The Agile Times

VOLUME V ISSUE 1

Inside this issue are 90 pages of extremely well written article. Once
again, thanks to the community of practitioners, observers and writers.

--Ken Schwaber
UPCOMING AGILE CONFERENCES

XP2004, June 6-10, Garmisch-Partenkirchen, Germany
WWw.xp2004.0rg

Canadian Agile Network Workshop, June 20-21, Banff, Canada
www.agilenetwork.ca/ws2004

Agile Development Conference, June 23-26, Salt Lake Clty, Utah
www.agiledevelopmentconference.com

XP/Agile Universe ,August 15-18, Calgary, Alberta, Canada
www.xpuniverse.com

Scrum Gathering, October 13-15, Denver, Colorado
THE $SCRUM GATHERING IN VIENNA
Boris Gloger

The Scrum Gathering 2004 in Vienna in April was a smaill step for
each individual Scrum Master, but a big step for the evolution of Scrum.
About 30 persons showed up with a wide range of knowledge about
Scrum and team facilitation.

We not only had very good presentations from Ken Schwaber, Joseph
Pelrine, Esther Derby, Diana Larsen, Norman Kerth, Gillian Attard and
Boris Gloger, but we had a wide range of open discussions amongst the
different groups: Scrum Virgins, Baby Scrumies, Scrum Experts, and Retro-
spective Facilitators. Scrum Virgins are people who had not had any
involvement in Scrum, Baby Scrumies are just certificated Scrum Masters
and Scrum Experts are the ones who already had expertise in using and
implementing Scrum.

We did not make this distinction upfront; it was just a way of organiz-
ing people during the Scrum Gathering and was introduced by the at-
tendees themselves.

For me, the Gathering got its value from the discussions across the
different groups and from the fact that the Scrum ideas were able to
influence the retrospective facilitators and vice versa.

| cannot go into all the details of the Gathering because it would take
days, and | have a deadline to meet. But | will post the outcome of the

Gathering within the next few days to the Scrum Alliance web site (http://

www.scrumalliance.org/???) and | will publish a longer article about the
Gathering in the next issue of The Agile Times. In case you want to sent
me your impressions about the Gathering, please feel free to send me
yourcomments to boris@crumalliance.org.

Page1

A quarterly publication of the AgileAlliance

Volume V; Issue 1

Topics

Brian Marick, Agile Testing
Mike Cohn, Agile Practices

Steve Berczuk, Agile Founda-
tions

Scott Bogartz, Selling Agile to
Senior Management

Mike Cohn, Book Corner

Boris Gloger, People and
Sociology

Nancy VanSchooenderwoer,
Ask the Experts

Cliff Gregory, Agile Manage-
ment

Lisa Crispin, Implementation
and Seductions

Esther Derby, Agile Interac-
tions

Mike Giriffiths, DSDM

Including interviews with
Rachel Davies and Alistair
Cockburn.

Copyright Agile Alliance 2004
All rights reserved
No copying or distribution
without written permission.

Marco Abis, abis@agilemovement.it, Agile Europe

Steve Berczuk, steve@berczuk.com, Agile Foundations

Scott Bogartz, scottbogartz@yahoo.com, Selling Agile To Management
Jeremy Brown, jeremy@quero.com, Book Corner

Chris Celsie, ccelsie@idirect.com, General Editorial

Mark Clifton, webmaster@knowledgeautomation.com, Unit Testing

Mike Cohn, mike@mountaingoatsoftware.com, Best Practices

Lisa Crispin, lisa_crispin2001@yahoo.com, Introducing Agile To New Environments
Esther Derby, derby@estherderby.com, Agile Project Management
Bryan Dollery, bryan@greenpulse.com, Agile Sociology And Psychology
Boris Gloger, boris.gloger@chello.at, Agile People and Sociology

Cliff Gregory, cliff@gregory.net, Agile Management

Mike Griffiths, mikeg@quadrus.com, DSDM

Michael lvey, mdi@iveyandbrown.com, Scrum Success Stories

Martha Lindeman, mlindeman@agileinteractions.com, Agile Interactions
Brian Marick, barick@uisibileworkings.com, Agile Testing

Trevor Mather, tmather@thoughworks.com, The Thoughtworks Perspective
Kent McDonald, kent@madsax.com, Agile Project Management

Raghu Misra, raghu@shipxpress.com, Agile Distributed Teams

Dan Pierce, dan@embeddedeng.com, Embedded Software

Mel Pullen, mel.pullen@symbian.com, Hard Questions For Hard Projects
Meade Rubenstein, Project Processes Tricks and Tips

Nancy Van Schooenderwoert, vanschoo@rcn.com, Ask the Experts

Andy Winskill, andy.winskill@rosewoodsoftware.com, The Agile Enterprise
Ken Schwaber, ken.schwaber@uerizon.net, Editor in Chief

Carey Schwaber, Production Editor

Page 2

Marick, Brian - Editor of Agile Testing

Marick, Brian, “How We'd Do Testing On An Agile Project”

Cohn, Mike - Editor of Agile Practices

Higgins, Allen, “Observations of Improvised Practices Used by XP Teams”
1 Brothers, John, Product Review, VersionOne

17 Berczuk, Steve - “Just-In-Time Requirements Analysis”

31 Berczuk, Steve - Editor of Agile Foundations

31 Berczuk, Steve, “Agile Foundations”

34 Cohn, Mike, “Questioning Your Users”

36 Bogartz, Scott - Editor of Selling Agile to Senior Management

36 Bogartz, Scott, “Achieving Flow Through Agile Development”

39 Cohn, Mike - Editor of Book Corner

39 Pukinskis, John , Review of “Waltzing with Bears”

40 Rainsberger,).B., Review of “User Stories Applied”

4 Glober, Boris - Editor of People and Sociology

4 Hoover, Dave, “Values, Power, and Agility”

47 Davies, Rachel, Marcel Proust Questionairre

48 Cockburn, Alistair , Marcel Proust Questionairre

53 Van Schooenderwoert, Nancy - Editor of Ask the Experts

53 Van Schooenderwoert, Nancy, Interview with Mary Poppendieck

60 Gregory, Cliff - Editor of Agile Management

60 Gregory, Cliff, “The Agile Software Code Factory”

69 Crispin, Lisa - Editor of Implementations and Seductions

69 Gregory, Janet, “Intoducing Agile to NonAgile Environments”

75 Derby, Esther - Editor of Agile Interations

75 Tabaka, Jean, “Bringing Servant Leadership to Agile Projects”

79 McDonald, Kent - Editor of Agile Project Management

79 McDonald, Kent, “Communication and the Pragmatic Project Manager”
83 Giriffiths, Mike - Editor of DSDM

83 Grewal, Harprit, “Contrasting Scrum and DSDM'’s Approaches to Handling Mid-
iteration Changes”

89 Barron, Kevin and Xansa, Neill Bennett, “Dealing with resistance to the DSDM
approach”

91 Agile Values

0 o b b

Page 3

If | were starting up an agile project, here is how I'd plan to do testing. (But this plan is a starting point,
not the final answer.)

| assume the programmers will do test-driven design. That’s well explained elsewhere (see the Further
Reading), so | won't describe it here (much).

Test-driven programmers usually create their tests in what | call “technology-facing” language. That is,
their tests talk about programmatic objects, not business concepts. They learn about those business con-
cepts and business needs through conversation with a business expert.

Nothing will replace that conversation, but it’s hard for programmers to learn everything they need
through conversation, even the frequent conversations that a collocated business expert allows. Too often,
the business expert is surprised by the result of a programming task - the programmer left out something
that’s “obvious”. There's no way to eliminate surprises entirely - and agile projects are tailored to make it
easy to correct mistakes - but it's sand in the gears of the project if, too often, a programmer’s happy “I'm
done with the order-taking task!” results in quick disappointment.

It's better if conversations can be conversations aboutsomething, about concrete examples. When
those concrete examples are executable, we call them “tests” - specifically, | call them “business-facing”
tests.

A business-facing test has to be something a business expert can talk about. Most business experts - not
all - will find tests written in Java or C# too painful. A safe and satisfactory choice is to use Ward
Cunningham’s Fit (http://fit.c2.com). In it, tests are written as a variety of HTML tables that look not too
dissimilar from spreadsheet tables. Fit is ideal for tests that are data-centric, where each test does the
same kind of thing to different kinds of data.

Some tests are processing-centric, where each test is composed of a different set of processing steps.
Tables are more awkward for that. | would augment the official version of Fit with my own StepFixture.
It makes processing-centric tasks more compact. (See the end notes for its location; like Fit proper, it's open
source.)

More important than the format of the tests is how they're created: collaboratively. The conversation
begins with the business expert describing a new feature. This is often done in general terms, so it’s impor-
tant to train the team to say, “Can you give me an example of that?” whenever there’s a hint of vague-
ness. Those concrete examples will help the programmers understand, and they may well also make the
business expert suddenly call to mind previously overlooked business rules.

Those examples turn into business-facing tests, but | think it’s important that they not startthat way. |
don't want to see people huddled around a screen, editing tables. It's too easy to get distracted by the
tools and by making things tidy. | want to see people in front of a white board, scribbling examples there.
Those examples can later be put into files.

What's the role of the tester in all this? One part, probably, is clerical. Guess who gets to turn scribbling
into tables? But the more important parts are as translator and idea generator.

Experts are characteristically bad at explaining why they do what they do. Their knowledge is tacit,
and it's hard for them to make it explicit. It's the tester’s responsibility to draw them out. Fortunately,
many testers are quick studies of a domain - they've had to be. It’s also the testers’ responsibility to think

Page 4

of important ideas the business experts and programmers might overlook. For example, both business
experts and programmers tend to be focused on achieving return on investment, not on loss. So they
concentrate more on what wonderful things a new feature could do, less on what it shouldn’t do if people
make mistakes (error handling) or intentionally misuse it (security). The tester should fill that gap, make
sure the tests describe enough of the whole range of possible uses of the feature.

Quite likely, most of the tests will come after the programmer’s started writing the feature. I'd want
the initial set of tests to be enough for the programmer to estimate accurately enough and get started
quickly. The tester can then produce additional tests in parallel. Always, any doubtful cases - “what
shouldthe program do here?” - will be reviewed by the business expert. As time goes on and the whole
team learns the domain, fewer and fewer cases will be doubtful. The team will get better, in all ways, at
making choices that make sense for the business.

The programmer will use the tests in something like the standard test-first way. When working on
technology-facing tests, the programmer watches a new test fail, makes a small change to the code,
watches the test now pass (and earlier ones continue to pass), cleans up if necessary, and repeats. The
same thing will be done with business-facing tests. When | use Fit, | display its results in the browser. My
cycle starts by looking at the first table element that isn’t right (isn’t green, in the case of checks; or white,
in the case of actions). | flip back to my programming environment and do what's required to make that
element right. If the job is simple, | can do it directly. If it's too big a job to bite off at once, | use technology-
facing tests to break it into smaller steps. When | think I've got it right, three keystrokes run the tests, take
me back to the browser, and refresh the page so | can see my progress. (It's a measure of the importance
of rapid feedback that those three keystrokes feel like an annoying slowdown.)

All this is an important shift. These tests are not, to the programmer, mainly about finding bugs.
They're mainly about guiding and pacing the act of programming, about making the evolution of the
code toward a form that satisfies the business expert an evolution that’s smooth and pleasant. Testers are
not traditionally in the business of making programmer’s lives pleasant, but the good tester on an agile
team will strive to present the programmers with just the right sequence of tests to make programming
smooth. It's too common for testers to overwhelm the programmers with a barrage of ideas to keep
track of.

I'm edging here into the most controversial thing about testing on an agile project: testing is much more
explicitly a service role. The tester serves the business expert and, especially, the programmers. Many
testers are, to say the least, uncomfortable with this role. They are used to seeing themselves as indepen-
dent judges. That will effect hiring: with exceptions, I'm more interested in a helpful attitude, conversa-
tional skills, and a novelty-seeking personality than testing skills. It's easier to grow the latter than the
former.

By that token | am (with an important exception) content with having no testers on the project. If the
programmers and business expert can and will develop testing skills, there may be no need for a person
wearing a hat that says “Tester” on it. But, in addition to seeing programmers grow toward testers, I'd be
happy to see testers grow toward programmers. I'd be ecstatic if someone | hired as a tester began to
contribute more and more code to the code base. Agile is about team capability: as long as the team gets
the work done, | don’t care who does it.

Now for various exceptions.

Automated business-facing tests are the engine of my agile project, but I'm leery of automating
everything. In particular, | will absolutely resist implementing those tests through the GUI. They are written

Page 5

in business terms, not GUI terms. They are about business value, not about buttons. It makes no sense to
translate business terms into button presses, then have the GUI translate button presses into calls into the
business logic. Instead, the tests should access the business logic directly, going “below” the GUI. The preva-
lence of automated GUI tests is a historical accident: testers used to Aaveto test through the GUI because
the programmers were not motivated to give them any other way to test. But agile programmers are, so
our tests don’t have to go through the traditional nonsense of trying (often fruitlessly) to make our tests
immune to GUI changes while not making them immune to finding bugs.

But what about the GUI? How is it tested? First, realize that testing below the GUI will keep business
logic out of the GUL. If there’s less code there, less can go wrong. Moreover, a thin GUI offers less opportu-
nity for “ripple effects” than does code deeply buried in the business logic. Selected technology-facing tests
(for example, using jsunit for javascript input checking) plus manual tests of both the functionality and
usability of GUI changes should suffice. We shouldn’t need full automation.

| would expect arguments about this. I'd also expect to win them, at least at the start. But if my simple
practice really did let too many bugs past, I'd relent.

Another manual testing practice is derived from my passion for concreteness. Few people buy cars
without test driving them. That's because actually usingsomething is different than reading about it or
talking about it. Both of those acts are at a level of remove that loses information and narrows percep-
tion. An automated test is at the same level. So | would introduce a form of semi-structured manual
exploratory testing into the project.

I'd do that by piggybacking on my fondness for end-of-iteration rituals. Some agile projects have a
ritual of demonstrating an iteration’s results to anyone they can drag into the project room. After that, it'd
be natural for people to pair off (team members with team members, team members with observers) to
try the product out in ways interesting to the business expert. One pair might look at what the web site
feels like over dialup lines; another might emulate a rushed and harried customer-service person who's
making mistakes right and left. They're looking not just for bugs but also especially for new ideas about
the product - changes that can be made in later iterations that would make it better even though it’s not
wrong now. They're throwing up potential work for the business expert to decide about.

| would make a final exception for types of testing that are both highly specialized and don't lend
themselves to a test-first style. Some of these types of testing are security testing, performance testing,
stress/load testing, configuration testing, and usability testing. | don’t now see any reason for these to be
done differently on agile projects.

FURTHER READING

For test-driven design, I'd start with Kent Beck'’s 7est-Driven Development: By Example and also read
either David Astels' Test-Driven Development: A Practical Guide or Hunt and Thomas's Pragmatic Unit
Testing. See also http://www.testdriven.com.

The best web site for exploratory testing is James Bach'’s: http://www.satisfice.com/articles.shtml.
Kaner, Bach, and Pettichord’s Lessons Learned in Software Testingis the closest thing to a book-length
treatment. It's not very close, but it has a wealth of complementary material.

Fit is explained in Mugridge and Cunningham’s Getting Fit for Software Development (forthcoming).
My StepFixture is documented at http://www.testing.com/tools.html#StepFixture. The best web site for
exploratory testing is James Bach'’s: http://www.satisfice.com/articles.shtml.

Page 6

Page 7

OBSERVATION OF IMPROVISED PRACTICES USED BY XP TEAMS

OBSERVATION OF IMPROVISED PRACTICES

As the manager of a software development team I've been grappling with the challenges posed by
adapting and developing management approaches for XP software development. The job of taking on
an XP isn't made any easier by the need to “roll-your-own” implementation because the founders of XP
provided a vision of the future, but cleverly left out the roadmap for how to get there. We focused on XP
in 1999-2000, and were posed with the problem of adapting our organization, processes, procedures,
even behaviours and modes of interpersonal interactions to support the change. Sure there are lots of
resources out there on XP, but the XP community steers a little wide of prescription, particularly when it
comes to organisational change and management strategies.

We were fortunate enough to be attempting to do this at the same time that a number of other
groups we knew were attempting to do the same, so we had the added benefit of being able to look
over each other’s shoulders. An XPSIG was started up, meetings were hosted by various companies work-
ing in the space, and a lot of fruitful communication started flowing, and continues to flow, among the
local development community. It's opinionated, fun, chaotic and very, very interesting.

The problem we've all faced is how to adapt the key practices (and values and variables) of XP to
guide us in building best practice for our software development processes. It soon becomes obvious to
anyone looking at XP that it implies or requires considerable embellishment and infrastructure to actually
work. Not only are the key practices a pre-requisite, but the key practices imply the existence of a
technological, social and cultural infrastructure which might be termed ‘XP practice.” My view is that ‘XP
practice’ installs the ‘technology of XP,’ without which XP is just a grab-bag of development practices.

What was really interesting about the XP implementations | saw around me was the number of big
visible charts and wall diagrams that were used. One chart in particular seems to capture and distil a lot
of the key practices of XP into a single focal point. It's more of a system than an single chart; a status
board acting as the catalyst for volunteering, stand-up meetings, stories, communicating, planning, review-
ing and a load of other stuff. For the purpose of this discussion let’s call it the ‘task-board process.’

A BEST PRACTICETASK-BOARD PROCES$S?

Because we shared our ideas and experiences through the XPSIG, in direct conversation and by visiting
each others sites, the ‘task-board process’ was something that all the teams had experimented with.
Some of the teams claimed it was a key success factor in their adoption and use of XP, in others this
aspect failed.

The ‘task-board process’ could be described as the combination of regular stand-up meetings, story-
cards and a cork board. It appeared to act as a powerful enabler for many other elements of XP. The
teams using the process continue to evolve the format and the aspects of XP, process, and management
practice it incorporates such as stand-up meetings, task management, volunteering, estimation, and
planning. For the teams that continue to use the process, it operates as a focal point for them and for
their interpretation of what XP is. The ‘task-board process’ is explained as offering a systematic frame-
work for aspects of XP practice, more mundane perhaps than ‘pair programming’ but it can be more
easily institutionalised or appropriated by an organisation than some of the more radical aspects of XP.

Page 8

Observations of Improvised Practices Used by XP Teams Volume V, Issue 1
Allen Higgins

Figure 1 A team holding a daily stand-up meeting in front of the task-board

The typical ‘task-board process’ occurs around a short (20 minutes max), regular (often daily) stand-
up meeting of all team members (developers, customers and anyone else interested). The meeting has
some rules: it takes place in front of a physical task-board, and everyone takes turns to talk briefly about
their current story (progress, problems, plan or cry for help). The story must be represented by an actual
story-card (no invisible jobs). In fact the person is expected to walk up to the board and point to the
cards referred to. Separate break-out meetings frequently follow on after the stand-up. The task-board
itself is typically organised along the following lines (see figure 2). Stories are added in queues at one end,
generally in order of priority (highest at top) and they are volunteered or ‘signed-up’ for by engineers
when they have completed their current story-card. It is generally considered bad form for a developer
to have a large stack of in-progress story cards.

Page 9

feature /q ™ / R

GUeUe e acceptance ready
(—b in progress test to
bug ready release
queue

Figure 2 Flow of story-cards on the task-board

When a story-card is adopted by a developer, it is moved into the ‘in progress’ area and is then
talked about at the regular stand-up meeting. The act of talking about the story-card is given as one of
the really useful reasons for holding these sessions regularly (daily) as they serve the dual function of
sharing information and alerting other engineers to a request to pair program or for assistance.

Those team:s still using the ‘task-board process’ appear to have had considerable initial success with it.
Comments from developers are typified by this example:

“What | think about the task-board, and | feel it myself, is that the engineers have a hell of a lot more
autonomy now. In what they do, there is much less control about what we do now, we pick things off
the board, ourselves and we drive them ourselves right through to the end”

As a ‘Best Practice’ for XP and software development it appears that something like the ‘task-board
process’ supports responsible self selection for tasks (volunteering for stories) rather than resorting to direct
assignment from supervisors. Manager comments on the ‘task-board-process’ tend to make supportive
comments on this change;

“...if some people have some spare time they will take up things themselves, they do volunteer for it”;
“...in a way it's empowering the engineers, they're controlling their own work rate, their own
deliverables.”

These claims however are tempered somewhat by statements from some developers along the lines
of:

“It's a combination of self selection and being ‘volunteered’”

Notably a manager in a team that gave up using the ‘task-board process’ stated:

“No one volunteers, they know who should do what, and they just get on with it”
ACCES TO INFORMATION

It appears that something like the ‘task-board process’ has a role in teams experimenting with XP as
a means of embedding many of the key practices of XP into the fabric of the organisation, for example
by replacing direct supervision with transparent systemic control arising from the presence of the group of
developers and other contributors during the stand-up meeting. Although not elevated to the level of a
key practice in the literature on XP, | think the ‘task-board process’ is notable in that it has operated
successfully in several groups adopting XP as their core development process. Comments on the practice
by members of teams where it was successful includes language like ‘benefit’, ‘responsibility’, ‘ownership’,
‘visibility’ and ‘control’. Perhaps it is the roll-your-own nature of aspects of XP practice that affords XP the
opportunity to be owned or deeply appropriated by those organisations using it.

Page 10

These adaptations and improvisations by participants in the XP teams | saw appear to represent a
conscious attempt to free up the control of information in the organisation. This potential carries significant
risks of failure as it characterises a shift of power or control between and within teams and organisations.
However home-brewed processes like the ‘task-board process’ offer the possibility of greater transpar-
ency and access for tracking the activities and progress of development for all, thereby reducing the
uncertainty surrounding development and dependent activities. This in turn should allow contributors and
participants to cope better with the creative and uncertain process of development and serve to support
a dramatic improvement in capability of an XP enabled development team.

March 2004

Department of Management Information Systems
The Michael Smurfit Graduate School of Business
National University of Ireland

University College Dublin

OVERVIEW

VersionOne (www.versionone.net) is a commercial software tool for managing agile projects. My
company has been using it for about 6 months to manage project delivery using the Scrum
(www.controlchaos.com) methodology. Previous to 1, as we started to introduce Scrum, we were using
a combination of Twiki pages and Excel spreadsheets to manage the projects, and we found that to be

cumbersome to use, and tedious to maintain. So when | heard about VersionOne, | called them, and
arranged for a demo.

INSTALLATION

Unlike many of the alternate tools, VersionOne is written in C# and ASP.Net, and runs only on Win-
dows servers, with SQLServer as the database. Luckily for us, this didn't present a problem as our admin-
istrative systems are all Windows-based. Once we had that server up and running, installation was
about a 10 minute process (although | had a salesman from the company installing it) for me.

SETUP

The first thing | had to do was create users — it comes with a default Admin user, and you use him to
create the rest of the users. Creating users was no problem, and | could set them up as admin, members
or viewers. You can't see anything when you don’t have a login, so everyone who may want to look at
or participate needs at least a viewerlevel access. And then it was on to creating projects, releases and
sprints.

USER REQUIREMENTS

VersionOne uses a number of fancy IE tricks to make the user interface easier and more accessible.
These, of course, don’t work in non-Windows environments, much to the chagrin of our dedicated Linux
and Mozilla users (such as the author). | do have to admit, however, that in at least one area—the Sprint
Planning page—the IE tricks are pretty cool.

Page 1

Product Review : VersionOne Volume V, Issue 1

John Brothers

USAGE

There are actually three different flavors of VersionOne, focused on XP, Scrum and DSDM-style project
management. | specifically chose the Scrum interface, but | found that there were a number of
configurable features and options that | could turn on or off to tweak the behavior to fit my company’s
needs. Since we aren’t an XP shop, XPlanner didn’t seem like an appropriate tool for us, so | don't have
any compare and contrast examples. VersionOne does come with a clear and well-written user’s guide,
which | found quite helpful early on.

VersionOne for Scrum generally uses the following hierarchy:

Projects
= Releases
- Sprints
- Backlog Items
- Tasks

However you can also have Sprints that are not inside Releases (just manage them within the project)
and you can have Backlog items in Releases as well. This makes for a very flexible approach, which can
sometimes be confusing. It does conform well to the Scrum model — with a “general” backlog of items
that aren’t assigned to any sprint (vet) and a set of backlog items assigned to the current working Sprint.
V1 has a number of simple tools to make it easier to create Sprints semi-automatically, easily populate
them with Backlog Items and then maintain the Sprint Backlog over the course of the project.

Here is a screenshot of our current project list, with the names blanked out to protect the guilty:

John Brothers | Log Out | Support | About

FVERSION
[riecs |y vome | nembor]
Projects Select 3 Project v
Releases | Sprints

. Start Backlog | Backlog - | Estimate Projected
reesa | Baid |Enavate] owner | stats frean| 500° | B3 etocy) LI e
2 g

7/7/2003 3/31/2004 Flanning Edit |

Standalone
=l General Development

System Performance
=)
=115 Projects

= IS Projects

12/8/2003 3/31/2004 Future T T —

=l Transport 2/2/2004 4/30/2004 Flanning Edit |
Transport 2/2/2004 2/27/2004 Future [

[=] Architecture 2/10/2004 Flanning Edit |
Gap Analysis 2/10/2004 Future I I

Changs Management 2/11/2004 . Future

= Merge 2/10/2004 . Flanning Edit |
) 2/10/2004 3/31/2004 Future I
Future I

8/1/2003 12/19/2003
10/3/2003

10/9/2003 12/1/2003
12/2/2003 1/30/2004
2/10/2004 3/31/2004
10/3/2003 11/17/2003
9/15/2003 11/17/2003
11/6/2003

:11/3/2003 12/9/2003

12/4/2003

Active
Flanning
Active
Active
Active
In Process
Active

Active
Flanning

Edit |

Edit |
Edit |

Edit |

Page 12

Product Review : VersionOne Volume V, Issue 1
John Brothers

The major items on the left are Projects, and the shaded elements underneath them are Releases.
We rigorously associate Sprints with Releases, so you don'’t see them here, but when you click on a par-
ticular Release, the list of Sprints pops up. Note that we track actual time spent as well as estimates,
which is not mandated by the Scrum methodology, but which VersionOne handles just fine.

The multicolored bars in the middle represent quick status for the Backlog — future, in development,
complete, etc — both in terms of raw numbers of items and in Estimated time remaining. One thing | like
about V1is that it tries very hard not to associate a meaning to these estimates — | think of estimates in
hours, but it doesn’t make that distinction, so an estimate of 10 might mean hours, days, weeks or jelly
beans.

We don’t create new projects every day, so most of our work is done at the Task and Backlog item
level. And V1 handles the creation and maintenance of Tasks and Backlog Items quite well, although we
found the Ul to be somewhat difficult at first (but that definitely got easier with more use).

Once the team members were assigned to the project and given tasks, the “My Home” page became
very valuable.

John Brothers | Log Out | Support | About

e [fome | remver

FVERSION

My Home: John Brothers

Summary | Tasks | | Backlog Items | Sprints | Releases | Projects | Filters

Actions Assignments
Project: jGeneral Develooment]id Project/Backlog Item/Task mm Task Estimate mm-
Maintenance =l General Development
Backlog Items El Sanity Test 37.00 25.20 6.00
Acceptance Tests Ongoing Sanity Tests 30.00 20.00 4.00f H
Sprints problem setting hostname? H
Releases
= reset_appliance errors H
Backlog Assignment
e Test IsProjects as part of extended Sanity H
Sprints Train everyone on how to do Sanity tests 4.00 2.00 2.00f H
Sprint Management ElInterruptions for external support 90.00 129.00 11.00
Flan Overall external interruption buffer 90.00 11.00f H
Track
rae [] show Closed Sprints
Administration .
[shaw Future Sprints
Members
| Apply] [Reset
Teams

This is my personal page, representing the various tasks that are assigned to me. It gives me a very
quick way to find out what | need to do for the project(s) I'm on. As you can see, | can instantly update
the amount of work I've done and the amount of work left to do on this page.

Configuration

One of the areas that V1 really shines is in its ability to be configured — you can add categories, priori-
ties, statuses, etc to your hearts content to the existing lists, and define the order. V1 doesn’'t know what
they mean, but it knows how to distinguish them, and displays that with a simple graphic (as shown in
the project picture above).

Page 13

In addition, V1 handles incompleteness very well — don't have any tasks for a backlog item? No prob-
lem. Don't know what the status is, don’t want to make an estimate yet? No problem there either.
Very few fields are required to create Backlog or Tasks, and any of those fields can be revisited at any
time.

TRACKING/REPORTING

Scrum’s concept of the Burndown chart as a key indicator of project health is very well supported by
VersionOne. It automatically generates and maintains the graph for you, scaling them appropriately, and
they'’re easy to read and follow

Graphs Burndown | Progress

Daily Burndown Chart
To Do
1,000

517512
441 471471471

427
403
394394 3% g5y oo 395395395
305 307 ¥13 307 307 307 300
258 250 261
231 50

£ 177177 177
150
138 o

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 z 3 4 g e T =l 910 11 12 13 14 15 16 17

Daily Progress Chart
Dane
1,000

587
600 562574
25355555555

506
471
412 422422 422 429
TE

338
237
246 246 246
199229
200 135 135 135196 120
106 1z8

a1,
(=31
31, B1 51 51

11 12 12 14 15 1e 17 18 19 20 21 22 23 24 25 26 27 28 29 1 2 2 4 S & 7 2 9 10 11 1z 12 14 15 1& 17

Member Load

W1 also handles member load — once estimates are put in, it Reeps very accurate track of the number
of “whatevers” (hours, gummi bears, etc) associated with the estimates, and can differentiate between
work complete and work still outstanding.

Page 14

Member Load

Member Name Load

Aaron .
Abir
Administrator
Alex
Andy
Bob
Candis
Charles
Darin
Dimitry
Eric
Flarian
Gary
Gary
Seorge
Ilene
James
John
Friva
Stan
Surjit
Tim

Change History

Change history is something that most traditional project managers care deeply about, and V1is up to
the task — every change to any field anywhere is logged — when it happened, who made the change,
and what the value was before and after.

AREAS FOR IMPROVEMENT
User Interface

Especially at first, the Ul can be confusing — there are often two links on a given page with roughly the
same name, and they have different results. Luckily, this gets better after only a little practice, but it is
still a battle to fight with the team early on. I'm told that many people find the interface quite intuitive
from the beginning, but that wasn’t our experience. VersionOne did win a Jolt Award, partially based on
its usability relative to the other products in this field.

Support for Netscape/Mozilla

Even if we can’t use the cool IE tricks, it would be nice if there was some sort of alternate way to
work on the same pages. Right now, only a few pages work well with Netscape, not enough to make it
usable on a day-to-day basis.

Page 15

Risk Census

After reading “Waltzing with Bears” (DeMarco and Lister) | became very intrigued about the idea of
building a Risk Census for the project, and since VersionOne didn’t have that capability, | had to use our
Twiki to manage that. | believe that the RiskCensus is a great bridge between traditional project man-
agement and agile project management, and it is my hope that V1 and other tools will incorporate this
feature set.

Email Alerts

It would be great if V1 could be configured to email the team members every morning, reminding
them to update their time. It would probably be even better if individuals were notified when new tasks
had been assigned to them.

Loose Ends

It’s not always obvious from the Backlog view if every task has an estimate and has been assigned to
someone. It would be nice to have some sort of “audit” against a Sprint to determine which tasks had no
estimate data, or weren'’t assigned to someone. This might not be valuable for everyone, but it would
certainly be valuable for us.

$earching

You can't search for a Task by ID, which can make it hard to quickly specify “Go work on Task X".
Searching for Backlog items is cumbersome — you have to go to the “Backlog Planning” page, and enter
your search criteria there.

CONCLUSIONS

We use a separate system for time tracking, and at first it was difficult to get everyone to update
their hours in both systems. However, as the team has gotten more used to 1, they have gotten better
about updating their hours. And when they forget, a quick glance at the burndown chart shows the lack
of progress, and a reminder email quickly goes out.

Since the last project | worked on has wound down, two additional projects have started up using V1.
These latest projects are interesting because they include a mix of internal and offshore staff, and we're
going to find out how well our agility works in that kind of environment.

And, very smartly, the V1 guys have set up an XP demo system right on their site that you can use and
experiment with. So if you want to know more about what it can do, go to their website

(www.versionone.net) and try it for yourself.
BIO

John lives in Atlanta with his wife, 3 kids, 2 dogs and 2 cats. He has 10 years experience building
large-scale systems. He learned about agile development in 2000 and hasn't looked back since.

Page 16

JUsST-IN-TIME REQUIREMENTS ANALYSIS
AN AGILE APPROACH TO AN AGE-OLD PROBLEM

By Michael Lee

Software development is a (resource-limited) cooperative game of invention and
communication. The primary goal of the game is to deliver useful, working
software. The secondary goal, the residue of the game, is to set up for the next
game. [1] Dr. Alistair Cockburn, (emphasis added)

1 INTRODUCTION

In a world of limitless resources, the decision to build a piece of software would be driven entirely by
need and requirements analysis would not be a problem. Business analysts would keep refining and
project teams would keep developing until the needs were met.

In the real world however, the decision to build software is primarily an economic decision — with need
only a secondary consideration. At some level, those purchasing software “on spec” (i.e. buying software
before it is built) need to know beforehand what is being purchased and how much it will cost so an
economic determination can be made — “is it worth it?”

Balancing economic considerations with the necessity to identify and communicate need requires
tradeoffs on how we approach analysis and how requirements are identified, defined, and communi-
cated.

Conflicting Needs
All projects share the same basic goals:
Maximize value. Provide the most capabilities for the least cost.

Reduce Risk. Reduce or eliminate the impact of project failures.

Ensure Quality. Guarantee that the delivered system meets the expectations of all stakeholders.

Likewise, all requirements analysis efforts share, to a certain degree, a common set of perceived needs
that must be addressed:

Scope. What are the boundaries of the effort? Where are the boundaries flexible? Where are
they fixed?

Known Cost and Schedule. How much will it cost? How long will it take?

Value. What are the benefits? Given the cost and schedule, are the resulting benefits worth the
effort? Asthings change, how can value be maintained?

Communication. Are needs and desires clearly, effectively, and unambiguously communicated?
How are differing expectations handled (between business and developers; between purchasers

Page 17

and users; between customer and business)?

Specification. Provide a blueprint that defines the expected behavior of the system. A blueprint
used by developers to build the system and by testers to ensure the quality of the system.

Planning. What needs to happen? When? What resources are required given the size and
scope? What are the hard milestones that are driving the effort?

Certainty. Is every important thing known? How are unknowns dealt with? How is chaos
managed and its impact limited?

Flexibility. How can the project adapt to changing business needs? New and evolving
technology? How is the impact of change limited?

Unfortunately, these needs often conflict with each other and also with the overall goals of the project.
Over time, analysis approaches have evolved to favor one or more items over others.

Traditional Analysis

Traditional Analysis tends to favor known cost and schedule and the reduction of risk over all other
objectives. Decision makers and stakeholders want to know before they commit to a project what the
costs are and when the software will be delivered. This increases the importance of specification, known
cost and schedule and certainty at the expense of communication, flexibility, and maximization of value
(figure1)

Page 18

Traditional Analysis

Specification
F i

Known Cost &
Schedule

Flexibility

ha

Certainty

e

Maximization
of Value

Y
Communication

Figure 1

The approach taken in traditional analysis, along with the artifacts of the process, is indicative of what
isimportant. Significant analysis time is dedicated upfront to ensure all the relevant details have been
addressed in the cost and schedule. In an attempt to reduce risk, monolithic (and often massive) re-
quirements specifications are produced and elaborate change management processes are put in place.
The result is a process that is the antithesis of agile and one that often works at cross-purposes with its
intended objectives [2].

The shortcomings of traditional analysis are obvious to even the most casual observer.
Time dedicated to upfront analysis is time not spent developing solutions. Too much upfront

analysis adds unnecessary cost and decreases the overall value of the delivered software [3] (figure
2).

“Software requirements are a communication problem” [4] not a specification problem, and
monolithic requirement specifications inhibit rather than enhance communication. Effective
communication requires collaboration between participants. Requirements specifications rarely, if
ever, facilitate collaboration.

Static requirements increase, not decrease risk. [5]

Page 19

Change management processes don't protect a project against change; they only make change
more costly.

No amount of planning can eliminate all of the unknowns. Fixed schedules and static
requirements inhibit a projects flexibility to react to changing situations.

“No plan survives contact with the enemy.” [6] No matter how much time upfront is spent on
planning, something always changes. And the further out the planning goes, the more likely the plan
will change.

Cost at Completion
'VS'
Time Spent on Upfront Analysis

Cost at

Completion Optimal

7

Time Spent on
Upfront Analysis

Figure 2

$tory-Centric Analysis

On the opposite side of the spectrum from Traditional Analysis is Story-Centric Analysis. Story-centric
Analysis tends to favor maximation of value, communication, and flexibility over all other objectives. A
good example of Story-centric Analysis is found in Mike Cohn'’s book, User Stories Applied. [7]

With Story-centric Analysis, decision makers and stakeholders want to ensure the most capability is

Page 20

provided for the least cost in the quickest possible time and with the highest quality. This increases the
importance of communication, value, quality, and flexibility at the expense of known cost and schedule,
certainty, and scope (figure 3)

Story-Centric Analysis

Specification
F i

Known Cost &
Schedule

e

Flexibility

ha

e

Maximization
of Value

Ta

Certainty

Y
Communication

Figure 3

Overall, Story-centric Analysis is significantly better (if not overwhelmingly better) than Traditional
Analysis and is a near-perfect approach for small-to-medium projects. However, when it comes to large-
scale, (potentially) expensive, resource-intensive development efforts, Story-centric Analysis has its limita-
tions.

Scope tends to be fluid at best and ambiguous at worst. A great deal of attention is given to the
parts — user stories and epics — and very little to the whole.

It doesn’t scale well. Story-centric analysis requires close collaboration within a tight-knit team.
The larger the project — in terms of functionality and the number of people involved — the more
lirely it is that communication will breakdown at organizational boundaries.

Cost and schedule are ambiguous. When a development effort is tasked with providing the most
capability for a fixed price, this is not a problem. But in those situations where one has to deliver a

Page 21

fixed set of features for a specified cost, Story-centric Analysis is ineffective.

Depth, but little breadth, of detail. One of the purposes of analysis is to gain an understanding of
the problem to increase the level of certainty that all relevant areas have been (or will be)
addressed. The focus on epics and user stories tends to narrow the focus of analysis and may result
in important things being left out.

Just-In-Time Requirements Analysis

Just-in-Time Requirements Analysis (JITRA) is an agile approach to requirements analysis specifically
tailored for large, (potentially) expensive, resource-intensive, enterprise-class development efforts. It
combines the best features of Story-centric analysis with the familiarity of Traditional Analysis. Its primary
focus is on maximization of value, communication, and flexibilitywhile at the same time recognizing and
addressing the needs of decisions makers on large projects (krnown cost and schedule, certainty, and
scope) (figure 4) The remainder of this article details the principles of JITRA; outlines the JITRA process;
and highlights how JITRA drives agile development processes.

Just-in-Time Requirments Analysis

Specification

i
o Known Cost &
Flexibility Schedule
Maximization ;
of Value Cenainty
¥

Communication

Figure 4

Page 22

2 JITRA = WHATIS IT?

Just-In-Time Requirements Analysis is an agile process based on the following principles:

Last Responsible Moment. This is the fundamental principle of JITRA (the “Just-In-Time” part of
Just-In-Time Requirements Analysis). Detailed analysis is deferred until the last responsible moment
before requirements are needed.

First-Things-First. Analysis is always focused on the most important things (as defined by the
business, not developers). This requires the business to constantly assess and prioritize their needs.

Understand the Problem. Analysis is not just about identifying and communicating requirements
(i.e. need). Itis an activity that allows organizations to gain a better understanding of the problem.
This understanding can then be used to drive economic decisions.

Collaborative Communication. Constant and effective communication between all participants in
the analysis process is critical. Use all means available to communicate clearly and effectively and
adapt the means of communication to fit the participants.

Equality of Value. Once a project cost has been fixed, Equality of Value allows decision makers
to adapt or change functionality while managing to the same fixed price. This is a key principle of
JITRA and meets the critical need of decision makers to predict and manage costs - while at the
same time preserving flexibility and agility.

Concurrent Engineering. With the possible exception of some initial analysis, all analysis activities
for follow-on development should be occurring in parallel with current development. This compacts
the life cycle and increases value at delivery (although it may introduced added risk).

Maximization of Value. Analyze value as well as functionality. Always examine the trade-off
between need and benefit while focusing on the maximization of value.

Focus on (Early) Delivery. The goal of analysis is delivery of software, not requirements
specifications. In the history of software development there has never been a single requirements
specification that has generated revenue for the organization purchasing the software’.

Learn By Doing. Analysis needs to be an active process. One of the objectives of analysis is to
learn more about a problem, and often the best way to learn is by doing.

Continuous Analysis. JITRA is primarily a continuous process of feedback and refinement. What
we kRnow tomorrow will always be more than what we know today. New knowledge needs to be
continuously fed back into the analysis process and requirements need to be continuously analyzed
and refined based on the new knowledge.

Continuous Planning. Prioritized requirements drive planning. Since requirements and businesses

Page 23

priorities are constantly changing, planning must be continuous.

Embrace Change. The JITRA process facilitates and embraces change. Instead of relying on
elaborate change management procedures, JITRA allows (and in some cases encourages) changes to
occur at anytime. Changes are simply treated as requirements that must be analyzed and
prioritized as part of a continuous analysis process.

Isolation of Complexity. Complexity adds cost, decreases value and makes things harder to
change. Don't make the problem more complex that it needs to be. But where complexity is
required, isolate it.

Constant and Continuous Improvement (Kaizen). As new knowledge is fed back into continuous
analysis, always look to improve on existing requirements. Refactoring applies to requirements just
as much as it does to code.

3 THE JITRA PROCESS

Just-in-Time Requirements Analysis is a simple process. Analysis starts at the highest levels of abstrac-
tion and requirements are continuously refined over the life cycle of the project. The most important
things are analyzed first, and the analysis is always at the level required to meet the current needs of the
project — no more and no less.

To support this process, JITRA defines four major analysis activities:

Initial Analysis

Feature Set Analysis

Detailed Story Analysis

After-action Analysis

These activities are performed continuously throughout a project’s life cycle, and may overlap each
other in scope and detail’. The following sections discuss each of these activities in detail.

Initial Analysis

The Initial Analysis activity is performed at the start of a new unit of work*. This unit may be an
individual system, a system of systems, a subordinate subsystem, or individual subsystem components. The
purpose of this activity is to broadly define the scope for the work ahead; specify an initial set of features,
functions, and capabilities required for the specified unit of work; and estimate cost. The specific tasks of
Initial Analysis include:

Defining scope. The first task of Initial Analysis is to broadly define the scope of the work ahead.
This allows planners to estimate the level of effort required to complete the work. On some projects
this take may take a few hours or days. On other projects — especially on those projects where a
detailed estimate is required (i.e. fixed price projects) — this may take longer.

Gain the required understanding. The second task of Initial Analysis is to gain a better
understanding of the current problem domain. This doesn’t have to be a detailed understanding, but
as a minimum the team must have a reasonable expectation of success if the project moves forward.

Develop the initial global feature set. The key task of Initial Analysis is to define a generalized

Page 24

list of things the new system needs to do. This list might be a simple bullet list, or it might be detailed
in one or more high-level stories.

The initial list does not have to be a complete list. The only requirement is that it contains enough
information to begin follow-on analysis and development activities.

Estimate the cost of the effort. Cost drives decisions. One of the most critical tasks of Initial
Analysis is to estimate the cost of the overall effort. The quality of this estimate is a function of the
time spent defining scope and defining the global feature set. Use caution, however. No estimate is
perfect. No matter how much time is spent estimating cost, there will always be errors — “noise in
the system — that cannot be eliminated.

Assess the value of the global feature set. Evaluate items in the global feature set against their
associated cost. ldentify benefits and perform a Cost-Benefit Analysis to determine if the benefits
are worth the price.

Define a high-level schedule for the project. Identify a justifiable (and reasonable) delivery date
for the first unit of work. Define a high-level roadmap for this delivery.

$caling Initial Analysis

Initial Analysis is highly scalable and works extremely well on complex projects — especially those
involving multiple teams and organizations.

The key to this scalability is the recursive definition of the unit of work in Initial Analysis. At the top-
level, a unit of work may specify a system of systems. Initial Analysis is performed at the top level and
then the unit of work is partitioned into one or more subordinate units of work (individual systems).

This hierarchical decomposition is recursive and may continue down any number of levels. At each
level an initial analysis is performed and the unit of work is either partitioned into subordinate units of
work, or Initial Analysis is completed and Feature Set Analysis is begun.

Participants in Initial Analysis
Analysis requires the -active- participation of every interested party. As a minimum, this includes:

Stakeholders. The Requirements Stakeholders (decision makers, purchasers, customers, sponsors,
users, etc.) represent the business. They provide input into the analysis process and make all of the
business decisions related to Initial Analysis.

Domain Experts. The Domain Experts are the people who best understand the problem — and
how to solve it. They typically include expert users of existing systems and experts in a company's
business processes.

Business Analysts. This is probably the most misunderstood role on the entire team - the direct
result of existing perceptions. Unlike most existing views of Business Analysts, this role does not define
a gatekeeper or intermediary. In JITRA, the business analyst is the expert problem solver who
performs the bulk of the analytical tasks. They bring order to chaos and aid in the discovery of
patterns and structure.

Page 25

Development Team. The development team’s main focus is on scope definition, although they
work with the Domain Experts and Business Analysts in actual analysis.

Output of Initial Analysis

The primary output of Initial Analysis is the global feature set — the initial set of features, functions, and
capabilities for the unit of work. This may be formally documented (if circumstances require), or more
loosely defined. The important thing is to communicate the global feature set in ways that all participants
can understand. Because individual participants have different needs and have preferred methods of
communication, this typically requires multiple outputs (free-form text, use cases, high-level user stories,
diagrams, models, verbal communication, presentations, index cards, emails, mock-ups, prototypes of
working software, etc.).

Secondary outputs include a cost estimate, a cost-benefit analysis, and a high-level project schedule.
Feature $et Analysis

Feature Set Analysis (FSA) is performed continuously throughout the life cycle of a project. It's pur-
pose is to build User Stories that feed into iteration planning and into individual iteration development.
Most of the analysis effort on any project is performed as part of FSA, and it is the heart of the JITRA
process. The specific tasks of feature set analysis include:

Prioritization. The global feature set defined during Initial Analysis feeds the analysis of
individual Feature Sets. At the start of Feature Set Analysis, all of the features, functions, and
capabilities that have not yet been implemented (or which have only been partially implemented)
are reviewed and prioritized by stakeholders. This process allows stakeholders — and not developers
- to identify what parts of the system get the most focus, and always ensures that the most
important part of the system will be analyzed and developed next.

Selection. Once the remaining features, functions, and capabilities have been prioritized, the
development team groups the highest priority items into a Feature Set. A Feature Set is nothing
more than a grouping of the features, functions, and capabilities that the development team
estimates can be analyzed and implemented in a small number of iterations (typically 2 — 4).

Initial Story Analysis. The primary task of individual FSA is the initial analysis and definition of
User Stories. After the Feature Set has been selected, Domain Experts and Business Analysts —
supported by Requirements Stakeholders and the development team - perform an initial analysis of
the items in the Feature Set. This analysis is used to build and define individual User Stories that feed
into iteration planning and actual development.

Iteration Planning. Initial User Stories are grouped into iterations and planning starts for these
iterations. Close-in iterations are addressed first, followed by those farther out (at the point they are
needed).

Page 26

$caling Feature $et Analysis

Scalability of Feature Set Analysis is not an issue. The size of a Feature Set is under the control of the
development team and is always determined by how much of the remaining system can be analyzed
and implemented in the next few iterations.

Concurrency of Feature Set Analysis

Feature Set Analysis is designed to be performed concurrently with actual development. Develop-
ment team involvement in Feature Set Analysis — for tasks other than Feature Set selection — should be
closely monitored so the development tasks of the current iteration are not impacted.

Selecting a Feature Set that is too big

In some cases, the team may discover the selected Feature Set is too big to fit into a few iterations. In
these situations, simply focus on the highest priority items first, and return the unanalyzed items to the list
of unimplemented features, functions, and capabilities. These items will then be addressed in follow-on
Feature Set Analysis.

Outputs of Feature Set Analysis

The primary outputs of Feature Set Analysis are groups of initial User Stories. These User Stories
should be detailed enough to allow follow-on iteration planning, yet they do not have to be detailed
enough to implement (although they may be).

A secondary output of FSA is updated iteration plans. These identify what elements in a Feature Set
are assigned to specific iterations and when delivery of the features can be expected.

Detailed $tory Analysis

The purpose of Story Analysis is to finalize the details of each story as close to implementation as
possible. This means that detailed analysis of stories should be deferred until the development team is
ready to implement the story. This typically occurs at the start of iterations, but may occur at anytime
within an iteration.

The specific tasks of story analysis are varied and beyond the scope of this article (for a comprehen-
sive description of story analysis, refer to User Stories Applied by Mike Cohn [9]).

After-Action Analysis

At the completion of each iteration, an After-Action Analysis is performed. This allows “lessons
learned” from the previous iterations to be included in the analysis process of subsequent iterations.

As part of After-Action Analysis, new requirements may be defined. These new requirements may
take many forms:

New items added to the list of features, functions and capabilities.
Changes to the list of features, functions, and capabilities.

New Stories added to the current Feature Set.

New Stories that will be added to follow-on Feature Sets.

Page 27

Changes to baselined Stories that result in a Modified Story being added to the current Feature
Set.

Changes to baselined Stories that result in a Modified Story being added to the follow-on Feature
Sets.

Regardless of the form they take, new requirements are fed back into the JITRA process at the
appropriate time and at the level matching the understanding of the requirement.

4 HOW JITRA MEET$ THE NEED$ OF DECISION MAKERS

As mentioned at the beginning of this article, all projects share the same basic goals. The following
sections detail how JITRA addresses these objectives and how projects can benefit by implementing JITRA

Maximize Value
JITRA supports the maximization of value in several ways:

Continuous Cost-Benefit Analysis. Every JITRA effort includes continuous cost-benefit analysis.
This allows stakeholders to constantly asses and reassess value and communicate these assessments

Prioritization of requirements. JITRA’s continuous analysis process forces stakeholders to
constantly identify the most important needs. This ensures the features having the greatest value are
defined and implemented first.

Quicker Time-to-Market. By implementing a concurrent engineering process that allows analysis
and development to proceed in parallel, JITRA shrinks the time it takes to deliver software. Quicker
time-to-market translates directly to added value.

Reduce Risk

JITRA uses an iterative approach to requirements analysis, and iterative approaches reduce risk [10].
Additionally, JITRA reduces risk by adhering to fundamental principles:

Last Responsible Moment. By waiting until the final possible moment, JITRA produces
requirements that are closely aligned with stakeholder needs. This alignment significantly reduces
risk associated with three key risk factors:

o Incomplete orinadequate requirements

o Time wasted on meaningless requirements
o Changing requirements

Continuous Analysis. Constantly analyzing and refining requirements produce better
requirements. Feedback from completed activities allows lessons-learned to be incorporated into
future requirements and new requirements can be added, defined, and assed without elaborate
change procedures.

First-Things-First. By always focusing on the most important things, JITRA reduces the risk that
the less important will impact the more important.

Collaborative Communication. Constant, effective, and clear communication between all

Page 28

participants significantly reduces the risk that what is delivered won't be what is needed (or
expected).

Learn By Doing. JITRA expects analysis to be an active process. Where development is used to
gain understanding as well as implement a solution. This reduces the risk of unknown issues cropping
up late in a life cycle.

Focus on Delivery. By focusing on delivery, JITRA reduces the risk of “analysis paralysis”. Where
time and money are spent analyzing the problem but no software is delivered.

Equality of Value. By fixing cost and allowing features to fluctuate, JITRA reduces the risk of cost
overruns.

Ensure Quality
JITRA ensures quality through the application of the following principles:

Collaborative Communication. Errors due to miscommunication and differing expectations are all
but eliminated using JITRA. Constant, clear, and effective communication throughout a projects life
cycle reduces (if not eliminates) ambiguity — a major cause of quality issues for delivered software.

Continuous Analysis. By constantly assessing and reassessing requirements - and by incorporating
feedback into future analysis - JITRA limits the impact of change on a project. This results in higher
quality software since errors can be fixed quicker and cheaper.

Constant and Continuous Improvement. Feedback and refinement combined with an iterative
analysis process facilitates continuous improvement. Over time, small continuous improvements
always result in higher overall quality.

Isolation of Complexity. By isolating complexity, JITRA also isolates errors. This limits the impact
of errors and increases the quality of the overall system

5 SUMMARY

Just-in-Time Requirements analysis significantly reduces project risk and shortens development time. It
ensures the most important parts of a system — as defined by the business stakeholders - are being
worked on at any given point in time and only defines requirements when they are needed. It supports
the evolution of requirements and provides mechanisms for easily incorporating changes into the analysis
process. It shortens development time by continuously performing analysis concurrent with development
rather than in sequence prior to development. In short, Just-in-Time Requirements Analysis matches the
vision and promise of agile development and perfectly compliments agile development approaches.

REFERENCES
1. Cockburn, Alistair: Agife Software Development. Addison-Wesley. 2002. Page 31.

2. Lee, Michael: Just-in-Time Requirements Analysis: The Engine That Drives the Planning Game. XP2002

Page 29

Conference.

http://www.xp2003.0rg/xp2002/atti/Michaell ee—Just-in-TimeRequirementsAnalysis.pdf
3. Cockburn, A: Page 148.
4. Cohn, Mike: User Stories Applied. Addison-Wesley. 2004. Page 1.

5. Highsmith, Jim: Agile Methodologies: Problems, Principles, and Practices. XP2001 Conference. http://
WwWw.xp2001.org/xp2001/conference/Details/AgileMethodologiesXP2001.pdf

6. Von Moltke, Helmut (The Elder). A common military saying originally attributed to Field Marshal von Moltke,
Prussian Army, circa 1880.

7. Cohn, M: Pages 1-230
8. Cohn, M: Page 24.

9. Cohn, M.: Pages 1-230
10. Highsmith, Jim.

(Footnotes)

*

Of course, requirements specifications produce significant revenue for those consulting firms tasked
with producing them. But that s another article....

*

Although there is a raw sequence to these activities, they do not represent distinct phases in the
analysis process. A sequence only applies to a specific time-slice and a given scope. Since JITRA expects
both time-slices and scope to overlap, these activities actually define an ongoing, continuous process.

#

“Start” is defined as the point a decision is made to spend money on analysis and (possibly) develop-
ment. Effort spent on analysis prior to the “start” is incorporated into the analysis process. In some situa-
tions it is possible to have all of Initial Analysis done before a unit of work has been started.

Managing Partner
KuveraEnterprise Solutions
1750 30" Street, Suite 186
Boulder, CO 80301

(303) 638-7728
mike@kuvera.com

Page 30

AGILE FOUNDATIONS
By Steve Berczuklndependent Consultantsteve@berczuk.comhttp://www.berczuk.com

To work effectively with Agile Methods you must have some basic skills. How well
you master these skills can determine how successful you are in implementing
your Agile Process. This section will help you to understand the traditional
“foundation” skills that agile methods build on.

AGILE FOUNDATIONS: READ ALL ABOUTIT!

In the last issue we listed some general areas that every agile developer should know. In this issue I'll
explore the general theme a bit further as a way of preparing for the workshop, and Mike Cohn will
explore one particular area that is the foundation for all agile development: User Stories. In the next issue
we'll explore another foundation area in depth.

The Five “W's”

Adgility is about reexamining where you are and where you want to go — In short, asking questions is a
key skill an agile developer should have. While most all questions can be useful, asking the right ones
makes the process of growing, changing, and understanding your needs and your customer’s needs, go
more smoothly. Since stories play an important role in an agile process, | thought that it would be interest-
ing to use a story as a framework for asking questions to help us to understand what agile development
is built on. In this article we'll ask the five questions that every good newspaperstory asks (though the
need not be in ‘inverted pyramid” style©).

For those of you who have not read an introductory text on journalism, the questions that every
newspaper story asks are, who, what when, where, why, and also, how. In the context of “foundations
for agile development” the questions take on a more detailed meaning:

% Whe is involved with the project?

% What are we building?

% WWhen are you delivering the project?

% WWhere are the participants on the project located?

% Why are you building this project?

% Heow are you are you making technology and process choices for your project?

Keeping these ideas in mind is especially important when you are trying to move from your current
process towards an agile process; it will help you to focus on whether you are building a good foundation
while you are moving towards your goal. And keeping these questions in mind will help you to keep
decision makers informed of what you are doing in a manner they are familiar with.

Understanding People (Who)

Team members, customers, the people in the surrounding organization are all important to the success
of an agile project. Agile processes emphasize the role of people in a successful process more than most
other processes, but interpersonal skills can not be understated.

Adgile projects depend heavily on the team members. While all projects are composed of people, the
agile teams rely heavily on communication (/ndividuals and Interactions) to be successful. A common
stereotype is that people who choose computing as a profession do it to (in part) avoid extensive interac-
tion with others. This is not a universal truth, but much of the work of generating code is spent in solitary

Page 31

work, or team work with other “software people.” Understanding how people (and this includes, your-
self) is extremely helpful in all aspects of an agile process, including understanding and developing require-
ments, and communicating among team members.

Other contributors to 7he Agile Timeshave more to say about the people dimension.
Understanding the Target (What)

Understanding what to deliver to your customer is essential to an agile process since you are delivering
software in small frequent iterations, and each iteration needs to demonstrate value.

Mike Cohn'’s article “Questioning your Users” discusses this in more detail so | won't say much more
here.

Timing (When)

Adgile processes deliver a working, if incomplete, product to your customers at the end of every itera-
tion. To do this well, an understanding of interaction design will help you to build systems that customers
can look at each new iteration without extensive training. Some resources for this are Designing Web
Usability [1], and the: The Elements of Friendly Software Design [2] by Paul Heckel.

Since agile processes discuss incremental development, some believe that architecture is counter to the
ideals of agile processes. In fact, how you structure your architecture and release process are essential in
maintaining that. Keeping a good project rhythm is essential to sustaining an agile process.

For more about Rhythm, see the book Software Architecture : Organizational Principles and Pat-
terns3].

Location, Location, Location (Where)

Adgile methods rely heavily on collocation of the team and the customer. Sometimes in spite of our best
intentions the customer may not be near the team, and the entire team may not be in the same location.
While this may reduce the effectiveness of the process, you can lessen the problems by:

% Designs which allow for some work to be done independently,
% Appropriate configuration management to allow the teams to exchange code.

| agree with the idea that distributed teams make any development effort difficult, and since agile
teams move rapidly communication is even more important. But especially in situations where you are
trying to introduce agility into a situation, you have to work with what you have.

Why?

An agile process gives us a chance to demonstrate value more quickly, and in the end we hope that
we are delivering software to add value to a project or company. Unfortunately there are projects for
which the team can’t answer the question of ‘why’ they are working on them beyond the immediate
“someone is paying for it.” You can build systems like this but it's hard to build good systems from this
mindset. Recently Mary Poppendick, author of Lean Software Development, met with a group of Boston
Area agile developers and discussed the value of domain understanding in software development. Un-
derstanding is Rey: Developers who understand what they are building will build better systems because
they can more effectively bridge the gap between the customers wishes and what can be built with the
technology to satisfy the customer’s needs.

Page 32

How?

The answer to the “how” question is where most of the unsung foundation skills show up. Who, What,
When, Where, and Why are, for the most part, addressed by the principles and practices of the agile
processes, but there is a long way from knowing a set of agile principles and practices are using them
effectively. Frequent integration and frequent delivery is necessary for many agile processes to work, but
to actually do this integration effectively you need to know something about build management, release
engineering, and creating and managing development workspaces. What is especially important is
knowing what aspects of these disciplines to take and which to leave. A big problem is that these words
get overloaded to mean more than they should. This is a subject for another day.

SUMMARY & LOOKING AHEAD

I hope that the first 2 articles of the Agile Foundations section have gotten you thinking about what
background a team needs to successfully execute an agile project. At the Agile Development conference
in June, I'll be facilitating a workshop where we'll be developing this concept a bit further. If you have any
suggestions for topics for this column, or want to contribute to the next issue, send me a note:
steve@berczuk.com. In the next issue one we'll discuss some basic software build and workspace manage-
ment skills that can help you be more agile.

References
1. Nielson,)., Designing Web Usability. 2000, Indianopolis, IN: New Riders.
2. Heckel, P., The Elements of Friendly Software Design. New ed. 1991, San Francisco: SYBEX. xxx, 319 p.

3. Dikel, D.M., D. Kane, and J.R. Wilson, Software Architecture : Organizational Principles and Patterns. 2001,
Upper Saddle River, NJ: Prentice Hall.

About the Author

Steve is a software developer and consultant based in Arlington, MA. He is the author (with Brad
Appleton) of the book Software Configuration Management Patterns: Effective Teamwork, Practical
Integration. Steve has published articles in the areas of patterns, software teams, and architecture. Steve
has built software systems in domains ranging from satellite telemetry processing applications to internet
applications to CRM and supply chains systems. He has an M.S. in Operations Research from Stanford
University and an S.B. in Electrical Engineering from MIT. You can contact him at steve@berczuk.com. His
web site is www.berczuk.com.

Page 33

QUESTIONING YOUR USERS
By Mike Cohn

User stories are a foundational element of XP. They have also been successfully used with other agile
processes, most notably Scrum. User stories shift focus from written requirements documents to conversa-
tions between customers and developers. Because of this, it is important that we get as much as we can
from these conversations, which means that the questions we ask—and how we ask them—are vitally
important. It is never sufficient to ask the user “So, what do you need?” Most users are not very adept at
understanding, and especially at expressing, their true needs. | learned this once from a user who walked
into my office and acknowledged, “You built exactly what | asked for but it's not what | want.”

Another time, | worked with a team that was developing software for delivering surveys. Each survey
would be delivered over the phone, via email, and via interactive voice response. Different types of users
would use different survey types. The surveys were very complicated: specific answers to one set of
questions would determine which question would be asked next. For example, based on answers to
body height and body weight questions, the system would calculate the respondent’s Body Mass Index
(BMI) and then invoke a page based on whether the respondent was overweight.

The users needed a way to create the surveys. When the users first told the developers about their
need, they presented us with examples of a complicated mini-language. They proposed typing surveys in
this new language. This entirely text-based approach seemed needlessly complicated to us. We asked the
users a few questions about how they'd use the new system and it became clear that a drag-and-drop
survey-building GUI would be better for them than their proposed new language.

Having a problem does not qualify you to solve it. In this case, the users who had the problem were
proposing a solution that was needlessly difficult. It took the developers carefully questioning the users to
pull out their true needs.

The best technique for getting to the essence of a user’s needs is through the questions you ask. |
worked with a project team that was torn between putting their application in a browser or writing it as
a more traditional platform-specific program. They struggled between the ease-of-deployment and
lower training costs provided by the browser-based version and the more powerful platform-specific
client. The intended users would certainly like the advantages of the browser, but they also valued the
richer user experience provided by the platform-specific client.

It was suggested that the target users for the product be asked their preference. Since the product
would be a new generation rewrite of a legacy product, the marketing group agreed to contact a repre-
sentative sample of current users. Each user in the survey was asked “Would you like our new application
in a browser?”

This question was like going to your favorite restaurant and having the waiter ask if you'd like to
have your meal for free. Of course, you would! And of course the surveyed users responded that they
would love to have the new version of the software in a browser.

The mistake the marketing group made was that they asked a closed-ended question and failed to
provide sufficient detail for it to be answered. The question assumed that anyone being interviewed
would know the tradeoffs between the browser and the unstated alternatives. A better version of the
question would have been:

Page 34

Would you like our new application in a browser rather than as a native Windows
application even if it means reduced performance, a poorer overall user experience,
and less interactivity?

This question still has a problem because it is closed-ended. The respondent is given no room for any-
thing other than a simple yes or no. It is far better to ask open-ended questions that let respondents
express more in-depth opinions. For example, “What would you be willing to give up in order to have our
next generation product run within a browser?” A user answering that question can go in a variety of
directions. Where she goes—and does not go—with her answer will provide you with a more meaningful
answer to the question.

It is equally important to ask context-free questions, which are ones that do not include an implied
answer or preference. For example, you would not ask, “You wouldn’t be willing to trade performance
and a rich user experience just for having the software in a browser, would you?” It’s pretty clear how
most people are going to answer that question.

Similarly, instead of asking “How fast do searches need to be?” ask “What kind of performance is
required?” or “Is performance more important in some parts of the application?” The first question is not
context-free because it implies there is a performance requirement to searching. There may not have
been but, having been asked, a user is unlikely to say so; she’s more likely to take a guess.

At some point you will need to move from context-free questions to very specific questions. However,
by starting with context-free questions you leave open the possibility for a wider range of answers from
users. That will lead you to user stories that may have remained undiscovered if you jumped right into
very specific questions.

Mike Cohn (mike.cohn@computer.org) has twenty years of experience developing software and is the
Vice President of Engineering at Fast401k. He is a founding member and on the Board of Directors of the
Adgile Alliance. Some ideas in this article are taken from his most recent book, User Stories Applied: For
Agile Software Development. He has also written books on Java and C++ programming and is a frequent
conference speaker.

Page 35

Selling Agile To Senior Management Volume V, Issue 1
Scott Bogartz - Editor

ACHIEVING “FLOW” THROUGH AGILE DEVELOPMENT

Scott Bogartz

In 1991, Mihaly Csikszentmihalyi coined the term “flow” to describe a common mental state experi-
enced by people when they feel a deep sense of enjoyment.' Since then this state has been linked to
individuals reaching peak performance in many different areas including business, creative arts and sports.
The concept resonated with many because it described feelings they had actually encountered during
their own best performances. And it resonated because it had been described in various terms for over a
century in psychology, literature and religion.? The goal of achieving flow became a hot topic among
many executives. This was especially true after Super Bowl winning coach Jimmy Johnson was featured
discussing flow in his approach to coaching and life.

This series of articles is about convincing senior management that Agile development is an extremely
powerful tool for achieving great results. While one goal of the series is to present empirical evidence of
Adgile successes, another is to help its proponents better articulate how Agile “just makes sense”. By com-
paring the principles of Agile to patterns observed in nature, production theory, philosophy and psychol-
ogy, we can make a compelling case for Agile. And we can do so in terms with which senior executives
can connect. Flow offers an exceptional opportunity for such a connection. It is broadly recognized and
studied in the business management community with many books and symposiums offering advice on
how to achieve it in business, personal life, community affiliations and sports. In examining the compo-
nents of flow one can see a good deal of parallelism to the practices and motivations of Agile develop-
ment. In the following paragraphs | will present the key components of flow and describe how they
relate to Agile development. | categorize the components as either enablers or desired results as they
relate to Agility. Enablers allow an organization to reach its optimal performance level, and desired
results are the traits that drive superior execution.

The first enabling component of flow is that “goals are clear”.> Here the goal refers to the immediate
task at hand and not the ultimate result of a sequence of tasks. For example, an athlete must focus on
executing the current play to the best of her abilities. Too much worry about winning or losing the overall
contest will distract her from top performance. We see this enabler in Agile development in that deliver-
ing short iterations and responding to changing demand is valued over adhering to an overall plan or
building to a pre-conceived set of functionality. The goal of each iteration is clear to the team. The team
is able to respond and adapt without worrying too much about the overall plan. In contrast, when a
team is focused on a pre-determined plan, activities such as explaining (or worse, hiding) schedule vari-
ances and battling to prevent changing requirements distract from the desired result of delivering business
value.

Another enabling component of flow is that “feedback is immediate”. An individual is best able to
stay absorbed in an activity that provides a continual stream of information about the quality of her
performance.* The concept of immediate feedback permeates Agile development. Practices such as
frequent delivery to customers, daily meetings, continuous integration and automated testing provide
feedback at several levels. The feedback loop includes all effective people from individual developers
through management and stakeholders. The feedback allows a team to make the minute adjustments
necessary to stay on course (instead of making drastic changes to get back on course). It also provides the
satisfaction of a “job well done” as a continual benefit. Finally it promotes confidence among the team
and stakeholders so that everyone stays absorbed and committed.

The final enabler that | will discuss is that there exists a “balance between opportunity and capacity”.

Page 36

Tasks that are perceived as infeasible generate anxiety and guilt which interfere with peak performance.
Flow occurs when both challenges and skills are high and equal to each other.> Under Agile practices,
software development provides a wonderful environment for fostering flow. When a well skilled team
engages in a project that is complex yet achievable, there is high potential for flow. Being forced to
accept unrealistic timelines or constraints (lack of technology, training, etc) will make successful completion
seem out of reach and make the team feel its efforts are ultimately useless. Tasks must have meaning in
order to promote flow. Trying to provide the (false) notion that the complexity can be removed from a
software development effort by following a strict, standardized process is actually counterproductive. It
belittles the skills of the team and replaces the feeling of invigoration that comes with accomplishment to
one of tedium.

When the environment is right and flow occurs individuals (and organizations) display several positive
traits that power peak performance. The most important trait is that “concentration deepens”.¢ The
actor becomes one with the activity. Execution seems effortless, though the individual is navigating a
complex array of challenges. As developers and teams, | know many of us have experienced this feeling.
When the distractions and interruptions are removed and we are able to focus on creating simple, elegant
solutions to complex problems, our concentration is total. We do our best, most satisfying work in those
intense periods. | can count numerous occasions that | have broken through a days-old mental log jam
during such a state of increased concentration and felt as if the answer “just came to me”. What execu-
tive would not want his software developers to spend more time in such deep concentration?

Other flow components that fit into the desired result category include that “control is no problem”
and “the sense of time is altered”.” In a flow state, the mind is cleared of the worry, doubt and distraction
that often interfere with performance. The sense of time changes to accommodate the needs of the
situation. Time might slow down to allow one to make a critical decision or speed up to allow one to stay
absorbed in a task for longer than she realized. These traits are extensions of the deeper concentration
achieved during flow. They are very conducive to problem solving, creativity and mentally demanding
tasks like software development.

In this article, we have seen that several of the key practices of Agile development are enablers of
flow at the individual and organizational level. We have discussed the behavioral traits associated with
being in a flow state and how those traits are beneficial to software development. Knowing that busi-
ness leaders are interested in achieving flow in many areas, it makes sense that they would support a
software development approach that is consistent with flow. In addition to the benefits already listed, it is
important to note that activities that generate flow are considered worth doing simply for their own
sake.! Hopefully the line of reasoning presented in this article will help a few of us connect Agile develop-
ment to better focused, more creative and more motivated teams. This should be a powerful selling point
to present to senior management.

Good Luck.

' Mihaly Csikszentmihalyi, Good Business: Leadership, Flow, And The Making of Meaning
(New York: Penguin, 2003) 39.

2

Csikszentmihalyi 59-61.

3

Csikszentmihalyi 42.

4

Page 37

Csikszentmihalyi, 43.

5

Csikszentmihalyi, 44-46.

6

Csikszentmihalyi, 48.

7

Csikszentmihalyi, 50-57.

8

Csikszentmihalyi, 56-57.

Page 38

WALTZING WITH BEARS: MANAGING RISK ON SOFTWARE PROJECTS
BY TOMDEMARCO AND TIMOTHY LISTER

You might be familiar with the famously late baggage-handling software project that delayed the
opening of Denver International Airport, leading to over a million dollars a day in excess financing costs
during the delay. The project is often considered the classic example of how bad the software industry is
at delivering projects on time. In their new book, Waltzing With Bears, Tom DeMarco and Timothy Lister
argue that because the software contractor consistently identified the schedule as unrealistic from the
beginning, the delays were not a result of an inadequate software development process so much as a
failure of risk management on the airport project as a whole.

The 2004 Jolt Award winner Waltzing With Bearsis a sound introduction to risk management on
software projects. DeMarco and Lister present the case for risk management, declaring that risky
projects are the only ones worth doing. Risk management can bound uncertainty, focus attention where
it is needed, and prevent projects from getting blindsided.

The authors readily acknowledge that there are circumstances where risk management is not appro-
priate. In a “manage for success” culture, identifying risk and uncertainty can quickly get you fired. | found
a lot of overlap here with the honesty and truth-telling necessary for successful adoption of agile processes.

All too often, our software schedules reflect only the “best-case” dates, which in reality we only have
a small chance of meeting. DeMarco and Lister provide risk diagramming techniques that help to quan-
tify uncertainty in delivery dates, allowing us to identify the most likely date in addition to the most
optimistic ones.

The book gives us some methods to use in the risk discovery process, so we can maintain a list of
project risks. Many of us have done this on our projects, only to experience pressure to eliminate the risks
over time, shrinking the list like it's a set of incomplete requirements. In reality, only certain kinds of risks
expire, so each risk needs to be managed uniquely; we need to choose between avoiding, containing,
mitigating, and evading that risk.

Of particular interest to me was their discussion of the five core risks inherent to software projects:
inherent schedule flaw, scope creep, employee turnover, specification breakdown, and poor productivity.
Certainly many of these risks can be managed through the use of agile techniques, and indeed, the
authors are very enthusiastic about benefits of using incrementalism to mitigate certain types of software
project risks.

DeMarco and Lister suggest that value quantification should play a key part in risk management,
because we need to know what kind of benefit we stand to gain in return for a given investment. “We
gotta have it to survive” isn't good enough anymore, they say, and they rightly point out that many
“death-march” projects are treated as essential precisely because their benefit hasn’t been quantified
(and doesn't exist!). What's missing from the book is some solid guidance in calculating benefit on non-
direct-cost-saving systems.

While the book is great overall, | have a couple of minor criticisms. Midway through the book, we're
provided with a nine-step “risk management prescription”: basically, steps you can take to do risk man-

Page 39

agement on your project. Then at the end of the book, we see the list again, revised with 18 steps now
that reflect the intervening chapters. We're not really told how to choose between the lists; does the

second one supplant the first? Also, some readers will probably feel too much attention is given to basic
statistics; the rest of us will appreciate being reminded of material we might not have seen since college.

In the software industry, we often see our development processes take the blame for failed or late
projects. Reading Waltzing with Bearsreminds us that sometimes a well-optimized agile team is not
sufficient to guarantee success; without risk management, our projects can easily become irrelevant.

-Alex Pukinskis
Waltzing with Bears: Managing Risk on Software Projects by Tom DeMarco and Timothy Lister Dorset House $27.95

REVIEW OF USER $TORIES APPLIED BY MIKE COHN
BY). B. RAINSBERGER

Mike Cohn’s User Stories Applied provides a thorough examination of user stories, including what, how
and why. As an experienced XP/Agile software professional | initially indulged in the conceited notion that
| would stand to learn little from such a book; after all, | had made user stories a normal part of all my
projects since 2000. How much could | possibly not know? Well, there was plenty left to learn.

Mike’s breadth of experience shines through in every part of this book. As he explains user stories he
provides numerous comparisons to other commonly-used approaches to requirements gathering and
documentation. Like a good programmer, Mike provides more than just the happy paths — he admits
that user stories are no silver bullet and concedes those cases where more formal requirements gathering
and documentation are to be preferred. One of the key benefits of this book is that it treats a wide
variety of contexts in which user stories play a role: requirements gathering, documentation, communica-
tion, short-term planning, long-term planning, risk management and a few | probably just can’t remem-
ber. Paradoxically, this thin volume is a compendium of user stories knowledge. How does he do it? He
gets to the point.

The writing style is lively and paragraphs are densely packed with useful information. Each chapter
ends with not only an executive summary, but a small number of questions to help the reader apply
what they have learned. User Stories Applied seems to be a “poster book” for the “no fluff, just stuff’
movement. Mike weaves enough real-life experience to provide concrete examples of user stories at work
to be instructive without detracting from the book’s overall pace. Beyond that, the book surprised me —
pleasantly, of course — with some content | hadn't expected: a catalog of user story “smells,” a look at user
stories and Scrum and “What user stories are not.” These portions of the book, combined with the well-
developed example in Part IV, justify the word “applied” in the title.

| came away from this book with a deeper understanding of what constitutes a good user story. This
alone is easily worth the time spent reading. The catalog of smells is something | expect to refer to just as
frequently as | refer to Martin Fowler’s classic Refactoring. If you are having trouble taming requirements,
then this book will certainly help you get back on the right track.

User Stories Applied for Agile Software Development by Mike Cohn Addison-Wesley $34.99

Page 40

Dave Hoover, dhoover@thoughtworks.com

When a software development team adopts agile principles, [MANIFESTO] it is not uncommon for
the team to experience conflicts between its newly adopted principles and the values of its parent organi-
zation. When teams and organizations have opposing values, power struggles will inevitably erupt. The
purpose of this article is to generate a greater awareness of power distributions and value conflicts among
agile teams and their parent organizations. It is my belief that an increased awareness of these conflicts
will help these groups collaborate more successfully.

As teams transition toward agility, power is necessarily redistributed. The general theme of this
power redistribution is that of empowerment of the people on the front line:

@ Developers provide estimates for their work and have authority to evolve any aspect of the
system.
@ Architects are in the trenches, actively tending to the system design.
@ Testers provide automated tests that drive the development process from the outset of the
project.
@ Customers possess the ability to steer the project, allowing them to adapt their requirements as
their business needs change.

Adgile teams experience the powerful phenomenon of collective mind. [WEICK] This phenomenon is
the result of a richer interrelating among teammates and the inclusion of experienced and novice people
together on the same team.

To maintain agility, it is critical that an agile team keeps a watchful eye on how its values are inter-
acting with the values of its parent organization. This article is peppered with questions to help raise the
reader’s awareness of the power struggles within which these value conflicts hide.

What are the explicit values of your team? What are the implicit values of your team?

What are the explicit values of your parent organization? What are the implicit values of your
parent organization?

Does your team possess the authority to direct itself? What stands in the way of your team
becoming self-directed?

Merriam-Webster's web site defines “power” as the following...

power (noun): 1) the ability to act or produce an effect, 2) possession of control,
authority or influence over others.

For the remainder of this section, | will refer to the above definitions as first-order power (the ability to
act or produce an effect) and second-order power (possession of control, authority or influence over
others). In the context of software development, my understanding of first-order power is the power to
directly act or affect the system under development, such as writing code. | view second-order power in
this context as the power to influence the direction of the team.

What sorts of power do you possess in your everyday work?
How have the values of your team influenced the types of power you possess?

Page 41

Developers

On a traditional team, a developer has first-order power. She has little authority over anyone or
anything other than the functionality she is currently developing. Even the small amount of authority she
has might be subjected to the will of the architect, depending on the precision of the design specifications.

Developers, as a whole, gain more power than any other role on an agile team. While they retain
first-order power over the code they are currently developing, they are explicitly given second-order
power to evolve the best possible design in continual communion with their fellow developers. It is in this
communion that individual developers seemingly lose some of their first-order power. Rather than retain-
ing exclusive rights to specific components, their authority is decentralized into the collective of developers.
[CCO-WIKI]

This decentralization of authority into the development team enables a phenomenon known as
collective mind. [WEICK] While the first-order power of the individual developer appears to diminish, the
power of the collective is greater than the sum of its parts. In their study of flight deck teams on aircraft
carriers, Karl Weick and Karlene Roberts found that

“No matter how visionary or smart or forward-looking or aggressive one brain
may be, it is no match for conditions of interactive complexity. Cooperation is
imperative for the development of [collective] mind.” [WEICK:378]

This finding is congruent with the experiences of successful self-organizing teams. While variations in
ability exist among the teammates, there is a consensus that no one member could have designed as
good a system on her own. Thus, via collective mind, an agile developers' first-order power has increased
in breadth, if not depth.

Adgile developers are granted second-order power to estimate their own development tasks. This is a
critical point of change for many teams who traditionally had team leads, architects, and/or manage-
ment handing down fixed-length, fixed-scope schedules to developers. Second-order power, in this
circumstance, does not necessarily mean that developers have power and authority over project manag-
ers and architects, but that the power between these roles has been balanced.

With the adoption of agile principles, how has power shifted within your development team?
Where have power struggles emerged?
Would you say that your development team posesses a collective mind?

Architects

“Exceptional designers exercise leadership through their superior knowledge rather
than bestowed authority.” [POPPENDIECK:112]

On an agile team, an architect’s first-order power has increased. Where a traditional architect might
deliver blueprints to a team of developers, an agile architect acts as a guide, [FOWLER] rubbing elbows
with developers and getting his hands dirty in the implementation of the system. He has immediate and
ongoing access to the state of the system’s design, whereas in a traditional environment, he might be
hierarchically removed from the implementation.

An agile architect’s second-order power remains unchanged, though it is manifested differently. While
a traditional architect’s second-order power is often imposed through hierarchical channels, an agile
architect’s second-order power is exercised through face-to-face collaboration with his teammates. An
agile architect’s authority is less likely to be experienced as coercive or authoritarian than a traditional

Page 42

software architect. His authority is now established by his abilities to communicate and contribute rather
than through simply holding a position of power within the organization.

The need for agile architects to descend into the trenches can become a stumbling block for organiza-
tions in which architects are inexperienced in system implementation. When architects are ignorant to
how to implement their own ideas, their value on agile teams is diminished. With a decreased ability to
exercise second-order power via hierarchy and the inability to exercise first-order power at all, these
architects will likely resist a move toward agile principles.

Mary and Tom Poppendieck use the term master developerto label the role that people traditionally
think of as architect:

“Master developers are part of the team, enmeshed in the details of the work.
They provide the leadership necessary for the team to make good decisions, make
rapid progress, and develop high-quality software.” [POPPENDIECK:113]

Clearly, the common thread for the agile architect is his inclusion as a member of the development
team. His inclusion is a critical enabler of collective mind and the steady improvement of the team.
Weick and Roberts found that “[a]s seasoned people become more peripheral to socialization, there
should be a higher incidence of serious accidents.” [WEICK:368] There are few better ways for novice
developers to improve than to work closely with architects. [COCKBURN-WIKI] Interestingly enough,
architects will find that they too will benefit from these interactions: “Comprehension can be increased if
more levels of experience are connected, as when newcomers who take nothing for granted interrelate
more often with old-timers who think they have seen it all.” [WEICK:366]

How do architects in your development organization interrelate with developers? Would these
architects fit the description of guide, mentor, or master developer?

Do your organization’s architects lack first-order power? How does this lack of first-order power
affect the interactions between developers and architects?

What does “architect” mean in your organization?

Testers

The relationship between developers and testers has traditionally been antagonistic. Developers
work to produce functionality while testers work diligently to uncover flaws in this functionality. It is not
uncommon for testers to discover defects that developers feel are simply misunderstood requirements.
This can then develop into a second-order power struggle over who holds the authority to interpret
requirements. This power struggle will almost inevitably bubble up to the customer, diminishing his confi-
dence in the development process.

Adgile principles call for software to be released frequently, preferably, every couple weeks. [MANI-
FESTO] To achieve this feat, an agile tester must test functionality in frequent bite-sized chunks rather
than in huge batches. The ability to embrace changing requirements and complete iterative test cycles
requires the agile tester, like the agile developer, to collaborate continually with the customer. Agile
testers interpret the customer’s requirements and develop tests to drive the development effort.

Robert “Uncle Bob” Martin wrote of the power shift between developers and testers:

Page 43

“[Agility] completely changes the power structure between development and
QA... QA finds itself in a specification role as it writes the acceptance tests that
define the features. Development can no longer dump a pile of crap on QA.
Instead QA dumps requirements on development.”[UNCLEBOB]

Thus, a tester, traditionally a person with only a small amount of indirect first-order power, now finds
himself to be the cornerstone of the agile software development effort. While his first-order power
remains indirect, this power is far more focused and prescriptive, rather than delayed and reactive. Be-
cause the agile tester is the primary supporter of the customer’s requirements, his second-order power is
equal to that of the customer. The agile community has made significant progress toward integrating
testers into the agile team and | believe testers will find themselves with far greater power because of
these efforts.

How are testers perceived in your development organization? How are testers perceived on your
team? Are testers considered part of the development team?

At what point and to what degree are testers involved in your development process? How do
these factors impact the power of the testers? How do these factors impact the developers’
relationships with the testers?

Is there a distinction between developer and tester on your team?

Project Managers

A project manager rarely finds herself in a position of first-order power. Her role tends to prevent her
from contributing directly to the project. While an agile project manager is no more likely to write code
than any other project manager, she does tend to focus herself more on removing obstacles that stifle the
team’s ability to make progress, [CCPACE] a sort of indirect first-order power.

The agile project manager’s focus on obstacle removal does not lessen her second-order power,
though it does tend to deemphasize it. In many organizations, she retains her traditional second-order
power, but exercises it sparingly. The agile project manager tends to defer her second-order power to the
development team, recognizing that, “the more the team relies on outsiders to make its decisions, the less
control it has over its commitments.” [SCRUM:45] Thus, an agile project manager recognizes that she is an
outsider, and takes on the roles of development facilitator, organizational liaison, and visionary leader.
[CCPACE]

As the liaison between your team and the organization, what value conflicts does your teams’
project manager experience on a regular basis?

Do the organization’s expectations of your team’s project manager conflict with the agile
principles?
Customers

The customer gains significant second-order power on an agile team. Rather than being kept at
arm’s length in a traditionally antagonistic relationship with the development team, the agile team de-
pends on frequent face-to-face collaboration with its customer. While the customer does not have abso-
lute authority to dictate what should be delivered when, he regularly exercises his power to prioritize
what should be delivered next.

The agile principles have introduced a fundamental shift in perspective on changing requirements, a
historically favorite complaint of the software development industry. Agile teams embrace late changing
requirements, viewing them as opportunities to increase the value of the system. [MANIFESTO] Thus,

Page 44

agility increases the customer’s second-order power not only in depth, but also in breadth.

Would your team’s customers agree that their power has increased since your
transition to agility? What was it that facilitated this increased power for your
team’s customer?

THE POWER OF THE FAMILIAR

“The power of the familiar is very strong, often stronger than the wish to change.
Strong interventions, lots of patience, and continual awareness help us challenge
the power of the familiar.” [SATIR:212]

One of the chief frustrations with adopting agile methodologies is that the values set forth by an agile
approach often stand in direct opposition to the implicit values of the larger organization. Even if a team
is successful at integrating the principles of agility, the values and practices of the larger organization will
act as a consistent and powerful force, pulling the team back toward the values of the organizational
system.

A development team in an organization is not unlike a child in a family. While a child may choose to
adopt a lifestyle that contradicts the traditions of the family, it is unlikely that the family is going to sud-
denly embrace that lifestyle as its own. It is more likely that the child will gradually revert to her family’s
traditions. This likelihood has much to do with Virginia Satir’s notion of the power of the familiar:

“Familiarity exerts a powerful pull. What we have observed and experienced
day after day exerts a powerful influence. Most people will choose the familiar,
even though uncomfortable, over the unfamiliar, because of that power.”
[SATIR:144-145]

Beyond the power of the familiar lies the child’s own power within the system. As a child grows
physically and matures psychologically, her power will necessarily increase. Eventually, the power of the
adult child will rival that of her parent. Yet, as the child grows in power, the power of the familiar grows
with her, making it increasingly difficult for her to make fundamental changes in her lifestyle.

Similarly, a software development team that chooses to adopt a process that defies the values of its
organizational system will not only face resistance from the power of the familiar, but also from the
power of the organization itself. Like an adult child in a family, a team that holds a position of power
within the organization will likely see its newly adopted agile principles spread into the organization.
Conversely, if the organization is very large or the team immature, the team will likely struggle to main-
tain its newly adopted principles and gradually revert to the principles of the organization.

“A single new member, or even a single new group within so large a group, really
has no chance of converting the social system, even if he is firmly convinced of the
correctness of his way of doing things.” [WEINBERG:63]

An exception to this idea occurs when a team has an executive sponsor, a champion that shields them
from organizational pressure. Imagine what a difference it would make to have a well-respected uncle
stand up for a child in the midst of a family conflict. This high-level support can be a critical enabler of the
adoption and maintenance of agile values within a traditional organization.

In most cases, the success of a software development team’s transition toward agility will be depen-
dent on transitioning the parent organization concurrently. This may mean that the team will have to
persistently engage its parent organization in order to spark an organizational transition. Alternatively,
whatever force initially triggered the transition in the team may need to work concurrently in the organi-

Page 45

zation. Either way, it is vital that both the team and the organization stay aware of how power is
shifting as hierarchies collapse and agile values emerge.

During your team’s transition toward agility, when was it most difficult to resist the power of the
familiar? How was the team able to establish new principles and practices in the face of the power
of the familiar?

How much power does your team hold within the organization?

Using the metaphor of the child and the family, how would you describe your team?

THE POWER OF AWARENESS

“In habitual action, each performance is a replica of its predecessor, whereas in
heedful performance, each action is modified by its predecessor.” [WEICK:362]
Families that struggle with change and conflict sometimes employ family therapists to help the family
improve itself. Similarly, organizations struggling with conflicting values or the inability to adapt can
benefit from hiring outsiders to facilitate change.

Adgile teams meet at regular intervals to reflect on how to become more effective. [MANIFESTO] A
retrospective [KERTH] is a common agile practice that is often facilitated by someone outside the system,
though internal consultants or coaches can facilitate them as well. While an entire organization does not
usually attend a retrospective, the process includes anyone that the team interacts with on a regular basis.

Retrospectives, when done regularly and successfully, can significantly increase an agile team’s aware-
ness of how its values are integrating into the organizational system. Furthermore, by reflecting on its own
experiences, both the power of the familiar and the distributions of power become more visible to the
team. This increased awareness provides an agile team with the ability to adapt and evolve itself, along
with engaging its parent organization in intelligent dialogues about problematic value conflicts and power
struggles.

How well do your team’s values integrate with the values of the agile manifesto?
How well do the values of your parent organization integrate with the values of your team?
What value conflicts lie beneath the surface of the power struggles your team experiences?

CONCLUSION

The power of agility is seen in the empowerment of the front line workers by releasing authority from
hierarchical structures.

“The people on the front line combine the knowledge of minute details with the
power of many minds. When equipped with necessary expertise and guided by
a leader, they will make better technical decisions and better process decisions
than anyone can make for them.” [POPPENDIECK::xxvi-xxvii]
When value conflicts exist, power struggles will surface and the power of the agile principles will be
diminished. To maintain agility, it is critical that an agile team keeps a watchful eye on how its values are
interacting with the values of its parent organization.

ACKNOWLEDGEMENTS

Patrick Morrison and Laurent Bossavit provided excellent guidance and feedback on this article.
Rebecca Parsons and Boris Gloger brought up some important issues that | had missed. Thanks for your

Page 46

time everyone.

REFERENCES
[CCO-WIKI] http://c2.com/cgi/wiki?CollectiveCodeOwnership

[CCPACE] Sanjiv Augustine and Susan Woodcock, Agile Project Management, http://ccpace.com/Resources/
documents/AgileProjectManagement.pdf

[COCKBURN-WIKI] Alistair Cockburn, http://c2.com/cgi/wiki?ExpertinEarshot

[FOWLER] Martin Fowler, Who Needs an Architect? http://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
[KERTH] Norm Kerth, Project Retrospectives

[MANIFESTO] Principles behind the Agile Manifesto, http://agilemanifesto.org/principles.html
[POPPENDIECK] Mary and Tom Poppendieck, Lean Software Development

[SATIR] Virginia Satir, The New Peoplemaking

[SCRUM] Ken Schwaber and Mike Beedle, Agile Software Development with Scrum

[UNCLEBOB] Robert Martin, March 12, 2004, http://groups.yahoo.com/group/chicago-agile-dev/message/1546

[WEICK] Karl Weick and Karlene Roberts, “Collective Mind in Organizations: Heedful Interrelating on Flight
Decks,” Administrative Science Quarterly, 38 (1993): 357-381

[WEINBERG] Gerald M. Weinberg, The Psychology of Computer Programming

Rachel is a Certified Scrum Master who lives in the town of Rugby in the UK. She is interested in
finding ways to help teams work more effectively to achieve their goals and has found agile develop-
ment practices to be highly effective. She learned a lot about XP at Connextra but now Rachel is an
independent consultant specialising in agile coaching. Rachel has presented reports and workshops at
international conferences on software process most recently OT2004, XP2003 and ADC2003. She helps
run eXtreme Tuesday Club in London and put together programs for international agile conferences -
such as XPDays, ADC2004 and XP2004. Rachel is one of the Agile Alliance directors.

Her Answers:

1 What do you regard as the lowest depth of misery?
Being alone

2. Where would you like to live?

In Wales by the sea

3. What is your idea of earthly happiness?

Being at home with my children

4. To what faults do you feel most indulgent?

My own

5. Who are your favorite heroes of fiction?

Peter Pan

6. Who are your favorite characters in history?

Socrates

7. Who are your favorite heroines in real life?

Boudica

8. Who are your favorite heroines of fiction?)Jane Eyre

Page 47

9. Your favorite painter?

Claude Monet

10. Your favorite musician?

Alan Stivell

1. The quality you most admire in a man?
Not following a stereo-type

12. The quality you most admire in a woman?
Leadership

13. Your favorite virtue?

Honesty

14. Your favorite occupation?

Gardening

15. Who would you have liked to be?
Architect

16. Your most marked characteristic?
Perseverance

17. What do you most value in your friends?
A cheery smile

18. What is your principle defect?

Criticising others

19. What historical figures do you most despise?
Adolf Hitler

20. What natural gift would you most like to possess?
To play music by ear

21. How would you like to die?
Unexpectedly

22. What is your present state of mind?
Busy

23. What is your motto?

Ad astra per aspera

A short bio of Alistair:(l got this from his website (http://members.aol.com/acockburn/wwwbio.html):

Alistair Cockburn is consulting fellow at Humans and Technology. He is responsible for helping
clients succeed with object-oriented projects, including: corporate strategy, project setup, staff mentoring,
process development, technical design and design quality. Mr. Cockburn has over 20 years of experience,
leading projects in hardware, software, research, and application systems. He is an internationally recog-
nized expert on object-oriented software development, and appreciated as a collaboration facilitator.

And his answers:

Page 48

1. What do you regard as the lowest depth of misery?

Boredom.

It happened once in 1988, and was so bad | wrote a poem about it to remind myself to avoid it in the
future:

I remember being bored
once.

It was horrible.

Bored means
Nothing

of

interest

at All.

It happened one month,

we were stranded for two weeks
with no place to stay

(move, move).

We ran out of fun
and energy and

thoughts.

Time
we held still
for as long as we could,
but then we gave in and went home.

It lasted two days,
and was
awful.

At the minute-to-minute level, though, the greatest misery is when | fall behind in some uninteresting
assignment and have to slog my way for days or weeks of misery-per-moment to climb my way
out. This occurred in school periodically, again when writing tests for a hardware subsystem for eight
months straight, and when | saved all my annual bookkeeping and accounting ‘till December (that’s
when listening to Gregorian chants for 12 hours a day saved my sanity (try the CD “Chant”).)

2. Where would you like to live?

Boulder, Palo Alto, Salt Lake City in that order.
Salt Lake City isn't bad if you get out into the desert or mountains often enough, and leave town

Page 49

periodically for a good conversation and pub crawl. I'm sure the same actually applies to Boulder
and Palo Alto. (Palo Alto could stand to rediscover grass, though).

3. What is your idea of earthly happiness?
A deep and interesting conversation.

A good mid-morning nap.

Feeling the texture of sitting still, underwater.

4. To what faults do you feel most indulgent?
Sheer enjoyment, as the excuse for not doing something that was supposed to be done.

5. Who are your favorite heroes of fiction?
Spaceman Spiff, for imagination, daring, and post-failure rationalization :-).

Garfield, for sheer enjoyment of eating and sleeping.

The pig farmer who becomes king after a long set of adventures and then realizes he'd really rather
be a pig farmer, but has to stay king.

Rick (from “Casablanca”), the reluctant - and lazy - sage and hero. (the pig farmer who figures out
he'd really rather be a pig farmer, after a set of adventures but before he gets stuck being king, and
so goes back to running his bar.)

6. Who are your favorite characters in history?

Socrates, for his indefatigable honesty in inquiry

(forgiving that he was also cantankerous)

Omar Khayyam, for choosing to live a quiet life of astronomy and poetry, and for his poems

are much better in Farsi than in Fitzgerald’s English)

Musashi, for overcoming immense odds, using all tools available and inventively adapting strategy to
situation, and for leaving us a nice book to read.

Benjamin Franklin, for his initiative, unorthodoxy, wit, and communication skills

(appreciating but forgiving his rationale for nominating the wild turkey as the national bird of the
United States).

Mark Twain, for his keen observation and immense wit in writing

(commiserating with him for eventually sinking from sarcasm to defeated cynicsm)

Mohandes Ghandhi for illustrating aggressive passificsm, and showing outrageous belief in multitudes
of people

(forgiving that he was also overbearing).

7. Who are your favorite heroines in real life?
Every housewife/mother who declines other income to raise the kids.

Page 50

8. Who are your favorite heroines of fiction?
Laura Croft (see #15).

9. Your favorite painter?
Magritte, for technical quality, unconventional humor.

10. Your favorite musician?

Bob Marley.

Dave Brubeck.

(yes, | know that’s two. I'll take both)

1. The quality you most admire in a man?
Compassion

12. The quality you most admire in a woman?
Compassion

13. Your favorite virtue?
Honesty. (see Socrates, Musashi, Ghandhi).

14. Your favorite occupation?
Writer.

15. Who would you have liked to be?

My current life vastly exceeds my prior imagination. (Please stop asking “Where would you like to be
five years from now?” — it has never happened that my life five years later was nearly as boring as |
would have requested in my answer to that question. | have no idea what path led me from
anywhere to here.)

| haven't found a way to integrate complex physical activity with the mental and social; being an
astronaut might have been such a one and would be a nice thing still to accomplish. On the other
hand, it might turn out to be immensely boring. Maybe I'll find out.

16. Your most marked characteristic?

“Making the familiar strange, and the strange familiar.”

For many people, particularly the former. For me, particularly the latter. My boss commented when |
was 22: “If there is a known path from A to B, Alistair will find another.” Don't hire me to do what
you already know how to do.

17. What do you most value in your friends?
Honesty. (see #13)

18. What is your principle defect?
Procrastination. (see #1, leaving the year's accounting and bookkeeping until December).

19. What is your favorite occupation?

Page 51

Conversing with thoughtful, educated people
(a tight game of squash is the physical equivalent).

20. What historical figures do you most despise?
Those who deliberately caused pain to others.
(there’s a lot of competition for top ranking)

21. What natural gift would you most like to possess?
Patience.

22. How would you like to die?
Plane crash. Heart attack in my sleep and drowning in the North Sea are runners up, as | also
wouldn't feel the end, but the plane crash pays double indemnity.

23. What is your present state of mind?
Torn between relaxing enough, and getting to everything | want to do.
(e.g., my hammock is out, but the mint juleps keep melting)

24. To what faults do you feel most indulgent?
(this is the same as #4 - Sheer enjoyment - | assume the duplication of question is an accident)

25. What is your motto?
“stasis is stagnation,” coined at age 20.
(still holds)

Page 52

INTERVIEW WITH MARY POPPENDIECK
“I$SUES FACING THE AGILE COMMUNITY, PRESENT AND FUTURE"

By Nancy Van Schooenderwoert nancyv@agilerules.com
Co-Founder of Agile Rules www.agilerules.com

The following is an interview | did with Mary Poppendieck this month — April, 2004. Mary’s back-
ground gives her a unique vantage point on the agile software movement. She worked as a programmer,
building process control and vehicle control software on mini computers in assembler and Fortran early in
her career, and later as a manager where she built one of 3M’s first Just-in-Time lean production systems.
She, and her husband Tom, wrote “Lean Software Development, An Agile Toolkit”, the book that
showed us how and why lean manufacturing principles underlie agile software practices.

NJV: What practices are truly essential for agile software development? There have been online
discussions on how to define a minimal necessary set of practices for agile software development — what's
your view?

MP: | missed the online discussion but | have some opinions. | think the essential thing is that the work
people are trying to do has to be of value to the organization they're doing it for. They have to focus on
delivering that value, not focus on other stuff. That’s pretty much a Scrum thing — It forces people to think
about the value being delivered.

Test-centered processes are fundamental. Whether it’s test-first, automating testing, or using tests for
requirements, especially for acceptance tests. Test centered processes are fundamental.

People-centered leadership is fundamental. Management focusing on the people doing the work, and
empowering them, is fundamental.

| think the concept of very short batches of work — iterations or whatever, focused on delivering value,
is fundamental. You have to have short delivery cycles.

NJV: In your book you talk about lean software development and you relate that to the lean manu-
facturing revolution. Are you an advocate of one of the existing agile software methodologies or do you
propose your own, or some mix? What are you a proponent of?

MP: (Devilish laugh here) Good question. | have a hard time with the concept that there’s any one
best way to do anything. From a point of view of software development, | don't think there’s any one
methodology. | think there are principles that people can and will tailor to environments. But | just *can-
not* force myself to get in front of any group and say ‘this is the one best way to do things'. So in that
sense | would say that I'm not a proponent of any particular methodology. | think that some of the meth-
odologies out there have some very good ideas. | particularly like Scrum’s focus on business value and on
being people-centric. | particularly like XP’s focus on testing and on real short iterations. If | were talking to
somebody — | would try to figure out which practices of those [methodologies] fit that company’s organi-
zation. Rather than be a proponent of *a* particular methodology, | prefer to be a proponent of a way
of thinking about things that leads to some of these methodologies being used.

NJV: It sounds like you are saying to start with the principles behind the methodologies, and come up
with practices that seem appropriate for any individual situation. Is that a fair statement?

MP: Yes, no situation will be a mimic of the next one, so no particular way of doing things is ever going
to work everywhere. Software is just too big of a topic! There are too many ways to do software to have

Page 53

one and only one way to do it. | don’t believe in this “one best way” — actually the quote ‘one best way’ is
from the guy behind Scientific Management — Frederick Taylor. He is responsible for the idea that engi-
neers can break work down into tiny little pieces, each piece can be optimized, and then the engineers
can teach workers the ‘one best way’ to do things. The Toyota Production System is an antidote to
Scientific Management. It says: no engineer is going is going to be able to figure out the ‘one best way’ to
do things. Only workers can figure out the best way to do their jobs, and today’s best way had better
not be cast in concrete, because tomorrow an even better way must be found.

NJV: I'd like to get your view of the push for outsourcing and offshoring jobs in the software industry.
Where is that going and how should people in the agile movement react to it?

MP: Well, | don’t want to comment on how that’s going because | suspect it's going differently in
different organizations. Some organizations that are wise and have thought about outsourcing carefully
are probably having good success with it and other organizations that are just Rind-of winging it probably
are not.

As far as how agile people should respond to it: The Agile movement needs to figure out how to focus
on the kinds of development that will help companies have a significant impact on whatever business
they'rein.

One of the things that happened in the 1990’s is that a lot of money was spent on IT but if you look at
the actual delivered business value of these investments you do not see that that investment led to a lot of
either increased revenue, or decreased cost. So a ClIO in a moderately large company may be in a situa-
tion where a large investment has been made but not a lot of return has been seen. And they’re going to
be under pressure to spend less or deliver more value. So one of the things I'm noticing in the CIO world is
a big focus on ‘Let’s stop just doing IT — let’s start delivering real value’.

The second thing CIOs are looking for is fast delivery. And the third thing they're looking for is effi-
ciency because they have huge server farms, and people tending those, software licenses, and all that
kind of stuff, and they have to figure out how get the most out of the money being spent on that. Finally,
they're worried about integrity — about security, and everything it takes to have reliable software. Those
are their worries.

It is ok if there are certain efficiencies that can be gained from outsourcing. The primary thing CIO’s
have to do is deliver real bottom-line value. So they need to figure out what kinds of things they do are
just going to keep the lights on and match best practices of competitors — survival type stuff. And then
they need to figure out what's strategic — what’s going to help their company thrive. If CIO’s are smart
and they're outsourcing then they're outsourcing the survival stuff. CIO’s who outsource strategic stuff are
probably making a mistake because they are giving away their secrets and competitive levers to other
companies.

One CIO who claims he doesn’t do any outsourcing is Randy Mott, the CIO of Dell, formerly CIO of Wal
Mart. Here's a guy who's headed up the IT area for two of the world’s most successful companies and he
basically says ‘Look if | outsource then there’s an intermediary there, and | can’t believe that | don’t have
to pay for that intermediary. And it seems to me that | should be able in my company to focus everybody
| have on the stuff that’s going to differentiate my company and allow it to grow.’

NJV: Suppose you were the CIO in a large company and your management was pressuring you to
outsource. You've already mentioned that you'd be looking at “survival” type things for that. Could you
elaborate a little further?

Page 54

Ask the Experts Volume V, Issue 1
Nancy Van Schooenderwoert

MP: I'll go back to the example of Randy Mott on this one. One of the things Mott says is if you look at
your operations you'll find that on the average 70 to 85 percent of IT resources are being used just keep-
ing the lights on. This means running the servers and patching things, doing security, and nurse-maiding
legacy systems and things like that. He says that’s not where you want to be spending your resources.
Now, what | observe is some people take a look at this 70 — 85 percent for keeping the lights on and say
‘Gee | could keep the lights on cheaper if | had cheaper labor’ and that’s probably true. What Randy
Mott says instead is ‘You know what — that’s no way to be spending my resources. | have got to figure out
how to spend less of my time on things that are not strategic.” So what he does instead is try to build his
way out of legacy, automate things that can be automated, have a very uniform infrastructure across the
company that can be rapidly built into. He requires aggressive integration of everything that’s done alll
around the world. His idea is ‘| have to spend less time and be much more efficient at keeping the lights
on'. Now some people are going to say ‘OR, to be more efficient I'm going to go offshore’. He says ‘To be
more efficient I'm going to figure out how to do it with less effort.’

Now if | go back to my manufacturing days, one of the mistakes that we made — | even made — was
we would automate a factory before we figured out the best way to operate it. So we'd put in material
requirements planning scheduling stuff and we thought that that would help because it would provide
more information. But what it did was lock that plant into what was a fundamentally bad way to run
the plant. Now one of the problems you have if you start outsourcing — you have all of this 80 or so
percent of your resources being used to just keep the lights on, and if you start outsourcing that just to
drive down the costs then where are you spending the time asking ‘why am | doing this in the first place?’

The more important thing, before you outsource stuff is to figure out how you can get rid of doing all
that junk. Mott asks himself ‘how come I'm spending all this time supporting legacy systems — | don’t want
to have legacy systems’. He routinely advises ClOs ‘build your way out of legacy — there’s nothing good
about it’. The concept of outsourcing first, before you figure out whether or not you want to be doing it
can definitely be a mistake.

First of all you don't want to outsource strategic things. Second of all you want to get your operational
act together before you outsource. Well, people are using outsourcing to *get* their operational act to-
gether. That might be ok but | think they may be casting in concrete stuff they don't want to be doing in
the first place.

NJV: I'd like to ask you about cases where agile methods have not been successful. An example is
criticisms made of XP in the book “Extreme Programming Refactored” — any comments?

MP: Can you remind me — what was their most important criticism?

NJV: One was that XP’s practices are so interrelated that unless all are followed correctly then the
whole effort collapses like a house of cards; that XP is a fragile, even unstable process for this reason.
Additionally, 've seen in some narratives online where people begin applying XP and they get resistance
(it varies case by case of course), then things seem to unravel.

MP: OR, | have two answers for that. To the first point — one of the criticisms | have of XP is that there
are too many people who say ‘| don’t know why it works so just do it all and you'll figure it out’. Well,
what if you do it all and you don't figure it out? There are underlying principles that make XP work and
that’s some of what | was trying to expound in my book — what those principles are. If people just do
practices, and they do them in a different environment without understanding howcome various things
are important, then there are definitely going to be failures. In fact | have seen no good idea come along

Page 55

Ask the Experts Volume V, Issue 1
Nancy Van Schooenderwoert

ever in all of my years that hasn’t been misapplied frequently. Whether it's lean manufacturing or
anything. Every one of those ideas - when applied as rote “do these mechanisms” rather than fundamen-
tal ideas of changing the way people think and the way people lead and the way people treat each
other — had many failures. In fact anything that becomes popular will be copied badly and will therefore
lead to failures. You can't copy rote practices; you have to understand the principles and apply them to
your environment.

The second point, about resistance — | happen to believe that fundamental change in the way things
work in an organization is going to have a very difficult time from the bottom up. It has to come from the
top down. We need to elicit support from the senior management.

Let’s take a case where they try XP in one project over here, and the XP works well. Ok now let’s
take a look at the rest of that organization and how do they feel? They feel that their dearly held beliefs
are being challenged. The other people not involved in this thing [the XP project] have no incentive to find
it good, because it's threatening the kinds of things they believe in and the way that they've been doing
things. People talk about organizational antibodies coming out and | believe that’s a natural event. If you
try to change the underlying paradigm in an organization from the bottom, your likelihood of success is
low. What we need to bring agile ideas to a much larger group of people is we have to get to a CIO level
and make sure that those folks understand the important benefits of what this can provide them.

NJV: Suppose a manager wanted to introduce Agile in a pilot sort of way — is it inevitable that they'll
run into this sort of organizational resistance?

MP: If a manager wants to do something their best bet is to get colleagues at their level, and their
immediate boss, rooting for them. What they need to do is create a network of people not involved in the
experiment who understand what they're trying to do and would like to see it successful. They need to be
selling the concept much more broadly than with just their individual team. Otherwise everybody else is
just going to feel left out. And why would people who are left out of the picture think it's a good idea?

At 3M when we had new ideas we wanted to propagate among people, we'd have reading groups.
We would study the theory behind why things worked. We'd have forums and talks. There’s a person
who works at a large company nearby who is trying to spread the concept of agile in his organization
which does software for hardware devices. He is very good at bringing in speakers and getting teams
together to think about this and talk about it over lunch. He tries to spread the idea sideways in the
organization. He doesn'’t try to have one example and say ‘Look you dummies why don’t you do it this
way'. You need an approach that’s inclusive of the organization, rather than exclusive of it. In fact, my bias
is not for project retrospectives, but for department-wide studying of how projects work and can be
improved. There needs to be a way to spread the ideas from individual projects across similar areas of the
organization. I'd like to see organization-wide mechanisms to get ideas to people.

An organization isn’'t going to change with a small one-project team: it's going to change through an
infiltration crosswise of knowledge, and | don't see that emphasized in the agile movement. | don't see us
addressing organizational issues; we tend to focus on one project at a time. One project at a time isn't
going to cut it. Real change happens on a broader basis. One favored team at a time is going to create
resistance. It's guaranteed — it's so basic to human nature that you can just about write the end of the
story before the experiment takes place.

NJV: You mentioned that change has to be brought in at the CIO level — is that high enough?

Page 56

MP: The level depends on the organization and the situation. Let’s go back to the company | men-
tioned above. The agile champion has been very effective at getting the agile ideas across his teams in
the software division but he’s having a difficult time in firmware and hardware development. But they
need to be integrated with the firmware and hardware people in order to make this work. Now he
needs to move up and broader, sideways — that's where he needs somebody higher than him to get
involved. It just depends on where your borders are. Start where you are, but the higher you are, the
more you can influence.

NJV: Imagine you're heading up a software team to build a very large-scale life-critical system — let’s
say it's the next manned mission to Mars. How will you go about getting the right practices to happen?

MP: I'll answer that by cheating and telling the story. There is a book called “Deadline” which talks
about projects that succeed against aggressive deadlines and what caused them to be successful. A
project of the approximate size you're talking about is covered in the book; it’s the Boeing 777. Boeing
promised to develop and deliver the 777 to United in a timeframe which was very, very aggressive.

Now, start out with the fact that Boeing knows how to run projects — knows how to do high level
systems engineering — knows how to drive schedules — knows how to work with vendors and put planes
together. The unique thing about this particular project was that it had to be done faster than they had
any right to believe they could unless every single thing went right. They added another layer on top of all
these underlying good disciplines. If you don’t have the underlying disciplines, it's curtains. You've got to
have that. But they did have it. So what they added on top of it was a program called “Working To-
gether”. My husband was working at Honeywell at the time and they did the gyroscopes and even he
was touched by this “Working Together” program. It was a mechanism of forcing early, detailed commu-
nication between the various people on the team, from the mechanics who were going to maintain the
plane all the way to the people doing the systems design; moving information among vendors and the
customer and getting high involvement of that whole span of people very early. There was a lot of early
release of information and examination of it. In fact they did deliver on time, and it’s largely credited to
this very aggressive cross-functional communication program.

For an example, there was somebody early in the development stage who happened to be at a
review of the design who also happened to know a lot about fueling airplanes. And he said “You know
what — there isn’t a fuel truck in our fleet that has a hose long enough to reach that spot where you're
expecting us to put fuel into this plane.” And no one else had thought of that. If that person hadn't made
that comment at that time, they speculate that they would have delivered the plane with a fueling port
no fuel truck could reach.

My answer to your question is this: if you have a large, complex project you need two things; you
need excellent communication flow on top of a disciplined environment that already knows what to do.

| don’t think you can do anything complex without screwing it up. So the more eyes you have on it,
figuring out what could go wrong at the detail level — not the overview — like “can | really fill this fuel
tank” — the more eyes you have of people with experience in all those different areas, looking at the
design earlier, the more likely you are not to screw up. You need early, frequent feedback loops from the
people who know what can go wrong. You've got to create that environment.

NJV: I've got a 3-part question for you concerning the future of agile.
Where do you think the agile movement is headed next?
What is the main present threat to it?

Page 57

What do you see as the next challenges in software development and how can agile help?

MP: | would like to see Agile cross the chasm and start becoming commonly used in medium to large
sized organizations as the natural, accepted way things are done. If it's going to get there, we need to
start talking the ClO’s language and | think there's a danger right now — Agile may be perceived of as a
reaction to someone else’s problem. If we worry about big design up front and say it’s terrible, people
who have a problem with no design rather than big design will not think we are talking to them. We
may have to abandon the things that sort of spawned the movement if you know what | mean.

NJV: Can you elaborate a little further?

MP: To some extent agile is seen as a reaction to over-designing and over-planning and over-empha-
sis on technology rather than business value. Now the problem | have is I'll go into an organization that is
chaotic and agile isn’t seen as a cure for their problems. | was talking with an executive who said 95% of
his colleagues don’'t know about agile and he'd put about half of them in the waterfall area and half of
them in the chaotic area. We've got two constituencies we need to talk to — those that have over-control
and those that have under-control. We have a very good story for both of those but if we are perceived
as a reaction to over-control we are not going to talk effectively to those that are in the under-control
area.

There's a danger of the pendulum swinging too far. | think it would be wise for agile to stop worrying
about what agile is against and start trying to put on the head-set of the CIO and the mindset of the
senior people and figure out what they are looking for right now, and how can what we do address
those issues. That’s what I've been working on recently.

One of the things | see CIOs having to think about right now is value-based portfolio management,
where the business value is owned by the business organization, and fast delivery, efficient operation and
integrity. We have a lot to say about that. We can talk about test-centric processes, people-centric lead-
ership, the fact that by dividing work into very small iterations we create one of the most efficient mecha-
nisms to move work through organizations.

We've got a lot to say to a ClIO but we're not delivering our message in the terms that they want to
hear. We're not telling them how it's going to solve their problems — we're telling them how it's going to
solve developers’ problems. We've got to start worrying about management problems and how what we
have here can solve those problems. Because otherwise you aren’t going to get that leadership push to
make this acceptable in organizations.

We've got to stop giving the impression that agile is a document-less, free-wheeling, very rapid, no-
planning kind of an environment. Instead we have to say agile is the way to make sure you get business
value. This is the way to get rapid, high integrity delivery, this is the way to get much more efficiency out
of development. This is the way to make sure that you're delivering the strategic stuff — the 20 percent
that’s going to deliver 80 percent of the value. This is the way to re-think your performance measures and
measure the right things. If we can sell agile as an excellent tool for those kinds of things — and | think it is
— then we'll be talking the language that managers we want on our side need to hear.

There is a lot of agile development going on, but it may not be known by the word ‘agile’. If you
take a look at Dell, for instance, Randy Mott has listed his objectives for IT, and they are

* Projects may take no more than six months
* Every project must deliver measurable business value

* Every project must be on time

Page 58

* All software must be tightly integrated

*All software must be usable globally

Mott lists what people need to be trained on:

* First and foremost, people in IT need to know the business.

* Secondly, they need to understand what leadership really is.

* Thirdly, down at the bottom, they need to learn technical things.

All of Mott’s ideas fit extremely well in the agile movement. But it’s not called “agile”, just common
business sense.

| think common business sense is going to win out in the economic world. In that sense, the stuff under-
lying agile will prove to be the stuff that’s successful. Whether the agile movement ends up being success-
ful, I don’t know. But projects are going to get shorter, much shorter. Business value is going to be the key
thing that people go after, and the successful companies will be the ones who make sure the developers
really understand the business, are working in a correctly disciplined environment, and are led by leaders
that empower rather than tell them what to do.

Books mentioned ares
“Deadline!: How Premier Organizations Win the Race Against Time” by Dan Carrison

“Extreme Programming Refactored: The Case Against XP” by Matt Stephens and Doug Rosenberg

“Lean Software Development: An Agile Toolkit” by Mary and Tom Poppendieck

Page 59

Agile Management - The Agile Code Factory Volume VY, Issue 1
Cliff Gregory- Editor

THE AGILE SOFTWARE CODE FACTORY, ANEW WAYTO LOOK AT THE ORGANIZATION
By Cliff Gregory

Recently, it was necessary for me to look closely at how my company is organized. We have been
using agile development methods from the start, but the Organizational Chart looked and felt like a
traditional company. As a matter of fact, it reminded me a great deal of any hierarchical organization,
including the military. | was feeling that we were not getting the best from our “Agile” efforts. Consider-
ing our dedication to being an agile company, and the fact that many traditional roles are used differ-
ently when applied agilely this view seemed inadequate.

First, it seems that even calling us a “software development company” is slightly inaccurate. We are
making computer software to support enterprise installations, true enough, but it is being created in a
vastly different manner than it been in the past.

Manufacturing can be defined as the act of producing goods from raw materials melding both cre-
ativity and technology. Since we build software from the raw materials used in our industry, like blocks of
coded language and mathematical formulas using technology tools such as SDKs, IDEs, defect tracking
and code management tools, | believe we should use the term software manufacturing company to be
more accurate. This association leads to the recognition of the people building software in a software
manufacturing plant as a new sort of “factory” worker. Like the early auto factory, we are finding agile
means to manage leading to greater production without a larger commitment of creative resources. This is
not a term that everyone would chose, but | think that you have to look below the surface to see the
reasons, and there the term makes sense. Factory workers were the first real skilled, creative workers in
the world. Creation of goods for sale in a free market is one of the most important tasks in a civilized
world. The ability to product high quality goods consistently is one of the true driving forces required for
automation to work. It is automation that enables civilization.

Historically, development groups have been organized into corporate structure, working in a loose
association instead of a coordinated effort of very creative people working toward a common goal. |
have always preferred to call these groups a “team” to better denote the level of commitment and
commonality of purpose needed to build software successfully, but even that term falls short of the level |
am trying to express.

| recently read part of a presentation by Luke Hohmann (Beyond Software Architecture — Addison
Wesley, 2004). Luke referred to development workgroups as Clusters, and | propose that using the term
cluster suggest equality of interaction and commonality task. In an agile organization, keeping the focus
on people over process and product over documentation has opened the need for better and more
effective interaction and commonality of development teams. Using “clusters” allows for a functional view
of a traditionally hierarchical organization, and expresses the oneness of purpose while holding each
individual's creative personality. Applying the concept of a cluster to a code factory opens the door to
free communication, and it permits multiple levels of relationship between clusters especially as they are
associated parts of a larger or smailler clusters.

As it is currently viewed, a company is organized into work groups, loosely based on the function of
the group leaders. As an example, the CEO has a group of direct reports, VPs and C Level managers,
who dependent on their function will have a group of reports at the VP and Director levels and so on until
you reach the individual contributors. If any individual contributor within a discrete group needs to com-
municate with an individual contributor in another group the path of communication is expected to follow
along organizational lines including the managers in each line. Often, these lines are the basis for

Page 60

Agile Management - The Agile Code Factory
Cliff Gregory

Volume V, Issue 1

small skirmishes between managers trying to protect the integrity of their group. This entire process is
counter to productive behavior, and brings individual manager’s egos into conflict. This is not a way to
reach agile levels of productivity and non-interference with creative assets.

In “clustered” groups communication passes through “communication junctions” that may not have
ownership or direct influence on the individuals trying to communicate. Lines of functional leadership, pass
to groups, who then serve to facilitate effective responses and short-circuit road blocks as they happen.
The ago old problem of finding the single person who is preventing effective communication becomes a
thing of the past. All lines of communication are functionally able to seek multiple paths, leading to
groups and individuals being able to find their own best method. In short, much like water, communica-
tion can seek the path of least resistance.

Formal approval, of course must be maintained within a marginally hierarchal structure, but if the
organization can force decisions to the lowest possible level, and allow managers to develop adequate
information bases they will enable informed choices. The approval process can be shared among manag-
ers within a cluster without losing overall control. The key is to have open communication, eliminate
competition, let people and creativity drive the project rather then the desire to win the race.

Figure 1 below shows a standard view of an organization chart, without identified roles, which has

inherited communication roadblocks and often disables effective interaction between individuals and
groups.

VFP1

Director 1 Dhrector 2

Manager 14 IManager 1B Manager 24 Manager 2B
Contributor 141 Contributor 1E1 Contributor 241 Contnibutor 2B 1
Contributor 1A2 Contributor 1BZ2 Contnibutor 242 Contnibutor 2B 2
Contributor 143 Contributor 1BES Contributor 243 Contributor 2B 3
Contributor 144 Contributor 1B4 Contributor 244 Contributor 2B4
Contributor 1TAD Contributor 1BS Contributor 245 Contributer 2B S

When a Contributor working for Manager 1A under Director 1 wants to deal with helping a Contribu-
tor working for Manager 2B under Director 2 he may require permission from five separate managers. If
any one of them is disinclined to support the interaction, they can block the efforts. This structure pro-
motes communications failures and short circuit management’s positive efforts to interact effectively.
Additionally, if anyone in the chain is unavailable, it slows response until they are reachable.

By clustering groups and managers across organizational boundaries into teams with like focus, you
can create a secondary path to communicate and reduce the number of “turf” battles that arise between
groups. Managers and worker who have unlike organizations and functional areas, but have like focus

Page 61

Figure 2

on things like customers and technology present an informal method to communicate. By assigning a
number of “communications junctions” along these paths, a team can effectively double or triple the paths
to effect interaction within and among teams. See figure 2 below to start the process.

Cutside the Company

Out - Product

Inside the Cotnpany

In - Product

Product Centric

Out - People

People Centric

In - People

Page 62

Agile Management - The Agile Code Factory

Cliff Gregory

This method allows a separate window into the dynamics of groups working for a common goal. |
choose to refer to these two types of groups as Organizational Clusters (Traditional Organizational Chart

Groupings) and Focus Clusters (based on the focus of each individual within each group.

At the highest levels within a company, it is uncomplicated to divide by focus, but at lower levels it can
get harder. As an example, | will group a company into this method. Remember it does not replace the
hierarchical method, but augments it. The organizational group is identified by focus rather function.

Figure 3 shows highest levels of a company functionally separated by focus.

Figure 3.

Sales & Marketing

Out — Product

Technology

In - Product

Operations

Administration

Page 63

Volume V, Issue 1

Agile Management - The Agile Code Factory Volume VY, Issue 1
Cliff Gregory

When the basic functional/organizational units are identified this way, the relationship between roles
is easy to understand. In Figure 4, | include additional functions.

Some could be included in two or more areas of the graph, but for the purpose of keeping the sepa-
rations clear, | placed them into a single focus area. If a function is listed here it may not be the way you
would list them, but for this paper, | will use them in this manner. You may structure your group as you
and your team view the focus shifting across organizational boundaries. | only suggest that you work with
the entire management team to attain a structure that you can all support. At this point the way you
divide the organization is not the most critical, in fact, the importance is to attain a division different in
focus from your organizational chart roles.

Figure 4.

Sales &Marketing | Technology

sales Enmneering
Iarketing Caality Control
sales Engineering Froduct Manhagement
Custotmer Support Product Definttion

Out - Product [n- Product

— ol ——
Out - People In — Peo
1 i B4 B B N r L=ty

|

TS Human Eesources
Finance Payroll

Investor Eelations secunty

Web Operations Facilities

Operations Administration

Page 64

Finally, figure 5 below shows a complete organization, divided into focused groups setting the stage to
build clusters at the top level of the organization. Each cluster is built by linking across rows so that Op-
erations/Administration Cluster is related to the Operations/Sales & Marketing Cluster, is related to the
Sales& Marketing/Technology Cluster, which in turn, relates to the Technology/Administration Cluster. The
Operations/Technology Cluster links to the Sales & Marketing/Administration Clusters. The points where
each cluster links to another cluster are the points of communication | referred to in an earlier paragraph
as junctions. They enable communication between peers in various groups without the involvement of
managers. The last refinement showing how a Focus Clustered Organization communicates resembles a
Pyramid with each focus area holding equality of voice with peers on their level, and hierarchal relation-
ship within their Organizational Cluster. This enables multiple paths for effective communication.

Page 65

Figure 5
Customer Internal
Facing Facing
Sales & Marketing Engineering & Technology
Product
CMO CTO
CEO
COO
People
Operations Administration

Figure 6, below, shows those Focus Clusters connected to the more standard organization structure, to
give you many paths to communicate. This entire structure works to help manage already accepted
informal line of communication and give them some legitimacy, but it comes at a cost! When lines of
communication are increased, so are lines of responsibility and the need for solid, objective, metric-based
data to give a universal picture to the entire organization. While, traditional development and reporting

Page 66

methods could certainly provide this data, | believe that Agile development groups need to build a better
means to gather data objectively without impacting the creative resources.

Figure 6

Internal
Product .
Facing
Product Management Technology Project Management
Team Leads & Staff
Managers
Director
VP
=
2| & g1 8
e | & CMO CTO 2| 8
f o3 7)) =]
S) 2 5 o) % 8
(O] o — =
E 3 2 3] o CEO % 2 3 S c
c o c o > = c - °
® - 5 a &) S = <
) £ = COO = a
o © 2
5|2
VP
Director
Managers
Team Leads & Staff
Sales Support Operations Information
Services
Custo_mer People
Facing

Page 67

In placing people over process and product over documentation we seek to limit the impact on cre-
ativity historically caused by these traditional development methods. Metric-based, data collection from
third-party control sources may be a big piece of this process, and allow your company to build an orga-
nization built with teams of formal structures and informal clusters.

Sharing actions taken and reasons for those choices with all levels of the team becomes an important
function for the formal and informal paths to assume. It raises the level of trust required among managers
and peers as well as the pushing the authority to act independently to the lowest possible level. These
must be considered and determined at the onset of using this structure, but it will increase production and
relieve choke points in the current workgroups.

The concept illustrated in the figures above has been applied to an entire organization, but much
more importantly, it can be scaled down to fit every size workgroup. By taking the function of each
member and determining the focus (either External or Internal Facing and Product or People Centric, as
in my example or whatever focus you feel best represents your organizational goals) and assigning peers
to communications paths across organizational boundaries, you can create this type of communications
flow chart to support your overall best function. My structure works well for my company, and gets it
basis in our business plan, so | have used it as an example.

To summarize, | see this new way of viewing at an organization as enabling Agile Software Develop-
ment by allowing optimal communication and pushing authority to act to its lowest level. To the credo of
“People over Process & Product over Documentation” | would like to add “Communication over Organi-
zation”.

Responsible adults work at things they feel a strong passion to accomplish. The result is almost every
worker in a Code Factory will do the best possible work if simply given the opportunity to do it.

Mark Friedman prepared some figures in this paper. | wish to express my thanks for his efforts.

Page 68

What can you do when you want to move from a traditional environment to an agile one, and make

the change a success? | believe there are two main areas in addition to the agile methodology itself that
should be considered before introducing agile development practices into an organization. They are:

1. The organizational culture
2. The application

These subjects are especially important when you are supporting an existing application with a well-
established development and release process. The first section covers the cultural impact you should be
aware of, and the second section is about the legacy application itself and the affects that it has on an
agile implementation.

ORGANIZATIONAL CULTURE

Too many times organizational culture is not considered when trying to adopt an agile methodology,
and we wonder why it didn't work as promised. In an established organization, processes may have
been around for a long time and won't change easily, especially if individuals have a stake in them. Each
functional group has developed processes that meet their needs, and probably feel comfortable with
them. Fear is a very powerful emotion and if not addressed, can jeopardize the change. If team members
feel that a new ‘agile’ process threatens their job, they may not want to proceed.

All stakeholders need to understand the benefits of using agile methods for the development cycle so
that they buy into the process. Change management practices can be used to help solve some of these
people issues. Some of the stakeholders that need to be considered are:

Upper Management
Business Unit Managers
Project Managers
Business Analysts
Development Team
Quality Assurance Team
Technical Writers

Each of these stakeholders needs to understand the impact that this change will have on their
workflow. The following section talks about each of the roles and some of the issues you need to con-
sider. The final section talks about change management and the role it plays in addressing cultural
changes.

Upper Management wants to know the benefits in dollar and cents. The questions they want an-
swered are:

What business risks are you trying to mitigate?

What is the business value?

What is the Return on Investment?

Here’s one example of business value: Offering the business a chance to get valuable functionality
delivered sooner, and that functionality may generate revenue that pays for the remainder of the project.

Page 69

In my current organization, we used a customer audit as a stepping-stone to
introduce the idea. The audit pointed out many of our weaknesses that XP
addressed. They agreed it was worth the effort since the previous process had
not produced the desired result.
We all know that if you have support of the Upper Management, the change has a much better
chance of success.

Buginess Unit Managers

Business Unit Managers want to know how agile development practices will help them gain control of
their project. Some of the major risks of a project can be scope creep, incomplete requirements, cost
overruns, and lack of quality.

The Extreme Programming practice of Customer involvement throughout the development cycle
addresses some of those high-risk items. The customer determines what requirements get completed first,
and ensures that what is built is what is expected. The only undelivered requirements are those that the
customer chooses as low priority. This helps to reduce project uncertainty.

Sometimes development groups try to introduce agile ‘by stealth’. This can work for small projects in
groups that work independently. But if management hasn't bought into the process, there is always the
risk that schedules are still handed from above. Contracts are set at upper level and the development
team is told what features need to be delivered. The change needs to happen throughout the organiza-
tion.

Once the management is convinced to try an agile process, the fun just begins. Organizations usually
think of the development group first, but the bigger change is getting the teams that interact with the
development group to buy in. It is not often that the development team works in a vacuum. Here are
some of the ‘people’ challenges that you need to address when trying to change existing processes.

Project Managers

Project Management Offices provide a very specific defined role in traditional methodologies. In an
agile environment, Gantt charts no longer serve the same purpose — some people don’t believe they serve
any purpose. However, | think used as a high-level planning tool to show release type milestones, Gantt
charts can be used for communicating with the clients.

Iterations tend to manage themselves and the work done is visible to all. There is less controlling and
more monitoring. Project managers can still be useful in an agile project because they can help the team
stay focused. They can also work with the business side to plan future releases, and take care of many
details such as release planning.

Business Analysts

Business analysts may no longer have a role since customers work directly with the development
team. However, | have worked on XP projects, and know of others, which included business analysts on
the team. There is no hard and fast rule.

The key point is to investigate what roles may be required in the new process. For example, if you do
not have the luxury of having a customer on-site, the business analyst may be the one to develop the
‘backlog’ of stories for future iterations and releases. They may be the one to help the customer define
acceptance tests or assist in a product management role. If you have multiple customers, you may wish to
funnel all requirements through a single source and the Business Analyst becomes the customer advocate.

Page 70

Development Team

Introduction of the development practices into the team may be easy but it may not be. There are
many challenges and the success depends on the group of developers. Assuming the team has been
together working on an application for a long time, habits have been formed, and productivity has
probably leveled out.

I have helped to introduce agile methodologies into several companies and find
the biggest initial payoff is to open communications. The daily stand-up forces
people to interact and to talk about what they are working on.

When you start making changes, developers can feel threatened. Not all developers have equal
productivity and less productive developers can feel exposed by agile development. Pairing can be
threatening as well if the members have not been trained correctly. Sometimes you have to make tough
decisions and get rid of people who don't want to try the new way. A smaller team with productive
developers can be more productive than a large one with less effective developers.

| have seen very successful introduction of agile methods into a small team where
at least one member has been on an agile team before. It was enough experience
to help infect the other developers

Quality Assurance Teams

Testers who have been working in a traditional setting may have a hard time adjusting to a new role.
If they have come from an organization that has an adversarial culture between development and QA, it
may be difficult to change from being the afterthought to being an integral part of the team.

We worry about developers who can’t adapt — what about testers who are used to building test
scripts according to a requirements document? Can they change to learn to ask the questions as the code
is being built? Testers who don't change their approach to testing have a hard time working closely with
the developers.

The testers may be used to doing only manual GUI testing and not understand the automated ap-
proach. To help them adjust, you may need to bring in someone new who has worked on an agile team
as a mentor. You need a lot of courage to face this problem.

To quote Jonathon Kohl in a recent user group session, “the common thread is collaboration, and
testers supporting the developers through collaboration and feedback. The testers do whatever they can
to help the developers by providing them continuous feedback on their work, as well as expertise to
ensure things are testable. The testers can also help facilitate communication between the business and
the developers, which in turn helps enhance that feedback channel.

Technical Writers

Technical writers become an integral part of the team as well. They can play a very important role in
legacy system development since most legacy systems also have legacy documentation.

Page 71

| have worked closely with technical writers who were part of the agile team.
They played a very important role helping to document the system, but also
identified areas of the system that needed more work. Technical writers approach
the system from the end users point of view and can work very closely with the
test team. | worked with one incredibly talented writer and if she researched an
area first, she shared her findings with me so | could develop regression tests. In
the areas that | researched first, she used my tests to help her write about the
application feature. It was almost a symbiotic relationship.

Customers

Customers are expected to play avery activerole in an agile methodology. They may need to get used
to working directly with the devel opment team after years of being segregated and not allowed to talk to
them. | talk more about customers later in conjunction with problems associated with alegacy application.

Change Management

When implementing any change you need to be aware of the effects. The first stage can be chaos,
where your team isn't sure what the new processes are, some groups are loyal to old ways, and some
people are unsure and disruptive. People mistake this chaos stage for the new status quo. To avoid this,
explain the change model up front and set expectations. Find the areas of the most pain and determine
what practices will solve the problem. Accept and expect perceived chaos as you implement agile pro-
cesses.

When you start iterative development, use retrospectives to provide people a place to talk about their
fears and give feedback. Let people know that it's normal to be fearful. Be open; teach them it is
acceptable to say they are fearful or uncomfortable. Discuss it, learn, make decisions and move on. Fear
is o common response to change. Forcing people to do something they don’t want is detrimental. Lead
by example. You will produce better code and form better relationships.

A critical success factor is that the team must take ownership and have the ability to customize their
approach.

WORKING WITH A LEGACY APPLICATION

Legacy systems can vary in size, complexity, language, audience, etc. How you adapt your agile
methods to fit with your system depends on the variations. For example, writing unit tests in JUnit is easy
when your system is in Java, but you need to be creative if your system is in COBOL. Automating your
system level tests pose the same challenge if there has been none. Some of the problems you need to deal
with are:

Large code base
Defects
Documentation
Existing clients
Regression testing
I.arge Code Base

A large code base is one problem with a legacy system, and usually means that major refactoring
needs to be done. It also typically means there are no unit tests in place and very likely no automated
acceptance tests. How do you get to a stable code base with unit tests and full suite of automated accep-
tance / system tests?

Page 72

I have had the opportunity to work with 2 different legacy systems; one was
written in Power-Builder, and one in Java. It was difficult to find developers who
had agile experience who had worked in Power-Builder, but the developers we
hired were eager to try. They researched a bit and found that they could write
unit tests in P-Unit, not quite as easy as JUnit, but it served the purpose. However,
the system did not lend itself to an easy implementation of system automation.

The system written in Java was much easier to tackle. We took the same approach
as with the first, but the developers already had experience with JUnit, even if
they hadn't tried TDD. Each new feature story had unit tests written. For every
refactoring story, unit tests were written first to ensure that functionality did not
change. Over time, unit tests will be written for every piece of code.

Defects

Another problem experienced with legacy systems is the number of bugs that exist. The theory of not
keeping a bug database is out of the question as you can find them easily, and they can number in the
hundreds. If you don't track them, you get used to looking at them and don’t even realize they are bugs
or inconsistencies. There are defects that the testers finds before a release to the customer, and those that
the customer find after they have it in production.

There are 2 ways to try to reduce the number of bugs:

1. Fix each bug as it comes up. This works for most new bugs, but not the systemic issues that are
throughout the system. One example is consistency issues in the GUI.

2. Refactor pieces of code to eradicate the bugs. There are not usually unit tests for legacy code, so
the first thing you need to do is write them — according to what it should do, not what it does. The
same with acceptance tests. Too often, the tests and documentation reflect the way it actually works
and not the way it should. This also has to be addressed.

| mentioned the need for a defect tracking system earlier. One of the important
uses of a tracking system is for generating client reports. Clients want to know
which bugs were fixed and released in the latest version. Most clients want to test
and to make certain the fixes were done to their satisfaction.

Documentation

If you are lucky, your legacy system has up-to-date user manuals: either a paper version or on-line
help. If not, you have to try to fix the documentation along with the application and a good technical
writer is absolutely necessary.
Existing Clients

Legacy systems usually mean existing clients. As part of the culture change, you need to convince
customers that they should work with your new process. However, be aware that existing customers may
have their own process for working with vendors and software releases. They may be used to getting
status reports, design specifications, etc. You may need to adjust your processes to work with the clients.

Page 73

Currently we are working with a customer for whom we are doing some
customized changes. Part of their requirements includes a change specification for
all new features. Our Product Engineering group attempted to work with the
customer and write the specifications prior to development starting a story. It
worked for a little while until changes were made as development progressed.
We then ran into the issue of testing to changing requirements, so we adapted
our process. The customer still needs the specification for their process, but that
didn’t mean we needed to do it first. We talked with the customer, developed
and tested the features, and only then, did the Product Engineering group create
the specification.

Regression Testing

What about all the regression testing that needs to be done? The QA group has been responsible for
ensuring that existing functionality has not been broken from one release to the next. Now they are
expected to do this every two weeks at the end of an iteration. This is a tough problem to solve. If a
team has automated regression tests, they are ahead of the game. If not, they need to plan for it.

We chose to develop our own system test framework using Ruby since we needed
to test a Java application as well as an embedded platform. The test team wanted
to automate each story as it came up, but where the development team could
concentrate on the stories, the release cycle and the legacy system claimed much
of the test team’s time. The test team coined the phrase “Regression Hell” for the
seemingly never-ending test/fix/test cycle.

The problem we experienced is common when working with legacy systems. Testing without auto-
mation cannot guarantee that functionality didn’t change. Legacy systems grow over time and usually
are quite large, which makes testing for a release a nightmare. The problem is enhanced due to the
number of bugs that exist in the system. They are not necessarily regressions, but may have lain dormant
for many years.

A typical cycle can go something like this:

You've just released version 2.2.2 to the customer and are starting on the next release cycle.
Iteration 1: Stories are written, testers or customers create acceptance tests, pair testing happens,
everyone is happy. The client reports a couple bugs, nothing serious — they can get fixed next release.

Iteration 2: More stories are written; the client starts more detailed testing, and uncovers bugs that
need to be fixed before they can go to production with 2.2.2. The developers branch the code, and fix
the bugs in both branches. The problem arises because there are no automated regression tests on the
legacy system so the testers need to take a 2-week cycle to do regression testing on the 2.2.3 version with
the fixes. This is where the problem starts.

What happens to the stories in this lteration? They get behind because the acceptance tests are not
written before the story is completed, let alone before end of iteration. Testing gets behind and stories are
completed without testing.

Now the developers are in Iteration 3, and the testers haven't even caught up to Iteration 2. This is
‘Regression Hell'. This is a problem that needs to be solved.

Page 74

We are attempting to solve it by taking developers to help with automating some
of the tests for the legacy code. Instead of spending all their time working on new
stories, the problem has been recognized by the team and has been given priority.

CONCLUSION

Software development teams that make a successful transition to an agile development process
consider the organizational culture and the application being developed. They involve all the stakeholders,
including those on the business and management side, and address their fears. They consider all the
constraints; the size of the code base of any legacy application, the existing defect load, and documenta-
tion issues. They take into account any existing client base and plan how they will work with external
clients. They tackle the tough issues around regression testing. Each team needs to find its own approach
and make many tough decisions. By identifying potential problem areas up front, and continually reflect-
ing on progress so they can tweak their process as they go, teams can successfully make this change.

BRINGING SERVANT LEADERSHIP TO AGILE SOFTWARE DEVELOPMENT PROJECTS
© 2004 Jean E. Tabaka

Creating the collaborative culture that supports agile teams doesn't happen by accident orin a
vacuum. But agile software development team leaders can’t nurture this vital collaboration environment
by acting in traditional hierarchical ways. Creating and nurturing collaboration calls for a different kind of
leadership: servant leadership.

Servant leadership isn’t a new idea. Robert Greenleaf wrote of this new notion of leadership in the
1970s in a series of works that have influenced both Peter Senge and Steven Covey. We too can take
advantage of Greenleaf's insight on how to serve our teams.

WHO IS THE SERVANT-LEADER?

Simply stated, the servant leader is always servant first, and a leader second. As it happens, the
greatest service is often providing leadership. This reversal of priorities can prove challenging but ultimately
rewarding in agile development projects.

Which are you - Leader-first or Servant-first? Here is a simple test:

Do you make sure that other people’s highest priority needs are being served
first?

As you apply this test, think of the principles that have guided the Scrum Masters and XP Coaches
you've observed.

Page 75

CHARACTERISTICS OF THE SERVANT LEADER

What characteristics should yous strive for in order to act as a servant in a leadership role whether in
agile software development teams or leading entire IT organizations? Greenleaf posits 10 strategies you
can learn (really!) in order to become a true servant leader:

1. Goal $etting

Always have a larger aim, a greater purpose to guide the smaller, tactical targets. A servant leader
sets her sights on a greater sense of what the project is about, what the team can accomplishment, and
therefore, how to guide the team day-to-day. A greater purpose allows the team to move forward
without being bogged down in the ever-changing lay of the land. The goal sits above the release, itera-
tion, or sprint. It is larger than the system metaphor; it is the metaphor for the team and its sense of self
and reward. If you are unable to set an appropriate goal, none of the rest of the following strategies will
matter.

2. Principle of $ystemic Neglect

Servant leaders have a knack for highly focused prioritization of what needs to be done, accompa-
nied by the equally important ability to “neglect” everything that is not useful to that priority. As items are
managed and resolved, the previously neglected items move into the limelight and receive the full atten-
tion needed to solve them. Seasoned XP Coaches and Scrum Masters are very familiar with this notion of
systemic neglect. It preserves their sanity as well as the sanity of their teams. It allows them to block out all
“noise” that doesn’t directly contribute to the success of the current sprint/iteration.

3. Listening

Ask about the expertise of a good coach or Scrum Master, and most likely you will hear that, in no
small part, it is an ability to ask effective questions and really listen to the answers. Servant leaders hone
this skill that is so antithetical to assertive, controlling leadership. Greenleaf tells us that in all his work with
teaching management skills, teaching managers how to listen accomplished more than anything else he
did.

4. Language as a Leadership $trategy

Servant leaders must be articulate, if for no other reason than to grasp the goal of the group and to
evangelize it early and often within the team and beyond. Servant leaders need language to help team
members reach consensus by helping them understand what might otherwise look like opposing views.
Leaders use language to communicate face-to-face with team members, with stakeholders, with execu-
tive sponsors, and so on. The more skilled we are with language, the more effective these communica-
tions become and remain.

5. Values

Servant leaders have the attribute of being responsible, in that they are responsible for building, not
destroying. They are responsible to their team, to the team goal, to the team’s sense of self and its sense
of accomplishment and reward. A servant leader’s sense of values will naturally emanate to the team. As
you develop your capacity for servant leadership, think through your values and live them.

Page 76

6. Personal Growth

A servant as leader seeks growth experiences in how they can best serve the team both by continu-
ally educating themselves on their work as well as by tending to their personal needs. We see this in agile
development teams as leaders read from diverse disciplines to better equipment them in technical set-
tings. Servant leaders must be personally grounded before they can promote self-organization and self-
empowerment of the team.

7. Withdrawal

A servant leader knows when to let go, when to retreat, when to trust the instincts of the team and to
pull away. This balance ensures both that the team takes ownership of the work, and that the leader
doesn’t take on too much of the team’s burden. Leaders who cannot rely on withdrawal as a strategy
are not promoting collaboration and collective ownership of the team’s success. At the very least, they
perpetuate the role of hero. At worst, they disempower the team and revert to a command-and-control
tactic in order to succeed at all costs.

8. Tolerance of Imperfection

Servant leaders learn to let go of their own sense of “perfection” or “right” and leave that definition to
the team membership. The team resolves what must be done and what the “good enough” solutions are,
not the leader. The leader simply guides them through questioning and listening to set the proper goal for
accomplishment and then removes all obstacles in their path to that goal. This strategy is particularly vital
in large IT groups where team make up is often pre-determined. Rather, the servant leader accumulates
the talents and skills of the team and, given the team goal and the acceptance criteria, mentors team
members to the defined deliverables.

9, Being Your Own Person

Ultimately, these strategies must always come back to the individual and how his personality works
with project teams. This seems obvious but actually warrants emphasis. Each leader must make these
strategies his own, define how they can work for him, and apply them in a genuine way.

10. Acceptance

The final strategy of the servant leader is acceptance. A servant leader has a duty to not only tolerate
her own sense of imperfection, but also to encourage growth and motivation through unqualified accep-
tance of team members. Agile software development teams are so inter-reliant that they must have a
fundamental sense of acceptance from the leadership down to each individual in order to truly encourage
collaboration among the team members. Collaboration and acceptance go hand in hand.

PULLINGIT ALL TOGETHER

As you consider your role in agile software development projects, reflect on these simple strategies
from Robert Greenleaf. These strategies need not apply just to the leader. You can, as a true servant
leader, groom team members as servant leaders by introducing them to these strategies over the course
of the project. In fact, team members can support servant leadership as servant followers who groom their
servant leaders by guiding them in the 10 strategies named here. They insist on leaders who actively
engage in these strategies day-to-day with the project team.

Decide which of these strategies you can apply immediately in your leadership style. Revisit Robert

Page 77

Greenleaf’s strategies from time to time and check in to your true sense of service to your team as their
servant leader.

MORE READING
You can learn more about servant leadership in these two excellent books by Robert Greenleaf:

“On Becoming a Servant Leader: The Private Writings of Robert K. Greenleaf” San Francisco: Jossey-
Bass, 1996.

“Servant Leadership: A Journey into the Nature of Legitimate Power & Greatness” Mahwah, New
Jersey: Paulist Press, 1977.

INTRODUCTION

Software development is very much a team sport, which means that the ability of the team to com-
municate with each other and those that have interest in the project is a vital factor in the project’s success.
Because of this, perhaps the most important aspect of the Pragmatic Project Leader’s role is to ensure
that the project environment supports effective communication between everyone involved in the project.
Adgile Software Development methodologies put a great deal of focus on the teamwork and collabora-
tion within the project team and therefore have several values and practices centered on fostering effec-
tive communication. In this article | take a look at why communication is so important to software devel-
opment. Then | describe what | think effective communication means. Finally, | provide some tips gath-
ered from my experience and the practices of Agile Software Development methodologies that may help
you practice effective communications.

THE IMPORTANCE OF COMMUNICATION

Several of the major activities in software development require the team doing the development
work to be good communicators in order to succeed. I'll touch on four such activities in this article that
really point out the need for effective communication. These activities include determining requirements,
building systems, resolving issues, and managing expectations about the project. | have no doubt that
other activities in a software development project require communication, but these four are cases where
the manner in which communication occurs can have a tremendous impact on the outcome of the project.

The impact of communications on determining requirements should be obvious to most people who
have been involved in a software development project. After all, how will you know what to build unless
you talk to the customer or end user about what they want or need? Recommend methods and practices
for determining all have some element of direct communication with the customer or user, whether it is
through interviews, surveys, focus groups, or Joint Application Development (JAD) sessions. Agile methods
recognize that the communication surrounding requirements extends past the initial identification to
include the need for clarification and understanding of the requirements as development is underway.

Page 78

This is one of the purposes of XP's customer on site practice - to provide the project team with the oppor-
tunity to continue communicating with the customer about requirements on an ongoing basis, in the most
effective means possible - face to face.

Whereas determining requirements requires a great deal of communication between the project
team and the customers of the system, building systems adds on the need for the project team to commu-
nicate with each other, while still maintaining open communications with the customer. The people work-
ing together to build a system should be in constant collaboration, whether it is conferring over the design
approach, helping others resolve design questions, discussing alternative coding issues and arriving at the
best solution, or working together through pair programming to code various parts of the system. It is only
through this constant collaboration that a group of people can effectively come together as a team.

When it comes to resolving issues, communication is the proverbial double-edged sword. When done
properly, communication can help resolve issues, or prevent things from becoming issues in the first place.
Just as often, however, poor communication is the cause of many issues in software development projects.
The key to the impact of communication on issue resolution (or creation) is whether it was done at all,
and whether it was done properly. Not communicating typically creates issues as Kent Beck points out,
“Problems with projects can invariably be traced back to somebody not talking to somebody else about
something important.” (1). Communicating in the wrong way can also cause issues, or at least exacerbate
existing ones, so people on the project team need to make sure that they are communicating properly
and in the right frequency. I'll cover more about communicating properly below when | talk about effec-
tive communication.

Managing expectations can be the most difficult of all the communications related activities, because it
depends a great deal on how well the project team communicated while doing the other activities. Even
more so than resolving issues, the manner in which communication occurs can play a big factor in how
successful your expectation management efforts are. If you are constantly communicating with your
customers and stakeholders, but are viewed as being condescending to them, they will have a tendency
to tune out what you are saying and form opinions about the result of the project based on their opinion
of you. Personal experience has taught me that the best way to manage expectations with your custom-
ers is to practice upfront and honest communication with them. Telling the truth is always easier than
fibbing, mainly because it is a lot easier to remember what you said.

EFFECTIVE COMMUNICATION

Effective communication is the practice of relaying relevant information to the correct people in a clear
manner to avoid confusion and misunderstanding. The key elements of that definition are:

Relevant information
Keep the message succinct and concise so that the important information is not lost in a lot of clutter. In
other words, Reep a high signal to noise ratio.

Correct people
Make sure to send the message to the people that need to receive it. That means do not exclude people
who should be receiving the information, but that also means do not relay information to people who
really have no use for it. That is not license to keep information from people, but it is important to not
flood people with too much irrelevant information.

Clear manner to avoid confusion and misunderstanding
Pick the mode of communication that will ensure that information is easy for the receiver to understand

Page 79

and process.

Face to face communication is the preferred mode of communication in most cases. This is especially
true in the case when you have questions to ask or issues to resolve. This synchronous communication
approach is the most effective means for solving issues because it is the best way to ensure that both the
content and context of the message are being appropriately relayed.

The content of the message has obvious importance when it comes to avoiding misunderstandings.
Face to face communication helps to ensure clear content because when two people are conversing and
one person is not expressing an idea clearly, the other person can ask questions and talk through the issue
until they reach clarification. In other communication methods, such as email, there is a lag in time to ask
and answer questions, during which time misunderstandings can grow.

Context impacts the effectiveness of the communication because it makes it possible to convey the
mood of the people communicating when words do not. Face to face communication allows the inclusion
of emotions and tone whereas those subtleties are lost or misconstrued when the message is transmitted
via bits and bytes. Often times the reader applies emotions to the message that the sender did not intend.
This also can lead to misunderstandings, which in many cases constructs barriers that get in the way of
what the message was really meant to be.

The framers of the Manifesto for Agile Software Development and the Project Management Institute
agree with each other when it comes to favoring face to face communications. One of the principles of the
Manifesto for Agile Software Development states: “The most efficient and effective method of conveying
information to and within a development team is face-to-face communication.”(2) The Guide to the
Project Management Body of Knowledge, in the section about stakeholder management asserts: “Face
to face meetings are the most effective means for communicating and resolving issues with stakeholders.”
(3) Jim Highsmith agrees that face to face communication is important, but also believes that some docu-
mentation is useful, “Understanding comes from the combination of documentation and interaction, or
conversation - the conversations among people who have a certain knowledge.” (4)

TIPS FOR EFFECTIVE COMMUNICATION

Listed below are several hints | have for practicing effective communication. You'll notice that several
of them have to do with email. | included so many comments focusing on email because | believe that the
reliance on email as a primary communications tool has caused more problems that it may have resolved.
These are practices that | strive to follow in my everyday work; sometimes it is easier than others.

Never use email to communicate a time sensitive subject or issue. If a delay in resolving an
issue will be detrimental to the project, talk face to face with the person who holds the key to solving the
problem. Email is not a real-time communication mechanism; just because | sent an email today, does not
guarantee that it will be acted on or even read today. The time lapse waiting for a response to the email
can cause delays to the project. Issues that could be resolved in a simple five or ten minute conversation
can take days or even weeks in back and forth email conversations that languish in electronic purgatory.

Do not use email if the information you want to convey is of a delicate or complicated
nature. Face to face communication help resolve issues a lot quicker than conversing via email. There is
less opportunity for misunderstandings, or stated another way, there is more opportunity to resolve misun-
derstandings without the lag time required for sending messages back and forth. Face to face conversa-
tions also allow for the use of white boards or scratch paper to collaboratively work on issues, sketching
things out to help understanding.

Page 80

Email was not intended for problem solving. Email is good for communicating precise informa-
tion to a large group of people when the purpose is to record a decision or provide information to a group
of people. It has been my experience that people typically do not read email very closely, so you want to
make sure that the message is short and concise.

Involve only those who need to be involved in communications. This tip includes both face to
face discussions as well as email. | have sat in on several status meetings that degenerated into problem
solving sessions or theoretical arguments between a small subset of the people in the room. All this serves
to do is waste the time of all the other participants. The “Parking Lot” for discussions comes in real handy
in these situations. The parking lot is where someone suggests that the topic that is drawing out into
Senate filibuster proportions be moved to the “parking lot” to be discussed at a later time by only the
people who care. The equivalent in the electronic world is the practice of copying everybody and their
brother in on email messages flying back and forth. This is usually done to cover someone’s hind end but
usually ends up creating mountains out of mole hills, and gathering “help” from people whose “help” is not
needed or is often detrimental to the resolution of the issue.

You can lead a coworker to email, but you can’t make them read. If you need to communi-
cate the same message to several different people, use the advantages of email, just don’t expect every-
one to read or comprehend your message. If there are some people in the distribution list who absolutely
must see and understand your message, follow up the email with a phone call.

The communications plan is a means to an end. The value in creating a communication plan as
recommended in the PMBOK Guide is not in having the plan, it is taking time to think about whom you
need to communicate with and what is the best method of communicating for them. If you are able to
consider the items that the PMBOK Guide suggests at the time you need to do the communication, don’t
waste your time and effort creating the plan. Remember - the key to success is not how well you plan,
but how well you execute and adapt.

Use the right means of communication for the situation. Know when to use face to face
discussions, phone calls, or emails. Strive to use face to face communications whenever possible, especially
when it is critical that the message be clearly understood. In cases where face to face communications is
not practical, such as when the project team is distributed, try conversing via the telephone. At least then
the communication is synchronous and not all context is lost in the conversation. Email still does have some
good uses, especially when you need to convey information to a large number of people for information
purposes, such as status reporting. Keep in mind when using email that the message should be written in a
clear and concise manner.

The physical environment has a big impact on facilitating effective communication.
Several agile software development methodologies stress the need to have the team co-located to en-
courage communications. Having everyone in the same room is not enough though. The area needs to
facilitate communication by removing barriers that prevent team members from collaborating. Craig
Larman discuss the concept of the “Common Project Room” in his book Agile and Iterative Develop-
ment(4) that provides an excellent practice for facilitating communication through the right environment.

If you must have a record of a conversation, follow up a conversation with an email
summary. That way you can make sure all parties involved are in agreement, and then the email serves
as the record for people who have bad memories such as myself.

Face to face communication does not just have to be in a formerly scheduled meeting.

Page 81

Some of the most powerful and most effective problem solving occurs in unplanned conversations in the
hallway or one team member stopping by the desk of another to work something out. Encourage your
team to not wait until a status meeting to bring up issues.

Don’t waste the project team’s time with written status reporting.!f your organization
requires project leads to send status reports to others in the organization outside of the project team,
gather your status reports by talking to your team members instead of requiring them to send you up-
dates. There should only be one status report created by a project team. Any more than that and time is
being wasted. The daily Scrum meeting is an excellent example of this approach.

If all else fails; unplug the email servers for a couple of days. Force people to communicate
using means other than email.

CONCLUSION

Effective communication is a cornerstone for effective projects. The ideas | provide above may seem
rather straight forward and obvious, yet | am amazed at how much discipline it takes to actually follow
my own advice on a daily basis. | humbly offer these tips up for all those who like me need a little re-
minder every once in a while what it takes to be an effective communicator.

REFERENCES
(1) Beck, K. Extreme Programming Explained: Embrace Change. Boston, MA: Addison Wesley, 2000.
(2) The Manifesto for Agile Software Development. www.agilemanifesto.org
(3) Guide to the Project Management Body of Knowledge. Project Management Institute, 2003.
(4) Highsmith, Jim, Agile Software Development Ecosystems. Boston, MA: Addison Wesley, 2002.

(5) Larman, Craig, Agile and Iterative Development: A Manager’s Guide. Boston, MA: Addison
Wesley, 2004.

About the Author

Kent). McDonald works as Business Analyst and Project Leader consultant for Genesis 10 in Des
Moines, lowa USA. The views expressed are his own and are not necessarily those of his employer. You
can reach Kent at kent@madsax.com or his website www.madsax.com.

Page 82

DSDM Volume V, Issue 1
Mike Griffiths - Editor

Contrasting Scrum and DSDM's Approaches to Handling Mid-iteration
Changes

Harprit S. Grewal
Department of Computer Science, The University of Calgary
grewal@cpsc.ucalgary.ca

Abstract

Requirements changes or “scope creep” has traditionally been attributed as the main reason for the failure
of great many projects. The methods of the past have tried to tackle this issue in order to provide
satisfaction to all stakeholders. None have made an impression as have the Agile methodologies. These
methodologies or frameworks welcome changes in the middle of the project. In fact, changes are seen as
an opportunity to showcase there ability to adapt. Scrum and DSDM are two of the core methodologies of
the Agile alliance. In this paper we will discuss and contrast how Scrum and DSDM handle changes to
requirements in mid-iterations.

Keywords: Requirements, Agile, Scrum, DSDM, Iteration, Dynamic, Scrum

1. Introduction

Software development is a complex activity. Even though software engineering is a relatively new area
compared to other engineering fields, it has seen metamorphic changes in the way software is developed.
Not too long ago, computers had ushered in an era of automation and promised to deliver the world to the
businesses (and they delivered). However, software projects have seen their share of failures. These
failures brought frustration to those who developed software and those who relied on the solutions.

As the saying goes “necessity is the mother of invention”, efforts were made to search for the “holy grail”
or the “silver bullet” of software development. High-level programming languages, object-oriented
languages, CMM, and now Agile have (or had) shown a glimmer of hope. We are far ahead from where
we were forty (or even twenty) years ago. So far we still do not have a silver bullet and perhaps we will
never have one. What we do have is a better understanding of the dynamics of our field.

Software development has been defined as “empirical” (theoretical) rather than “defined” (black box) [1]. It
is this dynamic nature of software development that has been attributed as a major cause of great
software project failures. As Kent Beck says in his book on XP [2], “Change is the only
constant...Everything in software changes. The requirements change. The design changes. The business
changes. The technology changes. The team changes. The team members change. The problem isn’t
change, per se, because change is going to happen; problem, rather, is the inability to cope with change
when it comes.”

In this paper, we will discuss how two of the most popular Agile methodologies — Scrum and DSDM
(calling it a framework is more appropriate), deal with requirements and how they handle changes to these
requirement during an iteration.

2. DSDM

Dynamic System Development Methodology or DSDM is a high-level framework for control of processes
rather than a technique. Its aim, just like other agile development techniques, it to deliver value to the
customer. In doing so, it strives to satisfy needs of all the stakeholders, be it user, management,
developers, or customers. DSDM achieves this by using different techniques available to the framework
and by “flexing requirements”. It considers delivering a working product to the customer early on than
wasting time and resources on trying to address all the possible situations that the project may encounter.

The basic principles of DSDM are described below:

Page 83

DSDM Volume V, Issue 1
Mike Griffiths - Editor

Active user involvement is important

The team must be empowered to make decisions

Frequent delivery of usable products is important

Fitness for business purpose is the essential criterion of acceptance of deliverables
Iterative and incremental development is important

Changes in development are reversible

Requirements are baselined at high level

Testing is integrated throughout the life-cycle

Collaboration and cooperation between stakeholders is important

DSDM is based on the fundamental assumption that useful and usable 80 percent of the functionality
required for a project can be completed in 20 percent of the time estimated to complete the project. DSDM
recognizes the fact the requirements at the start are inaccurate and trying to satisfy all the requirements
may result in the project getting delayed and/or over-budget and may fail to deliver business value.

3. Flexing Requirements in DSDM

DSDM asserts that requirements that will be satisfied can change as the business needs them to. As
complete turn around from the traditional approaches, DSDM make the time factor a constant. The
resources are assumed to be constant to a certain extend. The only aspect that is allowed to vary is
requirements because, as stated above, requirements can be inaccurate or incomplete and a product
developed based on these inaccurate requirements is flawed as it does not deliver business value.

4. How DSDM manages requirements

The techniques used in DSDM fall into two broad categories. First consists of the project techniques that
would apply to all projects regardless of the nature of the project. These techniques are generally
concerned with managing the requirements. These include Timeboxing, Priority Requirements Lists (PRL)
and the MoSCoW. Other techniques are concerned with micro-managing the project and would depend
on the individual nature of the project. Since this paper is concerned with how DSDM manages
requirements (at mid-iteration), brief mentions of the former techniques are in order.

4.1. DSDM MoSCoW technique for requirements management

MoSCoW technique is used to prioritize the requirements where M stands for requirements that are Must
haves (requirements that must be satisfied in order to deliver value); S stands for Should haves or
requirements that are important but do not hold back the development of the project; C is for Could haves
or requirements that would be nice have; and W is for Won’t have or requirements that would not be
addressed in the current interation. During the phase of requirements prioritization, 60 percent of effort is
expended on recognizing the Must have which forms the minimal usable set of requirements.

4.2 DSDM Timeboxing

Timeboxing is an important concept in DSDM. The project timebox is defined as the time between the
start of the project to the end date of the project. The end date is a fixed date and the date by which the
working system or part of the system must be delivered. DSDM nests the concept of timebox in an
iteration. The goal is to provide a series of fixed deadlines by which part of the system must be delivered.
It is important to note that the focus is not on activity but on actual production of a part of the software that
brings value to the customer.

4.3 DSDM Priority Requirements Lists
The Prioritized Requirements (PRL) List defines what the proposed solution must do and how well it must

do it. It provides the foundations for all planning decisions throughout the project [3]. The PRL defines the
scope of various iterations by focusing on the requirements and the business processes that need to be

Page 84

DSDM Volume V, Issue 1
Mike Griffiths - Editor

supported. This document (PRL) is a common source for business and development team for referring to
the priorities. Thus, it is referred throughout the project and continuously updated.

PRL, among other things, differentiates between the core and additional functionality, a minimal usable
set of requirements, the alternatives to Must haves. PRL uses MoSCoW prioritization as its basis. Since
PRL consists of a mix of Must haves, Should haves, and Could haves, it gives the development team
some room to replace some Should have and Could have requirements with some Must haves if these
happen to creep in during an iteration. The replaced requirements become part of the future iterations
depending upon their priorities which in turn may displace some other requirements in those future
releases.

5. Everything’s a Must Have!

In a document named “Everything’s a Must Have!’ [4], Kevin Barron and Mark Simmonds have outlined
the results of a workshop aimed at common problems around determining the requirements and delivering
the requirements. This document states the reasons for common problems associated with requirements
and then suggests solutions on how these should be addressed. An important aspect of the outcome of
the workshop, as it relates to this paper, is that businesses consider almost all the requirements as “Must
haves”. The reasons for behavior are manifold. First, businesses are not aware of the definition of a “Must
have” requirement. Second, businesses insist on getting all the requirements delivered mentioned in the
contract. Third, similar to the last point, that the detailed specification identifies each item as a Must.
Fourth, the requirements have been prioritized at very high level that all of these requirements are
considered Must haves. Fifth, the sales team oversells the ability to deliver solutions. Finally, the users
find it difficult to see beyond there immediate needs and insist on getting every associated with their area
done.

The common solution to all these causes is education of all parties. The business users should be
educated about the costs of making all the requirements as must have, the sales people should be
educated about the development approach and how overselling can hurt the reputation of the
organization. Benefits of changing of what was originally agreed upon to deliver business value should be
sold to the users.

These reasons have important implications for mid-iteration changes. If these could be addressed early
on, then the users will be better informed to reduce their share of mid-iteration requirements changes (if
they are not of type Must haves). Thus DSDM takes a pro-active approach to reduce mid-iterations in the
first place.

6. Scrum

Scrum is one of the most popular Agile practices. It is iterative and incremental process that can be
applied to any project be it software or otherwise.

The important terms when talking about Scrum are succinctly defined below:

e The Daily Scrum — Meetings held every day during the month long sprints where team members
discuss the work they did the previous day, the work they intend to do at the day of the meeting,
and any obstacles that may hinder their progress.

e Product Backlog — A list of all functionality desired in the product.

e Sprint Backlog — A subset of Product Backlog which form the tasks of current iteration. Chosen by
the Scrum team based on highest priorities and time constraints.

e Product Owner — Person from marketing or a user. Prioritizes product backlog.

e Scrum Team — Members of a team responsible for completing tasks in a sprint backlog. There are
no special designations within the Scrum team and all team members have one goal — achieving
the sprint’s goal.

Scrum’s main goal is to provide a shippable (usable) product at the end of each iteration.

Scrum achieves this by prioritizing the requirements in a Product backlog which is further broken down
into Sprint backlogs.

Page 85

DSDM Volume V, Issue 1
Mike Griffiths - Editor

Each Sprint is an iteration which is ideally 30 days long. During each Sprint, the development teams
meets daily for about 15 minutes to discuss what each team member accomplished the previous day and
what he/she planned to achieve that day. Also, they should discuss what problems they encountered
during their work. It is the duty of the Scrum Master (project manager) to remove these obstacles so that
the team can focus on what they are supposed to do — deliver value. Scrum can be used as a wrapper
around other processes such as the development focused eXtreme Programming to help achieve better
quality code and individual training.

7. Requirements Handling in Scrum

Scrum is about empowering teams. At the start of a Sprint, a Sprint Planning Meeting is held in which the
development team slices off the highest priority items and make them part of the Sprint Backlog. The team
may, however, pick some low priority tasks that are directly related to the high-priority tasks. This may
seem similar to picking up the Must have and Should and Could have from the MoSCoW prioritization of
DSDM.

Since, by definition, the development team selects the items that are of highest priority to the Product
Owner and commits to finish these tasks before the end of the Sprint. This commitment is in return for a
commitment from the owner that he/she will not throw in new requirements during the Sprint. The team
welcomes and encourages changes as long as they outside the scope of the current Sprint. Once the
team starts on a Sprint it remains maniacally focused on the goal of that Sprint. Once the team starts on
sprint it remains maniacally focused on the goal of that Sprint [5].

The rationale behind this argument can be understood from a case study which be found in the Scrum
website [6]. This case study discusses a project that was late and had too many bugs in the beta release.
Instead of the bugl/issue list getting shorter it seemed, as time passed, the list remained practically the
same. The reason, as it was discovered later, was that since the project was late, marketing and product
manager were introducing functional enhancements which sidetracked the developers from attending to
the real issues. The issues were entered into the bug/incident tracking system by all and high priorities
were assigned to them. As a first change to the operations, the priority field in the bug tracking system
was made secure so that only one person would be able to enter the issues/bugs based on their criticality
in stopping the delivery of the system. The policy of only concentrating on issues that would help the
product become more stable was enforced. This helped in reducing the number of high-priority issues and
the product was eventually released to the customer.

An argument supporting the above observation is that change requested will have to be weighed in
comparison to the progress being made in the current Sprint. If the change is extremely important, the
current Sprint can be abnormally terminated. The customer should, however, be presented with the
choices and the consequences of these choices should be laid out.

Recently, | posted a message on the Scrum mailing list asking what people’s take was on how Scrum
treads the line between keeping the customer happy by incorporating changes and at the same time
keeping the promise of delivering the functionality at a fixed data as promised at the start of the Sprint. In
his reply, Jeff Sutherland mentioned the use of “Dynamic scrum” whereby the backlog is managed in real
time and the consequences of delivery date getting late are known to all instantaneously. The Product
Steering Committee is responsible for making changes to the backlog and developers focus only on the
items that are part of the backlog. “Dynamic Scrum requires total automation of backlog so current state
can be viewed in real time in a single system that everyone uses. Change impact can be seen in real time.
This is similar to Cisco's claim to be able to balance their books in real time at any time. It is not
recommended without this high level of automation.” [7]

In a separate message, Mike Cohn suggested that the Product Owner should be asked two sprints ahead
if there could be more changes needed from what has already been decided and date is given to the
Product Owner to think about it. This, Mr. Cohn suggests, “helps avoid abnormally terminating a sprint (or
having bad feelings about what did/didn’t get done in a sprint.” [8]

Page 86

DSDM Volume V, Issue 1
Mike Griffiths - Editor

8. Contrasting DSDM and Scrum for Mid-lteration Requirements Changes

As we have seen in the discussion about requirements handling of the two methodologies, DSDM is more
flexible in terms of incorporating changes. Based upon MoSCoW prioritization, where 60 percent of the
requirements are Must have and the remaining are Should haves and Could haves, the team can replace
the non-showstoppers with the most pressing requirements if they must be included in the current
iteration. Of course, this must be with the assumption that the person defining the priority of the
requirement to be incorporated knows the definition of a Must have requirement (see section “Everything’s
a Must Have” above). If the users are just concerned about their narrow area of work and do not see the
overall benefits of the project and categorize everything as high priority, then it will be very easy to loose
sight of the goals for the project. However, there is an aspect of planning required on the part of the
development team to be able to accommodate the requested change. There is no mention in the literature
researched about the cases when there is a deadlock sort of situation where the new requirement is
highly critical but trying to accommodate it in the iteration would surely result in a delayed iteration,
something that is a taboo in DSDM.

Scrum, in contrast to DSDM, uses the highest priority items from the Product Backlog to form the sprint
backlog. Once the sprint backlog is decided upon, the team “insulates” itself from changes for the duration
of the current Sprint. The changes requested in the mid-iteration form part of the next sprint backlog. This
approach has it pros and cons. A pro being that the team is not distracted from dealing with high-priority
issues with something like “functional enhancements”. A con, on the other hand, could be that a high-
priority may have to wait until the Sprint is over. However, as mentioned above, the choice must be left to
the product owner whether to abnormally terminate the current Sprint or wait for a couple of weeks for the
Sprint to get over and then re-evaluate the Product Backlog.

9. Conclusion

Agile methodologies such as DSDM and Scrum are built around the best practices that have been around
for quite some time. These practices have been formalized in these light-weight Agile methodologies. The
proponents of these methodologies are not selling them as silver bullets, but only as guidelines with the
assumption that the implementers will customize according to their needs. Requirements will invariably
change as the needs of the businesses change. If the business could get what they wanted when they
wanted, there won’t be any change requests. | do not see how this can be done (or else we won’'t be
discussing all this). Unfortunately, there is a time lapse between when a project is initiated and when it is
delivered. What we can try to do is be flexible in the way we develop software so that we not only
welcome change, but encourage it.

Scrum and DSDM offer very contrasting ways of handling requirements changes and each has its
merits. Therefore, it is hard to tell which is better. It really depends on the situation and the customer you
are dealing with. What is common in these methodologies, and in fact amongst Agile methodologies, is
importance of user involvement and customer education. If the customer is educated, he/she would not
make unrealistic demands. If they still insist on demands that are unrealistic, then they should be made
aware of consequences their decisions may have. It is our duty to educate our users and customers. If the
customer is better informed of what is involved, chances are that they will cooperate in the development
effort. After all, who does want to be part of a successful project?

10. References

[1] Development: Empirical or Planned?
http://www.controlchaos.com/debate.htm

[2] K. Beck, eXtreme Programming eXplained, Addison-Wesley, Reading, Massachusetts, 2000

[3] Developing a Prioritized Requirements List (PRL) http://www.dsdm.org/timebox/issue9/prl.asp

[4] K. Barron & M. Simmonds, Everything’s a Must Have.
http://www.dsdm.org/timebox/newsletter7/musthaves.asp

Page 87

[5] The Scrum Development Process
http://www.mountaingoatsoftware.com/scrum/

[6] Scrum Principle: Backlog work can come from many sources, but only one person prioritizes it. Case
Study 1. http://www.controlchaos.com

[7] Scrum mailing list message
http://groups.yahoo.com/group/scrumdevelopment/message/2888

[8] Scrum mailing list message,
http://groups.yahoo.com/group/scrumdevelopment/message/2895

Page 88

DSDM
Mike Griffiths - Editor

Volume V, Issue 1

Dealing with resistance to the DSDM approach

Kevin Barron Independent Consultant and Neil Bennett Xansa

Resistance is futile! unfortunately not always true when it comes to introducing DSDM into
an organisation. This stage brings with it many challenges. In fact there is an entire white
paper from the DSDM Consortium dedicated to this issue. The issues and solutions
documented below came out of a workshop we ran at a DSDM Roadshow and represent the
experiences of many users of DSDM. Of course there will be times there is no way round the
resistance and you will concede defeat if you want to keep the client. But hopefully some of

the solutions offered below will help you overcome resistance in many cases.

ISSUE

POSSIBLE SOLUTION(S)

Lack of customer commitment at ground level.

Resistance to changes in requirements.

Use Impartial facilitation. Schedule some facilitated
workshops to get everyone involved and get buy in
from all stakeholders.

A Timebox? That’s just another deadline!!

Implement the idea of personal time boxing this may
carry over into the project.

Timeboxed to death.

Time boxing requires dedication people may need
reminding of this.

Unrealistic time boxing and lack of necessary
prioritization.

I've been doing this job for 30 years and I've never
planned my time yet!

Provide some examples of best practice to show the
real business benefits of timeboxing.

Great in theory but...

Things are hard enough without introducing a
methodology.

Don’t sell the methodology sell the logic. Run some
overview sessions and where possible practical
sessions. Provide formal/informal training. Get some
user groups started. Make sure you are educating
the right people.

Inability to prioritize.

Focus on the business needs when you are
prioritizing.

We don’t have the skill/training or budget.

Provide support via DSDM clinics (health checks).

We'll have to send everyone on another
Course and frankly we don’t have the time or the
budget.

Use a focused rollout and organic growth. Get some
Key projects or Internal Projects then once these are
successful build on these. Focus on business benefit
achieved in your chosen projects

Change fatigue.

Rollout by stealth. Don’t over publicize in this case.
Do the softly, softly approach until you have positive
buy in.

Project team members not adopting the roles.

Pick the right people for the early projects with the
right skills. Mix DSDM and non-DSDM resources &
encourage knowledge transfer.

Organisation makes a token gesture to do DSDM.

Get tough. Be clear in business terms, on
risks/benefits). Raise issues. Don’t understate
priority. Be clear on requirements. Be prepared to
de-commit.

Page 89

Upcoming DSDM Events

Event: London DSDM Roadshow

Dates: 20 May, 2004

Type of event: Roadshow

Location: Hilton Paddington, London, UK

Organized by: DSDM Consortium

Contact: Linda@dsdm.org

More information: http://www.dsdm.org/en/about/agm2004.asp

Page 90

AGILE MANIFESTO VALUES:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

While there is value in the items on the right, we value the items on the left more.

www.adilealliance.org

Page 91

