice Collective Code Ownership in a team environment

so that you are able to make all of the tests pass after performing a

Refactoring.

Variations:

We know that the majority of cost of software development goes into

maintenance and not the initial creation of a software system. It then

makes sense that we focus on making our systems maintainable.

Traditionally we design for tomorrow in mind – that is we build a

flexible system so when new requirements come the design does not

have to change to incorporate the new requirements. But there is a

hidden cost in this solution – a general design is more complex. We

pay for that complexity every time a developer has to understand and

use that code. One of the most common techniques for sharing these

flexible designs is via Design Patterns. Erich Gamma in Design
Patterns : Elements of Reusable Object-Oriented Software promotes

this type of solution in 1995.

In an interview with him in the summer of 2005 he says that his

thinking has evolved and he now starts with a Simple Design to meet

the requirements at hand. When new requirements emerge he is able

to Refactor the solution towards a Design Pattern. Therefore he does

not have to carry the complexity of the design until it is absolutely

needed.

This, of course, brings us to the variation of Refactoring towards

patterns instead of using design patterns upfront. In this way we

86 | PATTERNS OF AGILE PRACTICE ADOPTIONS

merge the benefits of both techniques. Refactoring To Patterns by

Joshua Kerievsky is full of examples of how to do this effectively for

common problems in today’s development environment.

References:

Fowler’s book is a reference that should be on every developer’s

bookshelf. Kerievsky’s book is useful when you have gained

experience in Refactoring and want to learn to focus your Refactoring
towards well known design patterns:

Fowler, Martin, Refactoring: Improving the Design of Existing Code,

Addison-Wesley Professional, 1999.

Kerievsky, Joshua, Refactoring to Patterns, Addison-Wesley

Professional, 2004.

87

9
Continuous Integration

Continuous Integration is a practice of performing a clean build,

full integration, and running all tests every time a change is

committed to the code repository. This is accompanied by

frequent integration of each developer’s work into the code

repository.

Business value:

Continuous Integration reduces time to market and increasing quality

to market by finding integration bugs often and early, thus eliminating

“hardening iterations” and the rework that goes along with it.

Continuous Integration also increases visibility of the progress of the

project by making it explicit to the development team and

stakeholders.

Sketch:

Bob BuildMaster had been reading about Continuous Integration and
noticed that many of the problems this practice was purported to solve
were present in his project. So Bob spent some time over the next
several weeks fully automating the build. At that point he ran a nightly
build and made the results available on a web page where the entire
team could see the results.

Bob then sat down with Scott ScrumMaster, Cindy Coder, and Dave
Developer to show them what he had done and to get their buy-in.
They came to an agreement that build problems were to be solved as

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

88 | PATTERNS OF AGILE PRACTICE ADOPTIONS

soon as they were found. Cindy and Dave also agreed to work with
Bob to get all of the Automated Developer Tests they had written to be
part of the nightly build also.

After a few Iterations the development team started relying on the
nightly builds that ran all of the developer tests. The key, they found,
was to remove all errors as soon as they were discovered. By doing
this the entire team became more aware of integration problems and
their causes. Bob also made the build script available to all
developers to perform a local integration before checking into the
code base.

With that success the team decided to do full Continuous Integration
and Bob dedicated a large portion of the next three weeks to install
and configure a CI tool and reduce the build time to just under ten
minutes.

Context:

You are a member of a development team that has decided to reduce

the risk associated with “hardening iterations”. Or you are on a

development team that is adopting Automated Developer Tests as a

practice and want to keep the build passing all tests. Or you are on a

development team that is introducing Functional Tests and want to

make sure that the team is incrementally adding new functionality

without breaking the old.

Forces:

There are many problems in today’s typical software development

lifecycle that are directly addressed by Continuous Integration.

• Integration has been traditionally seen as very difficult and risky.

This typically drives several practices to buffer against this risk of

uncertainty: (These practices are suboptimal.)

a. Sub-teams work independently and “stub out” work to be done

by other sub-teams to avoid the need for integration.

CONTINUOUS INTEGRATION | 89

b. Sub-teams start out with a detailed design of their subsystem

boundaries to make sure that their subsystems will come

together smoothly. (which is almost never the case)

c. Have “hardening iterations” at the end of a development cycle

to figure out what mistakes in assumptions our teams have

made.

• Integration becomes exponentially more risky with time.

• Lack of integration typically masks a large set of bugs. Many of

these bugs can be very serious and can by symptomatic of

significant design mismatches in the system.

• A ‘bug’ is an indication of an error. If that error goes unseen and

uncorrected then other code that relies on the error is built upon

incorrect assumptions.

• Successful integration is a prerequisite to successful Functional
Testing.

• In the Agile community, integration includes a fully working

system – that is compiling, deploying, and testing – and not just a

successful compile.

Therefore:

Instead of shying away from Integration because it is so painful and

pushing it to the end of a release cycle – embrace the pain! Pain – in

software development – means that something is not working well, we

should use that feedback to fix the problem instead of ignoring it.

We traditionally think of Integration as something we ‘have to do’ out

of obligation – the only reason we are really doing it is to deliver the

system to the client (a pretty important reason) – and so we do so just

before we are ready to release.

By reflecting on the pains of integration we can get an idea of what

values can be delivered by doing integration well:

• Lack of integration is a risk and masks several bugs. Therefore, by

integrating more frequently we can discover the bugs early and

often and perhaps avoid many compound-errors.

90 | PATTERNS OF AGILE PRACTICE ADOPTIONS

• The difficulty of integration is almost always related to several

manual steps and synchronization of different versions of code

bases, libraries, and other resources to deliver a working product.

There is nothing inherently un-automatable about these steps.

Therefore spend the effort to automate all steps in integration.

• Integration is a form of feedback and information regarding the

global state of the system. If we want to be more ‘Agile’ we

always want feedback more frequently. Use this information as

feedback for the entire team. Don’t keep it hidden so that only

those responsible for the build know what is happening.

Adoption:

The first step along the road to Continuous Integration is to automate

your build. This means all manual processes must be removed
5
.

Depending on your development environment there will be different

tools to help you do this
6
. This may mean that you will have to change

or augment your existing toolset if it does not support full automation

(for example requires human interaction periodically with dialog

boxes). This step can be done independently and does not need the

full development team’s involvement.

Once you have a fully automatic build then you need to get that build

running regularly – preferably nightly and produce a report that is

available to the team. One of the best ways to do this is to put up an

Information Radiator7
 that shows the build status. At this point the

entire development team must be brought in and told that the build

5
 Some common processes are checking out the current code base for a build, tagging

the files with a build number, generating the database schema, compiling the code,

running automated tests, etc…
6
 In Java there are several open source projects such as Ant and Maven, in .NET

there is NAnt and MSBuild, and there are several build tools (in addition to make)

available in the C/C++ environment.
7
 An Information Radiator is an artifact that is placed within the development team’s

work area that is easy to read and understand – it ‘radiates’ its information to those in

its vicinity. Specifically a daily print out, poster, or monitor to show the status of the

build is needed.

CONTINUOUS INTEGRATION | 91

status will be available daily and that fixing a build must become a

priority.

Figure 1 Steps in Adopting Continuous Integration

You want to get to the point where it is unacceptable for a build to be

‘broken’. It must be fixed before any new functionality is added to the

code base. The next step towards achieving this point is getting your

92 | PATTERNS OF AGILE PRACTICE ADOPTIONS

developers to the point where they can completely build the subsystem

with a single script before they check in to avoid ‘breaking’ the build.

There are two parts to this step: 1) making the build script and the

external deployment configuration available to developers locally on

their desktop, and 2) making the build run fast enough so that

developers can realistically test locally before checking in. Both of

these steps have their challenges that, depending on your particular

environment, may seem daunting. If this is a non-trivial problem for

your team then set up one or more ‘deployment machines’ where a

developer can take their modified code and run a full build before

checking their code in. Remember the human practices are more

important than the tools – as a team you need to value integration

before check-in – especially during ‘crunch’ time – to keep from

breaking the build.

Once it is possible for developers to realistically perform a full

integration build before checking in we come to the heart of

Continuous Integration – frequent feedback. Developers now have a

tool that will let them integrate their new code into the entire system.

How will they use it? How often? This new-found tool – full

integration on the developer’s machine– should be used before each

and every check-in to the source repository. Only upon a successful

local integration build should a developer check in code.

As a rule of thumb developers should integrate as often as possible to

validate that their code works with the entire system. How often is

possible? This depends on how they develop software, practices like

Test-First Development encourage a developer build very small

testable work; a developer using this practice may check in four or five

times a day. Developers who are not already going that fast should

strive to reach a daily check-in so that every day they force themselves

to get to a point where they can integrate successfully
8
.

8
 Many of us are used to taking a functional piece and working on it for several

weeks – and then checking it in (and waiting for integration several months

afterwards during the ‘hardening iterations’). This is usually not because of any

restrictions of the problem itself but of our own way of working. Therefore strive to

achieve a daily check-in as a minimum.

CONTINUOUS INTEGRATION | 93

At that point every developer has at least daily feedback on the

integration state of the build. For the vast majority of check-ins the

local integration will go smoothly. A minority will break locally and

the developer will be able to fix the problem before checking in the

code. An even smaller minority may pass through the local build

check and fail on the official build machine – at that point the team

should identify which check-in caused the build to break, roll it back

to get a successful build, and fix the problem offline. The local

developer scripts should be modified to catch that new type of error

that ‘fell through the cracks’.

Finally tests… We have not talked specifically about tests on purpose.

Continuous Integration as stated so far – without automated tests is

still extremely valuable. That said, if your team has Automated
Developer Tests and/or Functional Tests then they should be

incorporated into the Continuous Integration practice. They should be

incorporated as early as possible – as part of or directly after

automating the build process. At this point a definition of a ‘broken’

build goes from one that doesn’t compile or deploy to one that doesn’t

pass all of the automated tests.

But:

Continuous Integration sometimes becomes too slow or too brittle. If

this happens then a major side effect is a continuously broken build.

This is worse than useless – it acknowledges that something is wrong

and does nothing about it. The development team becomes de-

sensitized to the importance of the build process and it goes back to

ugly step-child status again. Do what it takes to speed up the tests.

Frequent and long-lasting broken builds are the bane of Continuous
Integration. As long as it is obvious who broke the build then there

are usually no problems. How is it obvious who broke the build? If

only one person, say Cindy Coder, checked code and the build broke

then it is easy – Cindy is responsible.

94 | PATTERNS OF AGILE PRACTICE ADOPTIONS

But, what if Cindy, Dave, Ashley, and Ahmed all checked in code then

who broke the build? Often what happens is that they are all sure that

they did not break the build and they have an ‘important task’ that they

cannot drop at the point to investigate. Anyway – they ran the build

locally and nothing went wrong – it must be one of the others. Be

warned – this is a very slippery slope. If the problem is not fixed, four

more people will check in and possibly compound the problem. They

ran their local builds – they all failed – but that is because of the earlier

failure not their code right? Your one test failure, if not fixed

promptly, can easily turn to ten broken tests over a couple of days.

So what is the root problem here? The problem is that the ‘build’ is

too slow. If between one build and the next we have several people

consistently checking in within one build cycle (rule of thumb is more

than three) then the build needs to be faster. If you have a nightly

build this is unavoidable. It can be mitigated by having one person – a

Build Cop – be responsible for tracking down build failures and

helping developers fix them. If you have true Continuous Integration

then you must work to make your build faster. How to do this is

extremely environment dependent (sorry) – so it really does depend.

Be creative – remember builds are no longer the ugly stepchild and

deserve your attention just as much as any other part of the

development process.

Continuous Integration, especially during adoption, is not a free

practice. For many development environments significant time will

need to be invested to fully automate the build and bring its time

down. Investment in time and effort from the entire development team

in keeping the build running will be required.

Variations:

Continuous Integration is one of those practices that has caught on

even in non-agile shops because it keeps development environments

running effectively and visible to management. Here are some

common variations on Continuous Integration:

CONTINUOUS INTEGRATION | 95

• Continuous Integration at an enterprise level. Each project has its

own CI tool and the tools are linked hierarchically so that one build

pulls only ‘successful’ builds from the other.

• Single code repository: As Automated Developer Tests and

Functional Tests are pulled into Continuous Integration (more

detail in the Test Driven Development and Test Driven
Requirements clusters) greater confidence in the quality of the

code emerges. With this greater confidence the need for

‘branches’ in the source code repository goes away. Teams start to

have a single code repository that is always working.

• Functional Testing is more time consuming than Automated
Developer Tests because it exercises the system as a whole. Some

teams will pull these tests out of Continuous Integration and make

them secondary. Because this is a common pattern it is important

to call it out. It is equally important to point out that generally

teams take this approach too early. By pulling these tests out of

Continuous Integration you allow them to become stale, and fail

thereby negating a very large portion of their benefit. If at all

possible I recommend staying away from this solution by focusing

on making your build and your tests run faster.

References:

There are several articles written and available on Continuous
Integration – any search engine will bring up several tools and articles.

The original article, which has been updated in May 2006 is:

Fowler, Martin, Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegration.html .

97

10
Simple Design

The complexity of your design should support the current

requirements at hand and no more. By keeping designs simple

then you can build your software more quickly, maintain it with

less pain, and modify the design as incrementally by relying on

Automated Developer Tests and Refactoring.

Business value:

Simple Design is a powerful practice that yields business value in

reducing the time to market and cost of a software product because the

team does not pay for what it does not need. It also increases a

product’s lifetime because a less complex design is easier to

understand and has less inertia.

Sketch:

When Waterfall Will joined Scott the ScrumMaster’s agile
development team a year ago he had many misgivings about
the project team and their coding techniques. Most
importantly he had a burning question “Where is the
Design?!” He could not fathom how starting with a Simple

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

98 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Design could ever work. In his experience a team must set the
architecture and design upfront otherwise the frequent changes
that will be required to change the design incrementally will
incur exponential costs.

Will decided to suspend his disbelief for a few months and give this
new development technique a chance. Grudgingly at first Will had to
admit that the simple designs were elegant in their own way. As he
observed again and again the resilience of these designs and how they
could be easily changed according to new requirements because of the
safety net of Automated Developer Tests he started to enjoy this way of
development. His designs were much leaner overall and he
recognized that this was not really getting rid of the design cycle but
making design part of every day’s work

Context:

You are on a development team that is building a software system with

one or more of the following needs:

Requirements change frequently so your system must be resilient to

change.

Your customer may not know exactly what they want. You want to be

able to give them something to work with as soon as possible to help

them make a good decision.

Or your team wants to reduce time to market of your product

significantly.

Or your team is working with complex or unfamiliar technologies and

you want to leave major design decisions to the latest possible point

when you have become more familiar with the problem and or

technologies.

SIMPLE DESIGN | 99

Forces:

These are common problems typical to software development that are

addressed by this practice:

• Feedback between customers and developers is infrequent because

of the large delay between requirements and working software.

• Functionality is very complex and developers have a tendency to

"go off track" and come back to the customer with an incorrect

solution.

• A significant portion of development in an over-designed

application goes into understanding and using the abstractions built

in – even if they are not used.

• Design complexity has a ‘Cost of Design Carry’ that is paid every

time a developer has to understand, use, or test the complex code.

If this complexity is for ‘tomorrow’ we still pay a cost today.

Unfortunately ‘tomorrow’ never comes for much of the complexity

we developers build into our software.

Therefore:

n the agile community we believe that building in complexity in hopes

of reducing the cost of change for the future is a false hope.

Generalizations provide much more flexibility than what is strictly

needed by the current requirements. In the agile community, this type

of generalization is known, derogatively, as Big Design Up Front

(BDUF).

We are not fortune-tellers and cannot foresee all of the changes. The

upfront design is not for free – the extended generalizations made to

allow for change are more complex and harder to understand and

maintain than a Simple Design. The cost of carrying that design will

far outweigh the benefits gained.

The design should only be complex enough to meet the requirements

of the current iteration. Your design should be a Simple Design that

has no generalizations for needs that will come in the future for two

100 | PATTERNS OF AGILE PRACTICE ADOPTIONS

reasons: (1) you really don’t know what the requirements will be two

years down the road and putting those generalizations will incur a

‘Cost of Design Carry’ over those two years, and (2) by enabling

Refactoring via Automated Developer Tests you have reduced the cost

of change and will be able to cost-effectively make the changes when

new requirements dictate them.

Figure 2 Cost of Change Curve for Waterfall and TDD

SIMPLE DESIGN | 101

Adoption:

So how do you apply Simple Design?

1. Non-ambiguously determine what the require-ments are for the

task at hand.
2. Determine what the solution will look like. This can be done by

writing the tests first and letting them drive the solution, or more
traditionally by coming up with a design before starting to code.

3. If the solution uses existing code that is not general enough for the
new requirements then Refactor the code to make it amenable to
adding the new functionality. Rely on existing tests to verify that
you have only changed design and not behavior.

4. Add the new functionality with a solution that is only as complex
as needed to meet the new requirements.

Simple Design should not be practiced without the ability to refactor
and evolve the design. Refactoring, in turn, cannot be done effectively
without a set of Automated Developer Tests. These are the necessary
practices for simple design.

To effectively adopt the practice of Simple Design most developers
must suspend their disbelief

9
 for several iterations in order to observe

it working effectively.

9
 Most experienced developers have problems building a simple solution only for the

requirements at hand. Years of generalizing and designing ahead for future

flexibility makes most developers very hesitant to trust that design will be

changeable without an exponential increase in effort later on.

102 | PATTERNS OF AGILE PRACTICE ADOPTIONS

But:

Watch out for these pitfalls:

• A team may drop Simple Design the when some paths lead directly
where a BDUF would have led them. They see the constant
Refactoring as a waste. They don’t realize that most of the BDUF
still leads to over-generalization; conversely most of Simple
Design leads to less complex designs.

• A team may interpret Simple Design as the design that takes the
least time. Frequently that includes cut & paste solutions. This is
NOT Simple Design. This is bad code.

• Teams frequently do not adopt Simple Design because it cannot
possibly work in their opinion. It goes against all of their expertise
and good sense. We highly recommend that teams suspend their
disbelief as Waterfall Will did in the sketch of this pattern. Two to
three months of practicing Simple Design regularly will make a
believer out of a team!

Variations:

These are some common groupings of simple design with other
practices. Both of the examples below are instances of the
Evolutionary Design cluster.

• Test-First Development, Simple Design, Refactor-ing. Write the
tests, build the simple design to pass the tests, and then refactor the
simple design to make it more appropriate.

• Simple Design, Test-Last Development, Refactor-ing. Come up
with a minimal design to meet the requirements at hand, develop
the code based on that design, write the tests to exercise the code
just written, and then refactor the design to better fit the (code)
reality on the ground.

SIMPLE DESIGN | 103

References:

Simple Design comes directly from eXtreme Programming:

Beck, Kent, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 1999.
Beck, Kent and Andres, Cynthia, Extreme Programming Explained:

Embrace Change v2, Addison-Wesley Professional,
2004.

105

11
(Automated) Functional Tests

Business value:

Functional Tests primarily increase value to market and increase

visibility of the software development team’s progress by drastically

improving the communication and validation of requirements. It also

helps to increase product lifetime, reduce the time to market and

reduce the overall cost of the system because it is a form of testing and

feedback.

Sketch:

Mustapha Mentor has just joined Scott ScrumMaster’s agile team as a
part-time consultant to help the team take the ‘next step’ in improving
their software development process. After two weeks on the team
Mustapha noticed that a significant number of the User Stories were
not passing approval by Chris Customer and Aparna Analyst. Upon
further investigation Mustapha noticed that there were typically one or
two days of ‘hardening’ after a developer marked their tasks complete
because of misunderstandings, mistakes, and omissions in the
requirements-to-code translation.

Mustapha had seen this before – although the team was practicing
TDD, which helped them ‘solve the problem right’ – they still had

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

106 | PATTERNS OF AGILE PRACTICE ADOPTIONS

minor problems in ‘solving the right problem’. Iterations were forcing
these mistakes to be caught and fixed regularly – but there was definite
room for improvement.

Over the next several Iterations, Mustapha had the team read ‘FIT for
Development’ by Rick Mugridge and Ward Cunningham and helped
the team use the FIT tool to introduce a set of automated tests as
requirements instead of User Stories. It was slow in adoption, but
after five or six Iterations of hard work and encouragement the team
had reached a critical mass of tests and experience. The ‘hardening’
period went away, development speed went up, and even the design
quality improved!

Context:

You are on a software development team and you want to significantly

improve the quality of your software product. That is, you want to

write code with less defects and that solves the ‘right problem’ and not

just the ‘problem right’. You and your team are also willing to put in a

non-trivial effort to gain this improvement. You are willing to revisit

the existing design and architecture and change them to facilitate these

improvements. You are also willing to slow-down so that you

eventually speed-up in performing these tasks.

Forces:

These are very common problems in software development that are

addressed by this practice:

• Bugs increase as inter-module dependencies grow: Unit tests can

keep individual classes fairly free of bugs, but they do not address

inter-module bugs. Furthermore, as the code base grows, the

number of potential inter-module bugs grows faster.

• Not knowing when a task is done: Almost everyone has

experienced a project that was declared “done” and then continued

for weeks or months afterward.

• Misunderstood requirements: Frequently, especially on distributed,

international teams, traditional requirements are misunderstood

(AUTOMATED) FUNCTIONAL TESTS | 107

because of cultural differences. What may be clear to one party is

often very unclear to the other party.

• Imprecise requirements: One of the reasons projects drag on after

they are declared “done” is that the original requirements were

imprecise. Verbal and Prose requirements do not provide enough

detail for coding. Developers guess what the customer meant and

call the project done. But if the developers guessed wrong, the

code will have to be re-worked.

• Contradictory requirements: Many “done” projects get stuck in the

testing phase because of bug cycles. An example of a simple cycle

is that when bug A is fixed, bug B appears; and when bug B is

fixed, bug A re-appears. But the cycle is rarely that obvious,

especially if A and B are in different parts of the system or take a

long list of manual steps to reproduce.

• Outdated requirements: The longer running the project, the more

likely that at least some of the requirements have fallen behind the

code. Let us be frank—have any of us really had requirements that

were 100% up-to-date after a year of development? Outdated

requirements can be more nefarious than no requirements. If there

are no requirements, developers will try to extract them from the

customer, the code, or the unit tests, all of which are likely to

provide fairly up-to-date information. But outdated requirements

are mis-information. They can waste significant time by sending

developers down the wrong track.

• Delayed releases: As the application grows and the product

matures, the testing department cycle can take longer, causing

increasingly delayed releases.

• Slow manual testing: Manual testing by a testing department will

take significantly longer with a large product than a small one.

Because manual testing is slow, the feedback about a bug occurs

long after the code changes that caused the problem were made.

The delayed feedback makes it hard to diagnose which change

caused the bug, so fixing a bug found by the testing department

takes longer, too.

• Slow patches: A side effect of slow manual testing is slow patches

for bugs reported in the field. In many development environments,

developers have to set up a full database and perform many manual

108 | PATTERNS OF AGILE PRACTICE ADOPTIONS

steps to reproduce a bug. And they must reproduce the bug both to

diagnose it and to confirm they have eliminated it.

Therefore:

Introduce a form of automated tests that describe the business process

to be coded up and treat them as ‘executable requirements’. These

executable requirements are written by the Customer at the beginning

of each Iteration and provided to the developer(s). This is one of those

practices that, unfortunately, is tool dependent. You will need a tool

that is usable by non-programmers such as FIT(http://fit.c2.com/) or

FITNesse(http://fitnesse.org/). The amount of precision required to

write executable tests will require the Customer to be unambiguous

and go to a level of detail that they may be unaccustomed to achieving

so they may need help from either testers or developers. Define this

type of tests as Functional Tests, that is business process tests that are

co-owned by Customers and developers that can be automatically

executed.

A functional test contains the information that a customer would

normally use for acceptance testing after a developer has written the

code. It is use case scenario with specific values entered. So, for

example, let us assume that we have the requirements for an online

grocery store application and the current requirements for this

Iteration include getting the inventory management to work correctly.

Here is an example FIT test that can be used as requirements. (Don’t

be intimidated by the table format – take some time to read the tables

and consider them as requirements.)

(AUTOMATED) FUNCTIONAL TESTS | 109

Item Inventory Management Tests

Load Basic Data To Be Used For Tests

To start off with, let us load a standard set of items from an external

source into our persistent store. Therefore our tests coming afterwards

will have a non-trivial baseline of data.

fit.ActionFixture

start com.valtech.post.service.tests.

fit.ItemInventoryFixture

enter inventory ./src/com/valtech/post/service/tests/fit/inventory.txt

check total items 10

Ok, we have 10 items, let's sure we have the right details.

com.valtech.post.service.tests.fit.ItemInventoryDisplayFixture

upc description price

2458 Chocolate 0.75

1234 Cola 0.99

9034 Toothpaste 2.34

3214 Milk 2.34

8743 Eggs 2.35

0987 Olives 2.43

1233 Apples 1.12

8745 Paper Towels 3.45

9457 Canned Soup 1.24

2345 Cheese 5.65

Now, with a successfully loaded set of items let's do some catalog maintenance...

fit.ActionFixture

start com.valtech.post.service.tests.fit.ItemInventoryFixture

enter select 2458

check description Chocolate

enter description Dark

Chocolate

check description Dark

Chocolate

enter add Item 1111

enter description honey

enter price 5.60

check total items 11

enter remove Item 0987

110 | PATTERNS OF AGILE PRACTICE ADOPTIONS

enter select 0987

check upc 0987

check description Not

Found

check price 0.01

From a development standpoint, these tests should exercise the system

from a layer just beneath the GUI. This is commonly known as the

service layer or the system façade. Writing tests at this level exercise

almost all of the system and all of the business logic (there should be

no business logic in the GUI). Therefore Functional Tests ensure that

the requirements have been met. Because the tests are written first

they can be used by the developer to determine “doneness” – when the

developer writes enough code so that test passes then the requirement

has been met.

All of the executable requirements need to be written up as part of a

test-suite that is run often – preferably part of Continuous Integration.

By consistently running the ever-growing test suite the system never

breaks a requirement that has already been met without a test failing.

This means that if any requirements contradict then at least one test

will fail and the developer can go back to the Customer for

clarification.

Upon successful adoption of Functional Tests you can expect the

following benefits:

Development team has more confidence: There is a definite sense of

confidence that developers acquire when there is a solid test

framework that they rely upon. Automated Developer Tests and Test
Driven Development go a long way in making developers more

confident of their code. This is not merely a “warm-fuzzy” feeling

(which is always good for morale), but enables faster development

because developers change what needs to be changed via Refactoring.

Functional Tests take this confidence up a notch or two above and

beyond Automated Developer Testing. They also improve the

confidence of the customers/analysts and testers because they have a

direct relationship to the requirements and regression tests. They

(AUTOMATED) FUNCTIONAL TESTS | 111

know a green test is a non-ambiguous indication that the related

scenario is working.

Robust Tests: Functional Tests that drive the service layer instead of

the and focus on business logic. Business logic tends to be fairly

stable, and so the tests don’t have to change much. In contrast,

automated tests that hit GUI elements break when GUI elements are

re-arranged.

Errors and bugs are reproducible quickly: Once a bug is found, a

Functional Test is written, and that bug doesn’t come back to haunt us.

An Automated Developer Test should also be written around the buggy

code, of course, but when developers first begin investigating a bug,

they don’t know where to write the Automated Developer Test because

they don’t know which unit caused the problem. But they (hopefully!)

know which use case caused the problem, so they should be able to

write a Functional Test immediately. By writing tests as soon as bugs

are discovered, you eliminate the bug-fix-break thrashing that happens

when systems become brittle.

When a system moves from initial development to production the

amount of time spent developing new functionality decreases. With a

Functional Testing framework at hand the “business language” has

already been built and it becomes very straight-forward (more than for

Automated Developer Test) to build a Functional Test that exactly

reproduces the error based on the bug report. This allows the

developer to have an executable reproduction of the bug that can be

used for digging into the code repeatedly without having to keep

setting up the environment “just so”.

Testers Have Time to Be More Pro-Active: If slow manual testing is a

force behind adopting Functional Tests, then quick automated testing

is a benefit. The consequence is that testers are relieved of much of

the day-to-day burden of manual testing of the main business rules.

Instead, testers have more time to be pro-active, collaboratively

helping developers design more testable code, rather than waiting to

“clean up” at the end of an Iteration.

112 | PATTERNS OF AGILE PRACTICE ADOPTIONS

When a task is "done" is visible for all: Using Functional Tests does

help us know when a task is done, but it’s more than just that.

Functional Testing makes progress visible to the entire development

team—customer, analyst, developer, tester, and manager. At any point

in time all passing (and failing) tests can be viewed. With a little

effort business value produced at a functional level can be analyzed for

management needs.

Better design, better architecture: Functional Tests drive better layer

and subsystem separation. Consider the layers of a multi-tier

architecture: since the Functional Tests execute through the service

layer, every bit of business logic that has found its way into the

presentation layer must either be duplicated in the test fixture or pulled

into the service layer.

Similarly, consider the subsystems of the system—the modules with

functional responsibility, such as a module for tax calculations. Any

tax logic that has leaked out of the tax module will be duplicated in the

test fixture unless it is moved into the tax module. Functional Tests

help solidify the responsibilities of a subsystem.

Analysts think through requirements in greater detail: Analysts think

through requirements in greater detail to achieve the descriptions

needed to write a test. For example, an analyst might state that

textboxes should be disabled whenever they are not needed. But when

he writes a Functional Test for this requirement, he is forced to get

explicit about which conditions cause which textboxes—or really their

representations in the underlying service layer—to be disabled.

Improved customer-developer communication: Over time, the

discussions of the functional tests help the team develop a common

vocabulary and a common vision for the system (as Jim Shore shares

his ideas http://www.jamesshore.com/Blog/A-Vision-For-Fit.html).

Examples of the development of such collaboration can be found in

Mugridge and Cunningham’s Fit for Developing Software also.

(AUTOMATED) FUNCTIONAL TESTS | 113

Adoption:

So how does one go about adopting Functional Tests successfully as a

practice?

1. Plan on testers/developers working with customers/analysts to

write the tests together for the first few Iterations.
2. {Highly Recommended} Get some outside help – bring in

someone who has successfully achieved Functional Tests within an

Agile environment. This is much more than automated system

level tests because they are an integral practice of development.

3. {Recommended} Pick up Fit for Developing Software and run a

study group including customers, analysts, developers, and testers.

4. Choose a tool and don’t build your own. FIT and Fitnesse are the

most commonly used tools in this space.

5. Plan on your developer’s building ‘fixtures’ to support the ‘domain

language’ that the team will evolve. Do not try to short-circuit this

by having customers and analysts learn the objects you’ve already

built and the methods on them – this defeats the purpose of

creating a Domain Language for your project.

6. Start with on analyst/customer and one developer for one story on

one Iteration. Write the test as a use case scenario with explicit

values.

7. Grow the team members who are aware of Functional Tests

incrementally.

8. If you are working on an existing project then there is a good

change you will need to do some non-trivial Refactoring to

accommodate tests. At this point you will need to have adopted

Automated Developer Tests to enable Refactoring. If your team

hasn’t adopted these practices you will need to do so to move

forward.

9. Do not put Functional Testing on hold but write the tests and use

them manually until you can effectively Refactor the parts of the

system needed for testing. Even tests are not automated, this

level of detail can be ‘test driven’ – that is the tests can be written

down and used by developer’s to determine “doneness”.

114 | PATTERNS OF AGILE PRACTICE ADOPTIONS

10. During the transition to functional tests, it can help to assign a

developer the role of "Functional Test Cop." The cop’s job is to

track down the developers who break the functional tests, help

them see why their code broke the test and help them fix the

problem.

11. {Optional} Pick up Domain Driven Design and run a study group

after you have started to write Functional Tests successfully. Tie

the language your team is coming up with directly to what is in this

book.

12. Plan on a 3-6 months adoption period until your team starts to

write Functional Tests regularly.

13. Plan on an adoption period anywhere from 3 to 12 months if this is

already a long-running project without tests because you will

probably need significant Refactoring efforts to enable this

practice.

Like almost everything in agile development, Functional Tests should

be adopted iteratively. Be careful that you keep “people” ahead of

“process.” That is, iterate to get developers and customers trained and

have them build a few functional tests. Then, after the team has a few

working functional tests that are part of the build, ask them for

feedback on the tools and processes. Improve your tools and processes

until the developers and customers are happy with functional testing.

Then iteratively expand the practice to the team.

But:

There are valid reasons that Functional Tests are not wide-spread in

the Agile community. Functional Tests are very error prone. There

are two general categories where things can go wrong. The first is in

the adoption itself – and in that way this section is similar to all the

other ‘but’ sections for the other practices. The other significant area

is that of the underlying system architecture. If the system architecture

is not Functional Test-friendly then it needs to be changed.

(AUTOMATED) FUNCTIONAL TESTS | 115

Implementation Smells:

Little or no accountability for broken tests: If there is no accountability

for broken tests, then they don’t get fixed. In general there is no

accountability if it is difficult to tell whose code change broke the test.

This usually happens when the test-run cycle is significantly slower

than the check-in cycle of developers; that is, if several developers

have checked in their code since the last time the tests were run, it is

difficult to determine whose changes broke the tests. So how do you

address this problem? Simple. Make the tests run faster, here’s how:

First, the team must make a commitment to functional testing as a

primary development practice instead of a secondary one. When it is

not an option to drop the tests, then teams find creative solutions. The

main thing is to speed up the running of the functional tests so they can

be run effectively by developers on their local machines before

checking in. Effective strategies we have found are:

• Functional Tests on Separate Machines: By grouping tests into

related suites then each suite can easily be run on its own machine.

This effectively parallelizes the test suite and can give a speed

increase proportional to the number of machines used.

• Functional Tests Rollback Database Transaction: This is a very

simple but effective idea – don’t commit your database

transactions if you are testing end-to-end. We have seen this

practice emerge independently on different projects and this

usually gives about an order of magnitude increase in speed.

• Functional Tests Refactored to Thinner Slices: By testing a small

scenario within each test instead of several scenarios (or even all

scenarios) for a use case we get a finer granularity for splitting up

tests. We have also found that larger tests tend to have more

redundancy – breaking them up allows for faster individual tests.

• Functional Tests Grouped By Business Area: Grouping functional

tests by business area allows a developer to test the subset of

116 | PATTERNS OF AGILE PRACTICE ADOPTIONS

relevant tests on their machine without running the full suite. This

allows for a faster red-green-red test loop and will keep a test suite

from slowing the pace of development.

Note that having independent database sandboxes for each

functional test run is a prerequisite for the above advice. If two

functional tests run against the same database, one may report an

incorrect “failure” because of interactions with the data inserted by

the other test.

• Confidence in functional tests is lost: Leaving tests broken takes
away from much of the value of the Functional Test suite as a
“safety net” that prevents bugs from entering the build in the first
place. The tests aren’t catching the bugs and helping us keep the
code in working order as we would expect. Without this safety
net, confidence in the tests is lost. Test writing is reduced, and in
the more serious cases they are deleted and finally dropped as a
whole.

• Small code changes break many tests: When many tests fail, one
normally assumes that a big code change must have been checked
in. However, if only a small change caused many failures, then
there must be a large amount of overlap of the tests.

To solve this have each test focus on a thin slice of functionality.
When each test focuses on one thin slice of functionality and does
not overlap much with other tests, then it’s more likely that only
one or two tests break when a bug is introduced. It is much easier
to diagnose why a thin test failed. Thus, writing tests to exercise
one thin slice of functionality in one major system provides the
best feedback on that example of a business process.

• Functional tests try – and fail – to catch unit level tests: If
functional testing does not reduce the bugs found by your testing
group and customers, the problem may be that the bugs are at the
wrong level for Functional Tests.

Functional Tests are not a replacement for Automated Developer
Tests, even if the coverage statistics look high. Automated

(AUTOMATED) FUNCTIONAL TESTS | 117

Developer Tests support Functional Tests by exercising the code
most likely to break, even if it is buried deep in otherwise
inaccessible parts of the system under test. Use Automated
Developer Tests for unit-level bugs and Functional Tests for
interaction bugs.

• Functional Tests are created without appropriate Refactoring:
Business logic is then copied into the fixtures used for the tool.
Code duplication causes a maintenance nightmare. Don’t do this.
Tests are as important as production code. Do not introduce
duplication, Refactor instead.

• Feature Devotion sets in: The feature list, tied to Functional Tests
become upfront requirements. Feedback is lost. You are now
back in Waterfall Will’s world!

• Functional Tests used as a meter for progress. This assumes that
all functions are of equal value. They are not. You can easily fool
yourself into thinking you are delivering business value because
I’ve just delivered 40 running Functional Tests. What if these tests
don’t really have business value to your customer? Focus on
business value.

Architecture Smells:

If you are using good tools and techniques and it’s still hard to write
Functional Tests, then the root problem may be your system’s
architecture. In particular, if your test fixtures contain business logic,
rather than merely translating test specifications into method calls,
then you will want to consider the smells below. We also consider a
smell when it is hard for a functional test to run through a single,
complete use case.

Functional Tests help push business logic into the correct layer (in a
tiered architecture) and the correct functional module. When business
logic has found its way into the wrong place, Functional Tests expose
the misplacement.

118 | PATTERNS OF AGILE PRACTICE ADOPTIONS

• Fixtures contain business logic that mirror GUI work: If you find
yourself writing fixtures that must perform business logic so that
they mirror what is done in the GUI, you may have an architecture
smell. A common cause of such duplicated business logic is the
use of a canonical three-tiered architecture having presentation,
domain, and persistence layers. Such architecture does not always
succeed in keeping business logic away from the presentation
layer. In fact, it is very common for GUIs in this setup to contain
“control” logic.

For example, a simple GUI to transfer money from one account to
another (account1, account2) often does the following in the GUI:

Account1.withdraw($100)
Account2.deposit($100)

This is simple logic, but it is business logic and not view logic. So,

if your fixture for the transfer(account1, account2) function has

this logic in it, then you have code duplication with the UI (which

is bad), and you have uncovered business logic in the presentation

layer (which is worse).

When you encounter this type of problem, the solution is to pull out

the duplicate code in a common place. That place is the service layer,

which lies between the presentation and domain layers and contains

control logic. In this way, functional tests help in proper separation of

business and presentation logic and encourage a new logical layer to

hold control logic.

• Fixture for a module contains business logic that belongs in the
module: There is another way that business logic can turn up in a

test fixture—when a functional module fails to contain all the

business logic that belongs in it. An example can best illustrate

this point.

Let us assume that one of our subsystems is a tax module that is

responsible for doing all tax-related calculations. Before

introducing functional testing, we wrote this module and believed

(AUTOMATED) FUNCTIONAL TESTS | 119

we had good functional separation. Unfortunately, over the

development of our project not everyone using the tax module was

completely familiar with it, so some “pre-calculation” was made

outside of the tax module depending on special tax-exempt days.

This functionality should have been in the tax module; in a sense,

the tax module’s boundary was breached.

When functional tests were written for the tax module, we would

find that the fixture code had to perform the “pre-calculation” that

depended on the tax-exempt days. At that point, a responsible

developer would notice the duplication and refactor the calculation

into the tax module and out of the fixture and the non-tax-module

code.

Functional Tests frequently solidified the boundaries and

responsibilities of our subsystems. Functional Tests help focus

your system’s modules.

Functional Tests are difficult to run through a single, complete use

case: Legacy systems—that is, systems that were not designed with

functional testing—can be especially difficult to test. Sometimes

they do not let you easily run through a single example of a

business process. This is a very difficult smell to eradicate, and the

solution depends on the architecture.

In some cases, the source of the problem is that a module assumes

that multiple use cases are run simultaneously. When you try to

isolate a single use case, you discover you still have to perform the

set up for all the other use cases or the system crashes. We provide

an example of this situation below. We highly encourage you to

listen to your tests—if they are hard to write, then they are

indicating a larger problem.

120 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Variations:

Here are several different variations for using Functional Testing

effectively

Covering the domain only: The adoption section focuses on functional

tests that execute logic from the service layer through the domain

layer all the way down to persistence. Not all functional tests

must exercise all these layers; in fact Mugridge and Cunningham

in Fit for Developing Software, argue for writing functional tests

to exercise the domain logic only. Such tests are still useful, but

they do not cover the subsystem boundaries, which are bug-

prone. The domain-only approach is a viable alternative if

running end-to-end tests within a developer-check-in cycle is

infeasible.

Functional tests written by committee: Customers or analysts should

write functional tests because they are in the best position to

write requirements. However, testers and developers can join

customers and analysts to co-write tests.

Testers bring their expertise in test-case development and help write

requirements that cover the necessary details. Developers may

be needed to help make the requirements executable depending

on the tool. For example, the Framework for Integrated Tests

(FIT) tool requires developers to write fixtures before tests can

execute. Writing tests by committee usually happens primarily

in the beginning stages of adoption of functional testing as

analysts learn to think like a tester, and developers build their

domain language. In later stages, writing tests by committee

tapers off and the brunt of test authoring falls to the analysts with

occasional help from others in the development group.

Functional tests are written with unit testing tool: Some teams write

their functional tests with a unit testing tool such as NUnit or

(AUTOMATED) FUNCTIONAL TESTS | 121

JUnit. Using an xUnit testing tool covers code adequately but

loses involvement from customers and analysts, since the tests

are now coded in a language that they can neither write nor read.

It becomes the developer’s job to translate the requirements into

these tests. The status of the tests as passing or failing is also not

visible to either the customer or testing group.

Depending on who writes the tests they could be a valid variation or a

smell. If the Customer is technical and writing the tests then this

is a valid variation. Otherwise, if the Customer is somehow

telling the developer and then the developer is translating that

into code, then functional tests in xUnit to be rather hobbled

because of the exclusive focus on coverage. These tests are

indeed better than no functional tests but could be considered a

smell.

Functional tests within a traditional development environment: So far,

documented experience with functional testing is within an agile

development environment, but there is no reason it cannot be

used on non-agile projects. The key point is that the functional

tests must be run at a frequency that matches the developer

check-in cycle. That way, the source of failing tests can be

identified. All of the benefits of agile functional testing are

achieved, just at a slower cycle time because there is no

continuous integration build. When done in this environment,

the emphasis on speed of running tests is reduced because the

check-in cycles are typically much longer.

References:

Functional Tests, as defined here, is most commonly discussed within

the context of FIT, the Framework for Integrated Tests:

Mugridge, R., and Cunningham, W. FIT for Developing Software:

Framework for Integrated Tests. Pearson Education,

Upper Saddle River, NJ, 2005.

122 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Jim Shore, “A Vision For Fit,”

http://www.jamesshore.com/Blog/A-Vision-For-

Fit.html

Gandhi, P., Haugen, N., Hill, M., Watt, R. “Creating a Living

Specification Document with FIT,”

http://www.agile2005.org/XR22.pdf

Marick, Brian. “Bypassing the GUI.” In Software Testing and Quality

Engineering, (September / October, 2002), 41-47.

123

12
Collective Code Ownership

Members of the development team have the right and

responsibility to modify any part of the code.

Business value:

Collective Code Ownership is a supporting practice for many other

Agile practices. Nonetheless, it does have a direct affect on increasing

the flexibility of your project by increasing the knowledge and

responsibility of software developers on a team to create a full solution

as opposed to a ‘band-aid’.

Sketch:

Scott ScrumMaster’s team had read about Collective Code Ownership
in Extreme Programming Explained by Kent Beck but decided not to
adopt it. In fact they felt it would be wasteful and counter-productive
to have anyone write GUI code, for example, because they would get
some really crappy UI’s from non-experts. Or so they thought…

Scott’s team started with Iterations and Automated Developer Tests.
They quickly found that the old way of distributing work led to a
consistent block at the end of each Iteration for integration work
between the different subsets of the code being done.

After a two Iterations of several missed goals they decided to give
Collective Code Ownership a try. This led to several spurious

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

124 | PATTERNS OF AGILE PRACTICE ADOPTIONS

instances of Pair Programming throughout the Iteration for knowledge
transfer between the team members. This also led to the goals being
met much more easily and reduced bottle-necked resources.

Context:

You are on a development team that has traditionally specialized

developers. Examples of this type of specialization are GUI

developers, middle tier developers, and database developers.

Developer’s on your team own the code they write and zealously

protect it – ‘nobody touches my code!’.

Your team is adopting one or more Agile practices that are moving

you away from static designs created upfront to a more fluid design.

Your team members have a need to modify more than their traditional

piece of code to keep the system working.

Or you want to reduce the resource bottlenecks in your team – you

don’t want a single point of failure in your team’s expertise. You want

to be able to roll people on and off the team over time.

Forces:

There are many forces that emerge from adopting other Agile practices

that are addressed by Collective Code Ownership:

Any form of change to the system can potentially cause other parts of

the system to change. Many agile development practices enable and

encourage change. In fact, the subtitle of Extreme Programming

Explained was “Embrace Change” which was one of the early mantras

of the Agile community.

• To keep Automated Developer Tests passing for the entire system

developers will need to periodically modify parts of the system

they did not write.

COLLECTIVE CODE OWNERSHIP | 125

• Refactoring frequently causes the same issue – the need to modify

parts of the system that you did not write because they depend on

the part of the code you have.

• Evolutionary Design is severely limited if you cannot change parts

of the system you did not write.

• Continuous Integration forces the entire system to be running and

integrating all of the time. Therefore changes that affect multiple

parts of the system must be fully resolved before that code is

committed to the source repository.

Therefore:

To enable the ‘agility’ of many Agile practices developers must be

empowered to change any part of the system as needed. This should

not be attempted without a safety net of tests – via Automated
Developer Tests – to support developers in unfamiliar territory. The

code becomes communal and mutually owned by the team. When a

task requires a change in one part of the system that propogates to

another part of the system, a developer should be encouraged to make

the entire change or seek out help for that change if needed. This

practice, of everyone owning the code and being allowed and

encouraged to change it when needed, is called Collective Code
Ownership.

Adoption:

You will find that Collective Code Ownership is pulled by

many other practices for support. So don’t consider adopting

this practice until another practice creates a need for it. Once

there is a need for Collective Code Ownership then:

1. Decide the scope of the communal code. This will often

be the entire system. Sometimes it is the subsystem that

your team is concerned with if you are one of many teams

working on the same software product.

126 | PATTERNS OF AGILE PRACTICE ADOPTIONS

2. {Highly Recommended} Consider adopting Automated
Developer Tests as a safety net to help ease the pains as

developers become familiar with new parts of the system.

3. Set a rule that developer A cannot refuse to help developer
B if developer B needs help on a part of the system that

developer A is an expert in. That way developer B can

make safe changes to parts of the code he is not familiar

with yet.

4. {Highly Recommended} Adopt Pair Programming to

share the knowledge of different parts of the system.

Rotate pairs frequently.

5. Encourage developers to sign up for development tasks in

different parts of the system, even if they are not familiar

with those parts. This will also help spread the expertise

across the team.

But:

This is another one of those ‘non-intuitive’ practices that

experienced developers have a hard time buying into. In fact,

it is a little threatening to someone who feels a sense of

security in being ‘the expert’ in a particular part of the system.

• Developer’s cannot let go of the ‘my code’ mentality and

become protective/defensive/aggresive when someone

changes code that they originally wrote. These are

growing-pains and should be dealt with on an individual

basis.

• Designs ‘thrash’ because developers are not

communicating and/or respecting each other’s decisions.

Developers should only change existing designs in

response to requirements driving those changes.

Frequently you will find that one of the developers is

changing the design ‘back to the right way’ out of the ‘my

code’ mentality and to write code to meet specific

requirements.

COLLECTIVE CODE OWNERSHIP | 127

Variations: On large teams it may not be feasible to have generalists

on the team because of the many different technologies that must be

learned. One way to address this is to move from generalists to multi-

part specialists. Developers learn the technologies and code of the

neighboring subsystems to the one they are mainly focused upon.

References:

Collective Code Ownership was one of the original 12 practices of

eXtreme Programming.

Beck, Kent, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 1999.

Beck, Kent and Andres, Cynthia, Extreme Programming Explained:
Embrace Change v2, Addison-Wesley Professional, 2004.

Part: 3

The Clusters

 131

13
Clusters of Practices

Extreme Programming (XP) is one of the best known agile

development processes. In 1999 Extreme Programming Explained by

Kent Beck outlined 12 practices that were to be practiced together – all

of them. These practices were to be used together – to support each

other – and you were not to drop or modify any of them. These

practices were ‘generative practices’ – that is the value delivered by

the whole was much greater than the sum of the individual parts.

These practices had a synergy and when they were all used together

wonders happened.

Kent Beck never said ‘thou shalt do all 12 practices”, but in the early

days that was definitely the mantra in the community. That is until

Kent came out with Test Driven Development which was a subset of

the 12 practices that were focused only on the programming practices

of an individual developer.

The fact is that there are practices that have a synergy with each other

such that you get an extra ‘bang for your buck’ when you practice

them together. These practices are what we call ‘generative’ practices.

There are also practices that are dependent on one another – for

example you cannot really Refactor without Automated Developer
Tests -but don’t confuse dependencies for generativity – they are

different concepts.

This brings us to the third part of the book – the clusters. Clusters are

groups of generative practices. Clusters are more than just the

collection of practices, they also have an overall focus. So use these

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

132 | PATTERNS OF AGILE PRACTICE ADOPTIONS

clusters to decide which practice to augment to your growing set of

Agile practices. This doesn’t mean that clusters should be your drivers

– business values and smells should still drive your adoption strategy –

but clusters can help you get to the ‘next level’.

The clusters in this part of the book are also in pattern format just like

the practices. Therefore they have their own adoption section that will

guide you towards an iterative adoption of its constituent practices.

This final part of the book contains three of the most common clusters

of practices with respect to the technical group of patterns I’ve covered

so far in this book. There are many more agile practices and there are

many more clusters of generative practices out there. If you are

interested in other clusters of practices then check the agile practice

adoption wiki (www.agilepracticepatterns.org) periodically because

this is an on-going pattern-mining process.

133

14
Evolutionary Design

To have a truly iterative development process

10
 the design of the

system must evolve as new requirements are built out. This is

achieved by starting off with a Simple Design, and changing that

design only when the requirements force that change. The

mechanics of changing a design is called Refactoring and is

enabled by a form of Automated Developer Tests.

Business value:

Evolutionary Design, like its main practice Simple Design, reduces

time to market and the cost of the software product. The synergy

between the practices and focus on changing the design as needed

accelerate these values more than the individual practices and also

increases the flexibility of a product. Furthermore, Evolutionary
Design also increases the product’s lifetime.

10

And not just a waterfall process with time-slices.

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

134 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Sketch:

Amy Architect was part of Scott ScrumMaster’s initial Agile project.
She was a hands-on architect who frequently coded with developers on
her team. She knew there was no ‘Architect’ role on Scott’s team and
looked forward to the challenge. The rest of the team was glad to have
her join them because of her experience and talent in building
software.

Because they knew they were going to move fast they decided to
perform Iterations and to practice Simple Design. Of course they also
knew that to effectively be able to change the Simple Design later, they
would need Automated Developer Tests, so they started with Test-Last
Development because Test-First Development was too alien.

This was the team’s first agile project so they, out of habit, deferred to
Amy in design decisions and came to her often for advice. She was
more than happy to help, but she had a habit of going to a generalized
design to allow for flexibility (as many of us do). The result was that
the designs were very elegant and too complex for the requirements at
hand. After a few Iterations Amy was pairing with Jim Jr. Developer
and she was trying to explain how the particular design used the
‘Template Method design pattern’ to allow for a family of algorithms.
Jim didn’t really get it – so to show him she took away the abstraction
and inlined the solution. “Oh! I get it. So we did this template
method thing for the future? But I thought we were doing Simple
Design.” They took out the complex design and put in the more simple
and direct solution. The tests continued to pass because they had
changed the design and preserved the behavior (i.e. Refactored the
code).

That got Amy thinking about how much time really went through
dealing with complex designs. She noted how easy it had been to make
the change from the complex to the simple design and how the tests
had given her confidence that the system still worked. So she started
to remove complexity whenever she was pairing and they encountered

EVOLUTIONARY DESIGN | 135

code that was over-abstracted. After a few more Iterations the design
became leaner and to her surprise it had complexity in different places
than she would have guessed initially.

The software development team still came to Amy for advice in design
but the advice she gave differed. She would always give the most
obvious solution and only suggested generalized solutions when they
were mandated by the requirements at hand. Over the months she
watched the synergy between Automated Developer Tests, Simple
Design, and Refactoring result in a lean and elegant system that was
much more maintainable than anything she would have come up with
at the outset. Her experience was still very valuable and needed by the
team – but it was more of a guiding hand rather than a dictator.

Context:

You are on a development project. That’s it – this is one of those

things that is applicable to all types of development projects. The next

points in the context are a more ‘obvious fit’ but are not necessary.

You are on a development project where time to market is very

important.

Or you are on a development project that uses techno-logies that are

new to a large part of the team. (Ex. An ATG-Dynamo group starting

to their first JEE Project is experienced in building web applications

but is new to java and JEE.).

Forces:

These are problems that are found with almost all traditional

development processes because they primarily stem from upfront

design:

• The traditional practice of ‘design upfront’ is based on the

assumption that the cost of change is exponential with time.

Disciplined practice of Automated Developer Tests and

136 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Refactoring reduces the cost of change so that it is possible to

change design in the development cycle.

Figure 3 Cost of Change Curve with Waterfall

and Evolutionary Design

• The cost of upfront design involves much more than just a design

diagram:

o The requirements and specifications must be detailed enough to

support the design decisions.

o The design itself must be created and communicated to the

team building the software.

o Software that is complex enough to implement the design must

be created.

o The Cost of Design Carry for the extra generalizations that may

or may not be used regularly accumulates every single day for

every developer. Each task they perform is complicated

because the developer must understand and use the framework

built out to satisfy the upfront design.

o The software built on top of the upfront design implementation

is more error prone because of its complexity.

• Software problems are generally complex and not straight forward.

Knowledge is a team’s most powerful tool for building software.

Knowledge is attained through building the system. You will

make a better design decision tomorrow after experience on the

EVOLUTIONARY DESIGN | 137

project than you can make today because through the actions taken

in building the system you and your team will learn.

Therefore:

Do not do any upfront design. No matter how much experience you

have don’t look forward. Constantly reinvent. Use Automated
Developer Tests to enable your team to change the design of your

system on an as-needed basis. Start with Simple Design and only

Refactor that design when a requirement currently being built needs it.

Trust that the tests you have built will warn you if you ‘break’

anything during a Refactoring from one design to another. Do not

patch or band-aid your system – if a requirement makes a design

unsuitable then change it.

By using the three practices together, Automated Developer Tests,
Simple Design, and Refactoring you will:

• Deliver faster because you always have the simplest design for the

given requirements.

• Capitalize on your learning throughout the project to make better

design decisions later. This will produce a design for your system

that is much leaner than one created upfront. Because you have a

leaner design, your maintenance cost will go down because the

design is easier to understand (Simple Design) and easier to modify

because of the Automated Developer Tests.

• Handle more complex problems successfully because you don’t

have to deal with all of the complexity at once.

Adoption:

Adoption of the Evolutionary Design cluster follows directly

from the adoption of Simple Design because it requires

Refactoring which, in turn, requires Automated Developer
Tests. So:

138 | PATTERNS OF AGILE PRACTICE ADOPTIONS

1. Determine which type of testing you will adopt by reading

patterns for Automated Developer Tests, Test-Last
Development, and Test First Development.

2. Adopt Simple Design concurrently with Automated
Developer Tests.

3. {Highly Recommended} Consider Pair Programming as a

helpful practice during adoption of these practices. It helps

to have a partner to keep you from slipping when adopting

such disciplined practices.

4. Read and prepare for Refactoring as indicated in that

pattern and begin to change your designs when your

requirements force you to modify your designs.

At this point you have successfully adopted all three practices.

Now you need to focus on the quality of each of these

practices. Is the team really coming up with Simple Designs or

are they doing like Amy Architect in the sketch and over-

designing? Is Refactoring being consid-ered before and after

every single task? If not then although all of your practices are

present –they are not feeding into each other to cause your

design to evolve. Here are some steps you should take until

you are satisfied that indeed evolving your design:

5. Have a weekly brown-bag design review. Have one

developer present some code that he has worked on.

a. Critique the design from the point of view of Simple
Design.

b. If it is overly complex then make suggestions on how

this can be done differently.

c. Try to get down to the reasons why it is not an

appropriate level of complexity. Is the reason too much

upfront design? Is it failure to Refactor before and after

a task when needed?

6. Watch out for significant bugs that fall through Automated
Developer Tests to QA. If large problems arise from

Refactoring introducing bugs that are not caught then your

Automated Developer Tests are not enough.

EVOLUTIONARY DESIGN | 139

But:

Evolutionary Design is not hacking – it is a very disciplined

and constant implementation of the three practices in this

cluster. Teams frequently loosen up on one of the practices to

the detriment of the other two because of their synergistic

relationship. These are the most common break-downs of

individual practices:

• Poor Automated Developer Tests will directly affect the

team’s ability to Refactor. Design is changed to meet new

requirements, all of the tests pass, it is checked in and all

Hell breaks loose. Failing to build a good safety net of

tests causes the cost of change to skyrocket because now all

of the old headaches about finding the bugs, fixing it, and

having others build on faulty code come back.

• Infrequent Refactoring means that developers are forcing

requirements onto a design that does not smoothly support

them. The lack of Refactoring means that you will have

several band-aid solutions and the cost of change goes back

up because the code is now harder to understand and use

correctly. Eventually you will hit a brick-wall because you

started with Simple Design and have not evolved the

design. At that point you will have one or more large

Refactorings which are significantly more difficult to

address.

Evolutionary Design can lead to a non-consistent architecture

as each group evolves their own solution for similar problems.

There are several ways that teams have addressed this

particular problem:

• Have an ‘architect’ of the team be the keeper of the ‘theory

of the code’. In this role, the architect keeps abreast of the

evolving designs by reading code, pairing with different

developers, running ad-hoc design reviews, etc… She then

140 | PATTERNS OF AGILE PRACTICE ADOPTIONS

cross pollinates the information and guides the solutions

towards a cohesive set – the ‘theory of the code’.

• Build the architecture out with a smaller team where it is

easy to have a cohesive design/architecture evolve. Have

this initial team build broad so they build a little of

everything and solve the hard problems. At this point grow

the team. This is explained in greater detail in Divide After

You Conquer.

• Have an architect play a more central role so that all major

design decisions go through her.

Variations:

As indicated in the ‘but’ section, one of the problems of Evolutionary
Design with large projects is inconsistency of design across the team.

A technique called Divide After You Conquer, is frequently used to

mitigate this problem by starting every large project with a small core

team that builds out a thin layer of the entire application. This allows

the architecture to evolve to meet real requirements. And, because it is

a small team, consistency is not a problem.

References:

Evolutionary design is not explicitly called out in the major process

books but it is frequently discussed with Simple Design. The

references therefore are the same as those in Simple Design:

Beck, Kent, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 1999.

Beck, Kent and Andres, Cynthia, Extreme Programming Explained:
Embrace Change v2, Addison-Wesley Professional,

2004.

141

15
Test Driven Development

Test Driven Development is a very effective cluster of practices

that brings Automated Developer Tests to the forefront of

development and suborns the design to testability. This form of

development produces very loosely coupled designs that are

(relatively) easy to evolve as requirements change.

Business value:

Test Driven Development encompasses almost all of the practices in

this book. It also, because of the generative nature of clusters,

accelerates the business values of the practices. Most notably, Test
Driven Development, increases quality to market, time to market, and

product lifetime significantly. It also increases flexibility and reduces

the cost of development just like Evolutionary Design.

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

142 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Sketch:

Cindy Coder, Dave Developer, Waterfall Will, Uthman Upfront
Design, Amy Architect, and Jim Jr. Developer are the developers on
Scott ScrumMaster’s team. They are practicing Test Driven
Development although they did not really set out to be doing the full
set of practices – one practice led to another.

Their team started with Automated Developer Tests because this was
the most obvious win. Some developers ended up doing Test-First
Development and others were more comfortable with Test-Last
Development. Collective Code Ownership was quickly pulled in by
this type of development to keep all of the tests running all of the time.
Simple Design came in later, it was not that obvious a practice to the
more experienced developers who couldn’t really fathom not doing a
design upfront. But, as the tests started to accumulate and Refactoring
became a reality Simple Design became attractive. After a several
Iterations of Simple Design the design of the entire system slowly
started to evolve and become very lean. The set of practices they had
adopted had a synergy that made them much more valuable – not only
were they developing better code but the entire system was becoming
leaner. None of the team had seen this before on their non-Agile
teams – systems always became worse because of entropy.

The team did not always have a Continuous Integration build running
because it took a while for Bob BuildMaster to get the project building
fast enough for this practice – they did, however, always run all of the
tests locally before checking in code. When Bob approached them
with his plans they gave him their full support. After the addition of
this tool, and the ability to run a full integration locally on their
machines, the development process took another notch up in speed and
quality.

Context:

You are on a development team that wants to significantly improve

their productivity. You want to build the software faster, with fewer

TEST DRIVEN DEVELOPMENT | 143

bugs, be able to change the design as requirements change, and reduce

the overall cost of the software over its lifetime.

You are aware that to have such a transformational change in your

results will require a significant change in the way you build software.

You and your team are willing to spend anywhere between three

months to a year learning these skills. You are willing to make an

investment by requiring less from your development team until these

skills take hold.

Forces:

Test Driven Development is a cluster of several practices and therefore

all of the forces of its building blocks – Evolutionary Design,
Continuous Integration, Collective Code Ownership - are valid here.

That is, Test Driven Development will ultimately resolve all of those

forces. But what are the forces that would encourage a team to adopt

the full set of practices within Test Driven Development instead of any

of its subsets?

• Evolutionary Design builds software with minimal design as its

focus. This technique uses testing as a tool to allow the design to

evolve via Refactoring. The testing is not the driving factor behind

the design.

• If testing is not the heart of the software process then tests may or

may not adequately exercise the system.

• Testing is a sampling process. It is infeasible to execute the entire

state-space of all but the most trivial of programs. Therefore tests

must be written with care to make sure that every test counts.

• Tests, at their best, are a form of executable requirements.

• Some Refactorings lead to changes that ripple across the system.

For a significant change to be made while maintaining 100%

passing tests these subsystem effects must be addressed.

• A ‘successful build’ should include all of the possible tests

available on the system.

• To continuously improve software Agile practices focus on

frequent feedback. There are several successful ‘rhythms’.

144 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Continuous Integration is a hook for running the tests on a ‘build

machine’

• In a team environment Evolutionary Design can cause challenges

as team members make significant changes to the design over time

– there is no ‘upfront’ design spec to be adhered to. A

communication void is created by removing the upfront design that

is not completely filled with Evolutionary Design. A team must

effectively communicate the knowledge of the current design since

it is no longer static.

Therefore:

To get a significant improvement in time to market, quality to market,

flexibility, and a cost reduction in a team environment consider

adopting Evolutionary Design, Continuous Integration, and Collective
Code Ownership. Each of these practices are described as individual

patterns elsewhere in this book.

Make testing a primary focus of your development effort:

Make all tests part of Continuous Integration. Change the

definition of a successful build to include passing of all Automated
Developer Tests.

Increase your Refactoring ability and speed by introducing

Collective Code Ownership. Allow and encourage developers to

make the changes necessary to make all tests pass even if they are

in different subsystems.

Focus Evolutionary Design on tests more than design. Let the tests

drive the development. The design will stay simple and will

continue to evolve but will be driven solely by tests. By doing this

you will make sure not to write a line of production code without

tests. This focus will push your designs to be even more loosely

coupled which, in turn, will increase the lifetime and flexibility of

your system.

TEST DRIVEN DEVELOPMENT | 145

Upon successful adoption of these practices and cluster with a focus

on tests you will have a team that is delivering software of much

higher quality and flexibility at an increased pace for less money. But

remember, this is hinges on discipline with all of the practices and

time to learn this new form of development.

Adoption:

There are two popular forms of Test Driven Development that

differ by the type of Automated Developer Tests done. Test-
First development is superior to Test-Last but harder to adopt

successfully.

1. Plan for a lengthy period before you get to the point where

the different practices are working effectively enough for

the generative nature of this pattern to ‘kick in’. For small

teams on a green field project this may take three months

and for large teams with an existing code base without any

tests it may take up to a year to see full benefit.

2. Have trust in your development team. Trust them to make

the changes necessary. Give them the space to learn.

Create an environment that rewards the practices you want

them to adopt
11

.

3. Start with the adoption of Evolutionary Design as a team.

At the same time spawn off an effort to adopt Continuous
Integration.

4. {Highly Recommended} Introduce Pair Programming as a

helpful practice to adopt Evolutionary Design and its

constituent practices. Pair Programming will help with the

discipline of always writing tests because it is easier to be

lazy when you are coding alone. It also gives a natural

vehicle for Collective Code Ownership to spread expertise

across the team. Use this as an adoption tool – you are free

11

 This is a little touchy-feely, but it is really one of the most successful adoption

strategies for any practice. How do you create an environment so that your team

wants to adopt the practices?

146 | PATTERNS OF AGILE PRACTICE ADOPTIONS

to continue pairing or drop the practice upon successful

adoption.

5. When Evolutionary Design leads to Refactorings that break

the tests for more than the code being written then pull in

Collective Code Ownership.

6. Continuous Integration will generally be available before

the team is completely comfortable with writing Automated
Developer Tests in a disciplined fashion. At that point

introduce the notion, tools, and practice to the full team as

described in the Continuous Integration pattern.

7. When you feel the team has become comfortable with

Evolutionary Design, Continuous Integration, and

Collective Code Ownership, then step back and examine

your process. Focus the practices around testing even

more:

o If you are using Test-Last Development consider

moving to Test-First Development instead. Otherwise

augment the practice with periodic code reviews of

tests.

o Make sure that the tests drive your design and not the

other way around where your design determines the

tests. This is one of the main drivers of loosely coupled

designs emerging using these practices.

o Can you read the tests for existing code as a form of

documentation? A hallmark of good Test Driven
Development is tests that can be read as documentation

of the production code.

But:

Test Driven Development is a collection of practices that

delivers significant value to the customer. It is dependent on

everyone on the team doing their part in continually and

diligently writing tests, evolving the design, keeping the build

running, and working with each other to fix broken tests caused

by some Refactorings. The problem comes down to this: if any

one practice is allowed to slip then the generative nature of this

TEST DRIVEN DEVELOPMENT | 147

cluster will be lost. Here’s what can happen if one of the

practices is not done diligently:

• If Collective Code Ownership is dropped then this will

severely limit successful Evolutionary Design because the

tests broken by a significant design change will not be fixed

in a timely manner.
o This may lead to code check-in with broken tests. This

is the greatest of all evils (or at least one of the really

big ones) in Test Driven Development. This leads to

the breakdown of 100% passing tests and a breakdown

of Continuous Integration that includes the tests.
o It may lead to the code not being checked in and

handed over to the person who can fix the tests. This

slows down development speed and bottle-neck the

person who has the knowledge to fix the broken tests.

• If Evolutionary Design breaks down or any of its

component practices then you have just lost at least 50% of

the effectiveness of Test Driven Development. See the

Evolutionary Design cluster for details on keeping it

running well.

• If Continuous Integration breaks down then you lose the

ability to quickly know that your code changes are good

within the entire system. Evolutionary Design will

continue to function but at a slower pace.

• Collective Code Ownership may not be enough to broken

tests in an unfamiliar part of the code due to Refactoring.
Even if the developer is encouraged to change the code,

they may not have the expertise to do so. Introduce Pair
Programming to allow the sharing of knowledge.

• What you are doing with Test Driven Development is

building better software. Whether that software actually

addresses the customer’s needs is not addressed by this

cluster. Do not get a false sense of security that you are

building more valuable software to the client. Look to

other practices such as Functional Testing, Test Driven

148 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Requirements, and Customer Part of Team to help you

build software that is valuable to the customer.

Variations:

TDD enables single source repository: Consider going to a single

source code repository instead of branches for each release, patch, etc.

This will be enabled by this cluster because you will always have a

working code base that integrates and passes all developer tests. By

going to a single source repository you will free up a significant

amount of time to be used elsewhere.

References:

There are several references for Test Driven Development. Here are a

few:

Beck, Kent, Test-Driven Development By Example, Pearson

Education, Boston, MA. 2003.

Astels, David, Test-Driven Development: A Practical Guide, Prentice

Hall, Upper Saddle River, NJ, 2003.

Jeffries, Ron, Extreme Programming Adventures in C#, Microsoft

Press, Redmond, WA, 2004.

Feathers, Michael, Working Effectively with Legacy Code, Prentice

Hall, Upper Saddle River, NJ, 2005.

Martin, Robert, C., Agile Software Development: Principles, Patterns,
and Practices, Pearson Education, Upper Saddle River,

NJ, 2003.

149

16
Test Driven Requirements

Business value:

Test Driven Requirements is delivers enhanced value to market and

increases the visibility of the project’s progress significantly by

creating a tight loop of communication and feedback between the

customer and the development team. By combining Functional Tests
and Continuous Integration the feedback is greatly enhanced. Test
Driven Requirements also addresses all of the other business values as

a form of system testing, therefore the time to market is reduced, the

product lifetime increases, the quality to market increases, the

flexibility of the entire application is enhanced, and the total cost of

the software system is reduced. Test Driven Requirements is a truly

valuable cluster of practices that is frequently under-valued.

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

150 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Sketch:

Aparna Analyst, Tina Tester, and Cindy Coder have been practicing
agile development – specifically Iterations and Test Driven
Development, with Simple Design and Continuous Integration – for 6
months and have become adept at the practices. They have
significantly increased their rate of development and significantly
reduced the bug count. It is not, however, zero and there is still room
for improvement. At the last Retrospective they recognized this as a
place for improvement.

They decided that what’s good for the goose is good for the gander: if
TDD helped developers then taking it a step further and writing
executable, then automated tests for the requirements at the beginning
of each Iteration will help the entire team. They realized that it would
not all be the developers’ responsibility as in TDD but it would really
involve the entire team. Aparna, Tina, and Cindy volunteered to try
this out with Caleb the Consultant as their guide and mentor.

The team is currently nearing the end of the first Iteration where they
tried this set of practices and Aparna’s head hurts from having to
document the requirements so specifically. Tina is pleasantly
surprised – these tests look exactly like some of the tests she would
have written anyway for acceptance testing after the fact. Cindy
realized that putting in the support code to get FIT (Framework for
Integrated Tests) was not trivial – maybe even too much work. She
had to reluctantly admit that part of the difficulty in writing the
support code is that she had to Refactor some business code that had
made its way into the UI. Caleb, because he has been around this
block before, is content – the team recognized this problem on their
own and has found a solution! The team was beginning to ‘grock’ that
Agile development is all about continuous improvement.

Context:

You are on a development project with a Customer who is willing and

able to participate more fully as part of the development team. Your

TEST DRIVEN REQUIREMENTS | 151

team is also willing to make difficult changes to any existing code.

You are willing to pay the price of a high learning curve. Any of the

following issues strengthens the fit of this pattern but are not

necessary.

You are on a distributed development team with the requirements

created at one location and the development done at another location.

You want to significantly reduce the bug count of your code.

You want to significantly reduce the time to market of your

development team.

You want to build a system that ‘solves the right problem’ and delivers

more value to market (one of the business values in Part 1).

Forces:

The forces that are resolved by Test Driven Requirements are all of the

forces that are resolved individually by the practices that make up this

cluster. These forces are addressed more strongly by the cluster than

the individual practices do:

• Functional Tests that are not part of a Continuous Integration build

tend to fail silently. When they are discovered it is not obvious

which check in (of the multiple builds that ran in the background

via Continuous Integration) caused the problem. In this scenario

Functional Tests may not all be passing because the feedback is

not frequent enough. This reduces the quality improvement from

Functional Tests and can lead to them becoming ‘second class’

tests.

• Customer Part of Team without Functional Tests causes errors in

translation between requirements and code. The Customer means

one thing and the developer understands it as another.

• The previous point – errors in translation – is exacerbated with a

distributed team where the Customer and the developer are not co-

located. There are cultural differences that make this even worse.

152 | PATTERNS OF AGILE PRACTICE ADOPTIONS

• Functional Tests tend to fail silently and stay failing without

Continuous Integration.

Therefore:

Have a Customer Part of Team that can work closely with developers

to write Functional Tests. Have the Customers write their

requirements as Functional Tests instead of your previous method. By

doing this you will now have a concrete, unambiguous method of

communication between Customers and developers even in

distributed, multi-cultural teams. Also have Continuous Integration

include not only Automated Developer Tests but all Functional Tests

in each build. Use the tips in the Functional Tests pattern to run your

tests fast enough for this to be feasible.

A developer’s task is to build the part of the system that will satisfy the

Functional Tests and build the needed scaffolding for the tests to

execute correctly. Once the new Functional Tests are passing the

developer runs all of the Automated Developer Tests and all of the

Functional Tests for the entire system locally and upon success checks

in the new code into source control. Because Functional Tests are run

by Continuous Integration then all of the requirements built so far by

the entire team over all Iterations will be tested.

These practices, when used together as described, make up the Test
Driven Requirements cluster. The requirements are written as tests

and the same tight feedback loop found in Test Driven Development is

expanded to include the entire team.

Adoption:

Adoption of course relies on the individual adoption of the

practices. Customer Part of Team should be adopted before

Functional Tests. Continuous Integration can be adopted at

any time. Test Driven Requirements requires more than just

the three practices to be adopted. You must actively work to

thread them together:

TEST DRIVEN REQUIREMENTS | 153

1. For Functional Tests to really be used as requirements the

Customer must learn to write the tests and this is usually a

process that takes time. It also frequently requires help

from a technical person, frequently testers from the QA

team or developers can pair with the Customer for several

Iterations until it becomes natural. (See the Functional
Tests pattern for more details.)

2. The second part is that a “language” forms between the

Customer developers via the tests. This is a step-wise

process. Plan that this language will evolve as these

practices are adopted together.

3. Do your best to make all Functional Tests run with every

build in Continuous Integration. These tests are slower

than Automated Developer Tests and will need more care to

keep them running fast enough without causing Continuous
Integration to break down.

But:

Like the other technical clusters, Test Driven Requir-ements

depends on all of its practices to be executed well. If any of

the three practices have problems this affects the cluster –

therefore check the ‘but’ section of Functional Tests,
Continuous Integration, and Customer Part of Team12.

The most common problem is that of Functional Tests running

slowly. This causes two problems:

• Developers will not run all tests before checking in.

Therefore Continuous Integration is more likely to break

on check-in.

12

 Customer Part of Team is not documented in this book, so unfortunately you will

have to go elsewhere for problems with this practice.

154 | PATTERNS OF AGILE PRACTICE ADOPTIONS

• The Continuous Integration build will be slow and test will

fail without a clear indication of who should fix the broken

tests.

In order to get Functional Tests into the Continuous Integration, the

tests must be made fast enough. First, the team must make a

commitment to functional testing as a primary development practice

instead of a secondary one. When it is not an option to drop the tests,

then teams find creative solutions. The main thing is to speed up the

running of the functional tests so they can be run effectively by

developers on their local machines before checking in. Here are some

effective strategies to help you speed up your tests:

• Functional Tests on Separate Machines: By grouping tests into

related suites then each suite can easily be run on its own machine.

This effectively parallelizes the test suite and can give a speed

increase proportional to the number of machines used.

• Functional Tests Rollback Database Transaction: This is a very

simple but effective idea – don’t commit your database

transactions if you are testing end-to-end. We have seen this

practice emerge independently on different projects and this

usually gives about an order of magnitude increase in speed.

• Functional Tests Refactored to Thinner Slices: By testing a small

scenario within each test instead of several scenarios (or even all

scenarios) for a use case we get a finer granularity for splitting up

tests. We have also found that larger tests tend to have more

redundancy – breaking them up allows for faster individual tests.

• Functional Tests Grouped By Business Area: Grouping functional

tests by business area allows a developer to test the subset of

relevant tests on their machine without running the full suite. This

allows for a faster red-green-red test loop and will keep a test suite

from slowing the pace of development.

Note that having independent database sandboxes for each functional

test run is a prerequisite for the above advice. If two functional tests

run against the same database, one may report an incorrect “failure”

because of interactions with the data inserted by the other test.

TEST DRIVEN REQUIREMENTS | 155

Variations:

Test Driven Requirements using xUnit Tests when the Customer is

technical. With a technical Customer tests as code may be more

appropriate and natural than a spreadsheet-like solution with FIT and

FITNesse. This technique can be seen as a smell instead of a valid

variation if the Customer doesn’t write these tests but ‘tells’ the

developer what to do.

References:

Ron Jeffries uses ‘Running Tested Features’ as an important metric for

tracking project progress. These are the Functional
Tests used with Continuous Integration.
(http://www.xprogramming.com/xpmag/jatRtsMetric.ht
m)

Joshua Kerievsky describes a practice almost identical to Test Driven
Requirements which he has named Story-Driven
Development
(http://www.industriallogic.com/papers/storytest.pdf).

157

Conclusion
You made it to the end of the book - congratulations to both of us!

My hope is that you have created an initial agile practice adoption

strategy tailored to your development team, environment, and

organization. Remember to adopt incrementally and make sure that

the practices you are adopting to increase business value or alleviate a

smell are having their intended effect. You are well on your way to

building better software.

If you have not created an adoption strategy then I hope you have

found the patterns and clusters useful to your current efforts to use

agile practices. You can find more advice on using the patterns in

stand-alone format in the appendices Getting the Most from Agile

Practice Patterns and Reading a Pattern Effectively.

I realize that there are many more agile practices that have not been

discussed. The appendix Patterns of Agile Practices Referenced but

Not Defined contains short descriptions of other practices. There are

also more practices and clusters that are in the works. Look for a

follow-up to this book later in 2007 to elaborate and expand upon the

set of patterns and clusters here.

Remember to treat these patterns with a modicum of disrespect. The

pattern format is an excellent format to help you tailor your own

solution. Every one of these patterns is based on multiple projects

using the practices. They are proven in the field several times over.

Nevertheless, there is no silver bullet. These patterns will be wrong in

158 | PATTERNS OF AGILE PRACTICE ADOPTIONS

some instances. Use these patterns as guidance, but when reality

contradicts theory – choose reality.

Finally, if you would like incremental information about the work

being done with patterns of agile practice adoption, the latest

information will always be available at http://www.elssamadisy.com.

Appendices

161

17
Pattern to Business Value Mappings

The clusters and practices in each cell are ordered according to their

effectiveness with respect to the given business value. Therefore, if

you were to address “Reduce time to market” you would consider

adopt Simple Design before you considered Functional Tests.

Practices and Clusters that Improve Business Value

Business Value Clusters of Agile

Practices

Agile Practice

Patterns

Reduce time to

market

Test Driven

Development,

Evolutionary Design,

Test Driven

Requirements

Simple Design,

Refactoring, Test-

First Development,

Test-Last

Development,

Continuous

Integration,

Functional Tests

Increase value to

market

Test Driven

Requirements

Functional Tests

Increase quality to

market

Test Driven

Development, Test

Driven

Requirements,

Evolutionary Design

Test-First

Development, Test-

Last Development,

Refactoring, Simple

Design, Continuous

Integration

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

162 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Increase

flexibility

Evolutionary Design,

Test Driven

Development, Test

Driven

Requirements

Automated

Developer Tests,

Refactoring,

Collective Code

Ownership,

Functional Tests

Increase visibility Test Driven

Requirements

Functional Tests,

Continuous

Integration

Reduce cost Evolutionary Design,

Test Driven

Development, Test

Driven

Requirements.

Simple Design,

Refactoring,

Collective Code

Ownership, Test-

First Development,

Test Last

Development,

Functional Tests

Increase product

lifetime

Test Driven

Development,

Evolutionary Design,

Test Driven

Requirements

Refactoring,

Automated

Developer Tests,

Functional Tests,

Simple Design

163

18
Pattern to Smell Mappings

The clusters and practices in each cell are ordered according to their

effectiveness with respect to the given smell. Therefore, if you were to

address “Quality delivered to customer is unacceptable” you would

consider adopting Test-First Development before Continuous

Integration.

Practices and Clusters that Alleviate Smells

Smell Clusters of Agile

Practices
Agile Practice

Patterns

Quality

delivered to

customer is

unacceptable

Test Driven

Development,

Test Driven

Requirements,

Evolutionary

Design

Test-First

Development, Test-

Last Development,

Refactoring, Simple

Design, Continuous

Integration

Delivering new

functions to

customer takes

too long

Test Driven

Development,

Evolutionary

Design, Test

Driven

Development

Simple Design,

Refactoring, Test-

First Development,

Test-Last

Development,

Continuous

Integration,

Functional Tests

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

164 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Features are not

used by

customer

Test Driven

Requirements
Functional Tests

Software is not

useful to

customer

Test Driven

Requirements
Functional Tests

Software is too

expensive to

build

Evolutionary

Design, Test

Driven

Development,

Test Driven

Requirements.

Simple Design,

Refactoring,

Collective Code

Ownership, Test-

First Development,

Test Last

Development,

Functional Tests

Us vs. Them Test Driven

Requirements
Functional Tests

Customer asks

for everything

including the

kitchen sink

Test Driven

Requirements
Functional Tests

Customer?

What

customer?!

Test Driven

Requirements
none

Management is

surprised
Test Driven

Requirements
Functional Tests

Bottle-necked

resources r
 Collective Code

Ownership

PATTERN TO SMELL MAPPINGS | 165

Churning

projects
Test Driven

Development,

Test Driven

Requirements

Automated

Developer Tests,

Functional Tests,

Continuous

Integration

Hundreds of

bugs in bug-

tracker

Test Driven

Development,

Test Driven

Requirements

Automated

Developer Tests,

Functional Tests,

Continuous

Integration

Hardening

phase needed
 Continuous

Integration

Integration is

infrequent
 Continuous

Integration

167

19
Adoption Strategy Case Study13

Introduction
It’s all too easy to get caught up in the energy of trying out new agile

practices like pair programming, iterative development, and test driven

requirements, and lose sight of the original motivating factors behind

instituting those practices in the first place. There may be this vague

notion that “anything new has got to be better than what we have

always (often painfully) done around here”, and therefore the mere

fact that you are trying something new is often good enough to justify

the investment in time and effort of adopting a new practice. Yet at

the same time, there are now so many practices which fall under the

Agile umbrella that you may find yourself trying to figure out how you

can possibly adopt everything at once, because maybe that one

practice you ignore could be the one that makes the biggest difference.

One popular way of dealing with this madness is by picking one

particular methodology or set of practices and internalizing them (or at

least promoting them) to the point that your software development

organization becomes an “XP shop” or a “Scrum shop” or a “UP

shop”. For every team member plus half the marketing team and a few

of the more enlightened senior managers, purchase a copy of your

Agile Methodology Adoption book of choice, agree on a few minor

details such as the time and place for your new daily standups and

which continuous integration tool to use, and you are well on your way

to becoming a full-blown Agile Development Shop.

13

 This article has been reprinted here with the approval of InfoQ and the authors.

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

168 | PATTERNS OF AGILE PRACTICE ADOPTIONS

While this is a common and useful approach, it’s unfocused and tends

to result in behavioral change simply for the sake of change. There is,

however, a more targeted approach to agile practice adoption that does

not promote one particular named methodology over another but rather

helps you pick and choose those practices that will best help you

achieve your organizational goals. The following three points

summarize this approach:

• It is all too easy to forget who the real customers are.

• Change for the sake of change tends to dilute the results of

becoming Agile.

• You don’t need to adopt every popular agile practice to see a

positive change, but rather a focused, diagnostic approach will help

get you where you want to go faster and easier.

For this article we will consider the ongoing work of the BC 2.0 team.

This is a development team that is working to rewrite an successful

website that has millions of hits per day. We will share how we went

about identifying which agile practices would be most beneficial to

adopt. The approach we took was to start by prioritizing a

comprehensive list of possible business values to highlight those

specific business values that the team felt most accurately represented

what they were trying to accomplish with the BC 2.0 development

effort. We then talked about which agile practices are most closely

aligned to each of their top three desired business values, and found

that a few key practices either influenced or provided the basis on

which many others depend. Finally we discussed which of those agile

practices the team was currently utilizing and, based on that, crafted a

plan for adopting the remaining high-impact practices.

Crafting an Agile Practice Adoption Strategy

Determine Business Value
The first step, regardless of where the team is today, is to focus on the

business values that they are trying to bring to their customers. This

actually required a slight step back to first identify who the customers

were for, as with so many public websites whose revenue is based on

ADOPTION STRATEGY CASE STUDY | 169

advertising sales, the end user of the site is rarely the actual source of

income for the company. With this understanding, we went through

an exercise where we prioritized business values as understood by the

development team. This question must again be asked of the

customers of BC 2.0 which will include members of advertising,

publishing, and management. At this point here is a first cut of the

business values in prioritized order:

1. Value to Market/ Product Utility

2. Quality to Market

3. Visibility (to Customer)

There are possibly other business values that are important to the

company such as:

4. Reduce Cost

5. Flexibility (turn on a dime)

6. Time to Market

7. Product Lifetime

Of the three business values deemed important, by and large Product
Utility is the most important to this group, meaning that their emphasis

should be on delivering a useful website as determined by the end

users. Delivering a high quality website and keeping their customers

informed of ongoing changes were also high on their list of important

business values. What’s even more telling about this particular

organization is the list of business values that were considered lower

priority. At many companies, reducing cost, delivering quickly, and

building a long-life product are key goals, which understandably

should influence the practices that they adopt. However their focus on

building a high-quality, useful site means that they will want to

emphasize different aspects of their development effort, specifically

those that deal with customer involvement and feedback.

Focus Activities and Technologies
toward Business Values

This next recommendation seems obvious, but in truth is something

we, the software development community, have never done well:

170 | PATTERNS OF AGILE PRACTICE ADOPTIONS

drive the use of process and technology by business value. This

means, if a practice or technology cannot be related to business values

as prioritized by the customer or organization, it should not be used.

Here is a list of software development practices to consider (for all

business values):

1. Test First Development

2. Test Last Development

3. Evolutionary Design (cluster)

4. Upfront Design

5. Upfront Architecture

6. Upfront Requirements

7. Refactoring

8. Continuous Integration

9. Simple Design

10. Collective Code Ownership

11. Test Driven Development (cluster)

12. Functional Tests

13. Test Driven Requirements(cluster)

14. Iteration

15. Stand Up Meeting

16. Retrospective

17. Pair Programming

18. Kick Off Meeting

19. User Story

20. Use Case

21. Information Radiator

22. Customer Part of Team

23. Evocative Document

24. Prioritized Backlog

25. Demo

Of the practices listed above, here are the ones currently practiced by

the team:

1. Upfront Architecture

2. Upfront Requirements

3. Continuous Integration

ADOPTION STRATEGY CASE STUDY | 171

4. Functional Testing (beginning stages)

5. Iteration

6. Retrospective

7. Kickoff

8. User Story

9. Collective Code Ownership

To help us determine which practices should be introduced or

emphasized, we used the following agile practice dependency maps for

each of the three business values we are interested in. Each of these

diagrams shows the practices that affect that business value and their

interdependencies.

4 Product Utility Practices

172 | PATTERNS OF AGILE PRACTICE ADOPTIONS

5 Product Quality Practices

6 Visibility Practices

ADOPTION STRATEGY CASE STUDY | 173

Based on the business value priorities, the practices in the above

diagrams should be incrementally adopted, starting with any key

practices that either influence many others or have a number of

practices which depend on them.

All of the practices currently adopted (except Upfront Architecture)

directly to address the high priority business values described above.

Those practices should be kept and the Upfront Architecture and

Upfront Requirements should be diminished because they cannot be

realistically dropped. At this point we have a large list of practices we

want to adopt and a couple that we would like to diminish. It is almost

never a good idea to take a large number of practices at once; an

incremental adoption strategy is better.

So which practices, of all the practices listed should be adopted? We

started with the most important business value, Product Utility.
Within the practices listed in Product Utility, we took the practices

with the most incoming dependencies because they enable other

practices. This leads us to:

• Customer Part of Team

• Release Often

• Automated Functional Tests

When we take a look at the next business value, Product Quality, we

pull in Automated Developer Tests because many other practices

depend on their presence and Pair Programming to support its

adoption.

• Pair Programming

• Automated Developer Tests

From the third business value in our list we pulled a simple stand-

alone practice to adopt:

• Information Radiators

When the team has successfully adopted these practices they will go

back and pull in more practices to increase the business value they

deliver. A practical adoption strategy includes an iterative approach to

174 | PATTERNS OF AGILE PRACTICE ADOPTIONS

incorporating new practices, in other words: Adopt in small steps. The

BC 2.0 group will begin with these practices and learn as they go.

They need to experience the practices for themselves and build up

their own body of experience. After an adoption cycle or two, they

should revisit their list of business values to see if any have changed or

been noticeably addressed. In addition to their end-of-iteration

Retrospectives, they should also periodically review the progress and

feedback from their adoption efforts, and use that as a steering

influence for continued improvement.

Conclusions
The software development organization was more heavily focused on

delivering usability and quality, which is a bit unusual in this age of

almost relentless cost cutting and emphasis on time to market. Yet the

development team was a fairly typical case from the standpoint of

practice adoption, taking a hybrid approach of formally adopting

Scrum while also incorporating individual Extreme Programming

practices such as Continuous Integration and User Stories, in a

piecemeal fashion as opposed to taking on the entire suite of XP

practices. While there is certainly nothing wrong with this config-

ration, we want to promote the idea that certain practice groupings can

result in specific business value improvements, and therefore teams

looking for the most “bang for their buck” should pick those practices

that align well with the driving forces behind their software

development efforts.

Further Reading
This is a practical example of creating an adoption strategy tailored to

a specific development team and project. The mini-book, Patterns of
Agile Practice Adoption: The Technical Practices, take a much more

involved and detailed look at creating an adoption strategy and

incrementally adopting many of these agile development practices.

Amr Elssamadisy and John Mufarrige

amr.elssamadisy@valtech.com and john.mufarrige@valtech.com

January 14, 2007

175

20
Patterns of Agile Practices

Referenced but Not Defined

To keep the book short and to release it early only a small subset of the

agile practices were fully defined. There are many more agile

practices and useful clusters to be documented in pattern format – look

for more of them later in 2007. With that said, here is a list of

practices that have been referenced throughout the book but have not

yet been documented as full patterns. If you would like incremental

information about the work being done with patterns of agile practice

adoption, the latest information will always be available at

http://www.elssamadisy.com .

Pattern Description

Customer Part of

Team

The customer (or a proxy such as a business

analyst) is part of the development team. They

interact with the developers and testers to meet

the goals of the project. Ideally, the customer

is collocated with the developers.

Information

Radiator

A document, poster, web page, or device that is

placed in a location where members of the

team will see the information constantly. They

are used to convey important information to

help team members make the good decisions.

They are used to create an Agile work

environment.

Iteration A set time period where the team commits to a

set goal and works without interruption to meet

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

176 | PATTERNS OF AGILE PRACTICE ADOPTIONS

that goal. The goal should always be a

demonstrable working subset of the system.

Pair

Programming

Two people working together to develop

software at the same machine. This typically

results to higher quality code, more discipline

in practices, and information transfer and

knowledge.

Retrospective A meeting at the end of every cycle (Iteration,
Release, etc..) where the team reflects on what

went well and what did not. The resulting

feedback from a retrospective should lead to

modification of the software development

process and practices to deliver more business

value in the future.

Standup Meeting The development team meets daily for 10-15

minutes to review yesterday’s progress and

bring up roadblocks for resolution.

177

21
Getting the Most from

Agile Practice Patterns
Part 1 of this book addresses how to go about setting your goals and

choosing the appropriate practices to achieve them. Once you have

them, the following questions should be answered explicitly. If they

are not answered explicitly the team will find itself answering them

implicitly as it stumbles along. For the set of questions below assume

that the team will adopt Practice A:

1. Where does Practice A fit within an adoption strategy? Does it

come first? Do we introduce it a few months after getting

warmed-up with other practices?

2. Which development practices are related to Practice A? Are

there any prerequisite practices for Practice A to be effective?

Is Practice A a prerequisite to other practices? Is Practice A a

part of a cluster of related development practices that have a

value as a whole much greater than the sum of its parts?

3. Should Practice A be adopted in stages or in one step? Are

there any special mechanics to help adopt Practice A?

4. Are there any pitfalls to be wary of when adopting Practice A?

Can something go wrong? What does it look like? What does it

smell like? What are the symptoms when Practice A goes

wrong?

5. Are there circumstances where Practice A should not be

adopted?

6. Can Practice A be adapted to other forms without changing its

substance? What is its substance anyway?

Free Online Version.
Support this work, buy the print copy:
http://www.infoq.com/minibooks/agile-patterns

178 | PATTERNS OF AGILE PRACTICE ADOPTIONS

7. Are there any assumptions about values shared by the team that

are necessary for Practice A to be effective?

8. Finally, consistent with the spirit of Agility, what business
value does Practice A bring to a development team?

All of the above questions matter. All of the above questions should be

asked when a team decides to adopt a development practice. Some of

the answers to these questions are far from obvious. However, most of

these questions can be succinctly answered using this book.

179

22
Reading a Pattern Effectively

The patterns I’ve written here have a natural level of overlap. This is

not by accident. Removing the overlap would affect the readability of

these patterns individually.

There is also a natural redundancy within each pattern. The forces

section lists the problems that are resolved by the pattern. The

‘therefore’ section resolves those problems and refers to those forces

in doing so. Frequently, the ‘but’ section discuss breakdowns in the

practice that lead back to the original forces. Finally, the adoption

section overlaps with the ‘therefore’ section because they describe

different aspects of the same practice.

There are different ways to use the patterns in this book and many of

them involve skipping around within a pattern itself. The redundancy

supports this ‘skipping around’ mode of reading. I hope you will

agree with me that the redundancy, although sometimes annoying, is

better than the alternative of having to flip pages to tie different parts

together.

There are several ways to read a pattern. Here are some ways that the

patterns can be used depending on the situation:

• I am already practicing the pattern. There are no problems. I just

want to see how others have used the same pattern.

o Look up the pattern by name.

o Read the context to see if you are using the pattern in the same

environment as others have done.

180 | PATTERNS OF AGILE PRACTICE ADOPTIONS

o Read the therefore and variations sections to match to the way

you are using the practice.

• I am practicing a pattern but it doesn’t seem to be very useful. Am

I incorrectly using the pattern? Or is the pattern just not useful in

my environment?

o Look up the pattern by name.

o Read the context – if your environment doesn’t match the

context then maybe you should consider modifying the practice

or dropping it all together.

o Read the forces – are you trying to solve the same type of

problems? If not then consider that the practice might be

working but that you need another practice to solve the

problems you have in mind.

o Check out the But section. You will find how others have gone

wrong and some advice on correcting the problems to get the

full benefits from the practice.

• I have problems on my team that I want to solve by adopting agile

practices.

o Go back to the chapter on smells and try to match your

problems to smells.

o Read the practice(s) that address that smell.

o For each practice

� Read the context and to make sure it applies to your

environment.

� Read the rest of the pattern.

� If you decide to adopt the practice then follow the advice in

the Adoption section.

� Periodically check for any of the smells documented in the

But section.

• I couldn’t find the problems I want to solve in the Smells chapter.

Does that mean that none of the practices can help?

o No. Read the forces of the individual patterns and see if you

can find similar problems to the ones you want to address.

You will probably find a match.

• We are adopting a particular practice. Are we there yet? Have we

successfully used the pattern to its fullest?

o Find the practice pattern by name.

READING A PATTERN EFFECTIVELY| 181

o Check the forces – are any of the problems in the forces still

problems on your team?

o Check the But section, are any of the smells in that section

present? If so address them.

o If none of the problems occur then you have gone beyond what

is documented in this book. You probably have enough

experience and intuition to tailor the patterns on your own.

Congratulations!

183

Bibliography

Astels, David, Test-Driven Development: A Practical Guide, Prentice

Hall, Upper Saddle River, NJ, 2003.

Beck, Kent, Extreme Programming Explained: Embrace Change,

Addison-Wesley Professional, 1999.

Beck, Kent and Andres, Cynthia, Extreme Programming Explained:
Embrace Change v2, Addison-Wesley Professional,

2004.

Beck, Kent, Test-Driven Development By Example, Pearson

Education, Boston, MA. 2003.

Feathers, Michael, Working Effectively with Legacy Code, Prentice

Hall, Upper Saddle River, NJ, 2005.

Fowler, Martin, Refactoring: Improving the Design of Existing Code,

Addison-Wesley Professional, 1999.

Fowler, Martin, Continuous Integration,

http://www.martinfowler.com/articles/continuousIntegr

ation.html .

Jeffries, Ron, Extreme Programming Adventures in C#, Microsoft

Press, Redmond, WA, 2004.

Jeffries, Ron, Running Tested Features,
http://www.xprogramming.com/xpmag/jatRtsMetric.ht
m .

Kerievsky, Joshua, Refactoring to Patterns, Addison-Wesley Profes-

sional, 2004.

Kerievsky, Joshua , Don’t Just Break Software, Make Software,
http://www.industriallogic.com/papers/storytest.pdf .

Marick, Brian. “Bypassing the GUI.” In Software Testing and Quality
Engineering, (September / October, 2002), 41-47.

184 | PATTERNS OF AGILE PRACTICE ADOPTIONS

Martin, Robert, C., Agile Software Development: Principles, Patterns,
and Practices, Pearson Education, Upper Saddle River,

NJ, 2003.

Massol, Vincent, JUnit in Action, Manning Publications, Greenwich,

CT, 2004.

Mugridge, R., and Cunningham, W. FIT for Developing Software:
Framework for Integrated Tests. Pearson Education,

Upper Saddle River, NJ, 2005.

Rainsberger, J.B., JUnit Recipes: Practical Methods for Programmer
Testing, Manning Publications, Greenwich, CT, 2004.

Shore ,Jim, “A Vision For Fit,” http://www.jamesshore.com/Blog/A-

Vision-For-Fit.html

Gandhi, P., Haugen, N., Hill, M., Watt, R. “Creating a Living Specifi-

cation Document with FIT,”

 http://www.agile2005.org/XR22.pdf

185

About the Author

Amr Elssamadisy is a software practitioner – meaning he serves

multiple roles on different teams including coach, instructor,

developer, architect, tech-lead, Scrum master, project manager, etc….

He is extremely passionate about building great software – it is

creative, challenging, frustrating, and ultimately very rewarding. That

is why he is so gung-ho about Agile development practices – because

when applied correctly, they do marvels for development teams’

results.

Ever since being introduced to eXtreme Programming in late 1999 at

ThoughtWorks he has been sold (and as a consultant has been selling it

to clients). As of the publication date of this book, Amr has completed

seven full years of working exclusively with agile practices and

helping teams adopt and adapt practices to suit their environments and

build better software.

Amr currently serves Valtech as a Principal Consultant where he helps

Valtech’s clients build better software using the latest technologies,

and of course, adopting and adapting Agile practices.

On a more personal note, Amr enjoys the simple pleasures of life:

family, food, music, and video games. He can be reached at

http://www.elssamadisy.com

