Agile Adoption and the
Software Value Chain

Saturday, September 12
AgileChina 2009

’Eﬁ% HE Rz
InfoQ

The Agile Manifesto (February 13, 2001)

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck / Mike Beedle / Arie van Bennekum / Alistair Cockburn / Ward Cunningham / Martin Fowler
James Grenning / Jim Highsmith / Andrew Hunt / Ron Jeffries / Jon Kern / Brian Marick / Robert C. Martin
Steve Mellor / Ken Schwaber / Jeff Sutherland / Dave Thomas

i http://agilemanifesto.org Thoughtworks

Why Agile?

Why do we need better ways of
developing software?

ThoughtWorks:

Why do we need software process?

Since computers were first invented...

o Business has wanted: o Programmers have wanted:

o Predictable schedule o Clear and complete
o Predictable budget specifications

> Lots and lots of features o Sufficient resources

o Sufficient time

o Business has delivered: o Programmers have delivered:

o Unclear and incomplete o Missed deadlines

ification
>pecitications o Unforeseen costs

o Budget cuts o Lots and lots of bugs

ThoughtWorks’

o Schedule pressure

Moral:
Nobody wants uncertainty

Successful software development delivers
predictable functionality for a predictable
budget on a predictable schedule

ThoughtWorks:

Solution: The Waterfall approach

o If you can give us a complete specification
a We can tell you how long it will take to build
a And how much it will cost to build

But...

o What you specify won't necessarily be what you need
o When it is finally built, your needs may have changed

o By the time you find out, it will likely be too late to limit
your lost time and money

ThoughtWorks’

So, does Waterfall
eliminate the uncertainty?

Does it eliminate the right uncertainty?

ThoughtWorks:

New moral:
Successful software recovers
the costs of production

Waterfall process does not provide
certainty of success

ThoughtWorks:

The Agile Manifesto (February 13, 2001)

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck / Mike Beedle / Arie van Bennekum / Alistair Cockburn / Ward Cunningham / Martin Fowler
James Grenning / Jim Highsmith / Andrew Hunt / Ron Jeffries / Jon Kern / Brian Marick / Robert C. Martin
Steve Mellor / Ken Schwaber / Jeff Sutherland / Dave Thomas

http://agilemanifesto.org

ThoughtWorks’

The Agile Manifesto:
Value over Predictability

ThoughtWorks:

Solution: The Agile approach

a If you actively participate in our process

a We will give you working code soon, and frequently

a According to your most immediate, highest value needs
o And adjust to your changes quickly and cheaply

But...

o We can't predict the distant future

o So we won't be able to tell you for certain what exactly
your budget will buy, within your schedule

a Until we get there

ThoughtWorks’

Benefits of the Agile approach

o Shorter time from project conception to code In
production means investment in development
resources sees quicker return to business value

o At any given point in time, investment in development
resources is being spent on greatest business value

a At any point in time, resources can be reallocated to
higher priority or more valuable functionality

o Any discrepancy between stated and actual business
requirements can be detected and remedied within
weeks

ThoughtWorks’

Agile process overview

Q

Project scope is decomposed into small, testable,
iIndependent units of functionality, called “stories”

Developers estimate effort to implement stories, and
the customer prioritizes stories by business value

Development activity is divided into short cycles
(typically one to four weeks each), called “iterations”

Each iteration, the customer selects stories for
development by value and expected effort

Each iteration, developers implement and deliver the
selected stories to the customer

ThoughtWorks’

User Stories

o User Stories are the fundamental unit of Agile software
development

o Stories form the basis for metrics and planning

o Stories are the “common currency” between business
and developers

o Good stories provide the foundation for successful*
software development

o Good stories satisfy “INVEST”

ThoughtWorks’

INVEST: Independent

o Business value stands on its own merit

o The Agile contract with business states business may
choose any story in any iteration

a ...0r choose none at all (cancel project at any time)
a Story should be worth doing in isolation

o Should be possible to implement story in isolation

o Not always possible, but should always be a goal

ThoughtWorks’

INVEST: Negotiable

o Clear distinction between “essential” and “incidental”

o Essential aspects are required for business value

o Incidental aspects allow for the discretion of developers
(i.e. negotiable)

o Business analysis determines what is essential and
what is negotiable, and this is made explicit prior to
development

ThoughtWorks’

INVEST: Valuable

o Business value is tangible and immediate

o Business analysis should, ideally, be able to trace value
back to business value drivers (revenue, cost, risk)

o ldeally, business analysis should be able to quantify
value (e.g. business case)

ThoughtWorks

INVEST: Estimable

o Implementation effort can reasonably be foreseen

o Importance of “essential” vs. “incidental” negotiation

o Importance of completeness and accuracy of
acceptance criteria

ThoughtWorks’

INVEST: Small

a Scope is limited to the minimum immediate,
Independent value

o Decomposing large stories into smaller stories with
Independent value is a key business analysis skill

o Be clear on the distinction between “small” stories and
“large” acceptance criteria

o A story will have multiple essential acceptance criteria
o A story will satisfy INVEST

ThoughtWorks’

INVEST: Testable

o Successful completion can be demonstrated objectively

o Test plans help define stories; business analysis should
coordinate with quality analysis

o Tests are how developers know they’re done

o The quality of story testability contributes directly to
the efficiency and reliability of the development process

ThoughtWorks’

The Software Lifecycle
Value Chain

ThoughtWorks:

Software lifecycle overview

Time to recover cost of production >|

Approval
1N

7

Users

[Requirements

.

I Roll-out |
)

14 14 - - -
. mmissionin
Devel:pmen Maintenance Deco \

Initial programming (~5%)

g ThoughtWorks’

Local vs. global process inefficiency

o Local inefficiency
o Production of output of a single stage is inefficient

o Output does not create inefficiencies for later stages

o Example: decisions are delayed because it is hard to
coordinate schedules of decision makers

a Global inefficiency

o Output of a stage creates inefficiency for downstream
stages

o Example: Decision makers decide to make the wrong stuff
o Building the wrong software is the worst kind of waste

ThoughtWorks’

Local process inefficiency

Time to recover cost of production

7

Users

[Requirements

.

I Roll-out |

14 4 - - -
Devel:pmen Maintenance Decom|55|on|n

—>| |<— 50% wasted effort in approval process

g ThoughtWorks’

Global process inefficiency

Time to recover cost of production

4)
Users

[Requirements

_ J

|<— 50% wasted effort approving the wrong software

_,l

- — ThoughtWorks

Global process inefficiency

Time to recover cost of production >|

50% wasted effort requesting the wrong requirements —>|

- — ThoughtWorks'

Local inefficiency in programming

Time to recover cost of production >|

Approval
1N

7

Users

[Requirements

.

I Roll-out |
)

4 4 .
. ommissionin

Initial programming (~5% x 50%)

- e ThoughtWorks’

Agile Principles and Practices

ThoughtWorks:

Agile principles and practices

o Agile principles align with “Lean” principles
o Accelerate feedback

o Increase quality
o Reduce waste

o “Efficiently produce high quality, high value software”
o Agile practices advance Agile principles
o Agile practices reinforce each other

o Agile practices interact with organizational practices

o (for better, or for worse...)

ThoughtWorks’

Mutually reinforcing Agi

Face-to-Face

Standups
Team

Retrospectives

le practices

| *\‘\
/ / — Collective
Sustainable Ownership
Pace. TN\ ‘ »{/i/ A
Common Short Continuous
Vision Releases \ Integration
Customer \ T;\t Dri
Collaboration Iterative Simblicity <—— Refactorin st-Driven
Planning P y g Design
INVEST | / \ \\ /
User Story — Lo-fi _ Pair __, OOD/Design
Lifecycle Prototyping Pngrammmg Patterns

ThoughtWorks’

Core practices

Retrospectives Face-to-Face Standups

N A o S

— Collective

Sustainable _ Ownership
Pace r \
Common Short Continuous
Vision Releases Integration
Customer \ ,/ \ .
Collaboration Iterat_nve Simplicity Refactoring Test-Qrwen
Planning Design
INVEST | 1\\ /
User Story — Lo-fi _ Pair __, OOD/Design
Lifecycle ™ Prototyping Programmmg Patterns

ThoughtWorks’

Development practices

Retrospectives Face-to-Face

Standups

Team
| *\‘\
/ / —s Collective
Sustainable Ownership
Pace \ ' / | __—
Common Short Continuqus
Vision Releases Integration
Customer \ \ .
Collaboration Iterative Test-Driven

Planning

INVEST |
User Story — Lo-fi

Lifecycle

Prototyping

Simpljcity «<4— Refactoring Design
N

DAW4

Pair __, OOD/Design
Programmlng Patterns

Project management practices

Face-to-Face

Team
|

|

Standups

e
o

Retrospectives

|

— 2\

—

Collective

Sustainable Ownership
Pace ' _—
Common Short Continuous
Vision Releases Integration
Customer _ \ \ .
Collaboration Iterative Simplicity <—d— Refactoring Test-Driven
Planning Design
/ \\ \ /
INVEST | \
User Story Lo-fi Pair __, OOD/Design
Lifecycle Prototyping Programmmg Patterns

ThoughtWorks’

Business analysis practices

Face-to-Face Standups

Retrospectlvei Team
l | *\‘\

/ / — Collective

Ownership

Sustainable
Pace N ‘ »{/$/ f N
Common Short Continuqus
Vision Releases Integration
Customer \ ,/ \
Test-Driven

ollaboration

Simplicity «<4— Refactoring Design

™/

Pair __, OOD/Design
Programmlng Patterns

INVEST

Lo-fi
Prototyping

User Story
Lifecycle

ThoughtWorks’

Agile Practice: Common Vision

What it is: Helps alleviate:
All key stakeholders (sponsors, users, Wasted time and development resources

developers) in the software development due to conflicting understanding of
process Iteratively converge on a common Problem, solution, or priorities amongst
understanding of project objectives, stakeholders.

constraints, and priorities. .
Common adoption challenges:

How it works:

Stakeholders are unable to commit or

Stakeholders see, assess, and provide coordinate time for participation.

feedback following the iterative

development cycle, Stakeholders are unable to agree on
project objectives, constraints or

Multiple feedback and communication priorities.

opportunities are built into the process.

ThoughtWorks’

Agile Practice: Short Releases

What it is:

Working software is released to
production frequently during the course of
the software development project.

How it works:

Project scope is decomposed into smaill,
independently-releasable groupings.

Development practices focus on
minimizing overall time to production-
ready code,

Helps alleviate:

Wasted value of unused, but paid-for
work-in-progress software,

Uncertainty of the suitability for purpose

of work-in-progress software in the
production environment.

Common adoption challenges:

Requirements gathering and analysis
process is too cumbersome for frequent
small releases.

Infrastructure or deployment processes
are too cumbersome for frequent small
releases.

ThoughtWorks’

Agile Practice: Iterative Planning

What it is:

Helps alleviate:

Project planning is adapted iteratively .
based on new information collected over ~ Late surprises of over-schedule or over-
the course of the project. budget delivery.

How it works: Wasted investment in low-priority or
- obsolete functionality

Project productivity (“velocity”) metrics

are collected as working software is Common adoption challenges:
completed, and used to refine earlier o .
projections of scope and schedule. Sponsor organization requires longer

planning and approval cycles,

Prioritization of scope is iteratively o .
adjusted and replanned based on evolving SPONsor organization requires
stakeholder needs and cost-benefit cumbersome replanning processes.

analyses,

ThoughtWorks’

Agile Practice: Simplicity

What it is:

Software that is (relatively free) from
waste, duplication, and complexity.

How it works:

Software development processes focus on
producing only necessary code, just-in-
time.

Software development processes focus on
iteratively removing complexity from
finished code.

Helps alleviate:

High cost of change for software in
production.

High risk of change (fragility) for software
in production

Common adoption challenges:

Sponsors are unwilling to budget for up-
front costs of development practices
supporting simplicity.

Software developers lack necessary
training or design skills.

Requirements process requires up-front
“over-engineering”.

ThoughtWorks’

Agile Practice: Customer Collaboration

What it is:

The project sponsors and end users are
“part of the team”, continuously involved
in guiding the development process over
the course of the project.

How it works:

Business analysts and project managers
have frequent (daily), informal, face-to-
face interaction with business
stakeholders.

Communication between development
team members and relevant business
stakeholders is lightweight, ad hoc, and
goal-specific.

Helps alleviate:

Wasted time or development effort due to
incorrect or unclear understanding of
actual business objectives, constraints or
priorities.

Common adoption challenges:

Communication practices in the sponsor
organization are too cumbersome.

Sponsor organization culture discourages
integration of business stakeholders with
development activities.

Business stakeholders have inadequate
time to engage with development team.

ThoughtWorks’

— -"""f-

Agile Practice: Standups

What it is:

A short, focused daily meeting for all
development team members to
communicate work status.

How it works:

Participants stand up, to encourage
efficiency and focus of communication.

Each team member reports: yesterday's
tasks completed, today's planned tasks,
and any issues impeding progress.

Helps alleviate:

Misalignment of individual efforts with
team objectives.

Wasted time due to stalled tasks.

Hidden risks or issues affecting project
delivery.

Common adoption challenges:

Inconsistent focus on communication of
relevant items.

Sidetracking.

Participation of team observers
(“pigs vs. chickens")

ThoughtWorks’

Agile Practice: Face-to-face Team

What it is:

Software development team members
work in a common space, face-to-face.

How it works:

A common space is provided containing
all the suppeorting facilities for software
development, and all the team members
work together in that space, rather than

spread out in separated areas or cubicles.

Helps alleviate:

Lack of “situational awareness” by team
members of development status: task
progress, hew issues, etc.

Delays and miscoordination due to
inefficient, high-latency communication.

Unfocused activity of individual team
members

Common adoption challenges:

Sponsor organization lacks suitable
facilities.

Sponsor organization culture does not
suppeort collective workspace practices.

ThoughtWorks’

Agile Practice: Retrospectives

What it is:

At the end of each iteration and release,
team members and interested
stakeholders review processes and
lessons learned.

How it works:

Team members review what went well
and what went less well during the just-
completed delivery milestone,

Team members identify what practical
improvements could be made in process
or support to improve performance during
the subsequent delivery milestone.

Helps alleviate:

Avoidable waste and delays due to
process inefficiencies or lack of
appropriate support.

Common adoption challenges:

Participants fail to accurately identify root
causes and solutions.

Team individually or collectively fails to
follow up on improvements identified
during prior retrospectives.

Sponsor organization is unsupportive of
improvements identified during
retrospectives.

ThoughtWorks’

Agile Practice: Collective Ownership

What it is:

All development artifacts are the
collective responsibility of the respective
roles on the development team.

How it works:

Programmers share responsibility for all

software, not just the software they wrote.

Business analysts and quality analysts
share responsibility for all acceptance
criteria and test plans, not just the ones
they wrote.,

Tools and processes support
communication and coordination of
activities to avoid conflicts..

Helps alleviate:

Development delays due to concentration
of required tasks in areas “owned” by one
individual (“bottlenecks”).

Delivery risk due to unavailability of an
“owner"” of a critical area (“bus factor”).

Common adoption challenges:

Team culture doesn't support collective
owhership and responsibility.

Tool and process support is inadequate,
leading to inefficiencies and conflicts.

ThoughtWorks’

Agile Practice: Sustainable Pace

What it is:

The allocation of tasks to software
development team members over the
course of the project is continuously
balanced with a healthy, sustainable
workload.

How it works:

Iterative project metrics are used to
measure the natural throughput of the
development team.

Iterative planning is used to balance the
workload with the team throughput.

Helps alleviate:

Inefficient team utilization due to
- unfocused task tracking
- task under-assignment
- “rush” production (low-quality output)
- over-assignment (burnout).

Common adoption challenges:

Project sponsors insist on a consistently
unhealthy, unsustainable workload.

Undisciplined project management is
unable to iteratively balance workload
with throughput.

Undisciplined team processes fail to yield
reliable project throughput metrics.

ThoughtWorks’

Agile Practice: User Story Lifecycle

What it is: Helps alleviate:
The functional scope of a software Underutilization of various roles at various

development project is decomposed into Stages of software development.

granular units, known as “stories”. . . .
Inflexible planning or replanning of work

Each story passes through a series of in progress.
processing stages, from story o . .
identification to production release. Large-scale surprises in required time or

effort for planned scope.
How it works:

Common adoption challenges:

The software development process is o o
organized as a story processing pipelinel Inadequate tralnlng Qor COlordlnatllon Of
team members leads to ineffective

Each role has responsibility for processing handoff of pipeline stages.

a story at specific stages. . . .
Stories are not defined at an appropriate

Pipeline throughput forms the basis for size for efficient processing.
project metrics and planning.

ThoughtWorks’

Agile Practice:

What it is:

Low-fidelity Prototyping

Helps alleviate:

Rapid, iterative design of user interaction Wasted effort developing application

and user interface layout using

functionality or interaction that doesn't

whiteboard, pen-and-paper or computer address immediate end-user requirements

drawing application.

How it works:

or expectations.

Hard-to-use (i.e. expensive to train) user
interfaces for developed software.

Business analysts and user interaction C doopti hall .
designers work collaboratively with end ommon adoption chalienges:

users to brainstorm, consolidate, and

refine designs.

Insufficient skills or training for business
analysts and user-interaction designers.

Once the low-fidelity prototypes are .

finalized, they are attached as acceptance |nadequate expectation management of
criteria for the respective user stories, for the (large) gap between a completed
the programmers to reference in their prototype and completed software.

implementation.

ThoughtWorks’

Agile Practice: INVEST

What it is:

All stories entering the software
development pipeline satisfy the INVEST
criteria: Independent, Negotiable,
Valuable, Estimable, Small, Testable

How it works:

Business analysts work with business
stakeholders to decompose project scope
into stories that satisfy INVEST, and use
the INVEST criteria as the basis for writing
story acceptance criteria and test
planning.

Helps alleviate:

Inefficient development effort for stories
that are too big, too small, too vague, or
unimportant.

Confusion and misunderstanding about
the intent of a story in development.

Common adoption challenges:

Insufficient skills or training for business
analysts.

Business stakeholders are unable to
communicate INVESTable requirements
with business analysts.

ThoughtWorks’

Agile Practice: Pair Programming

What it is:

Programmers work together in pairs on
programming tasks, using a shared
development workstation.

How it works:

A pair of programmers signhs up for a
development task.

At any given time, one programmer has
control of the mouse and keyboard, and
the other observes and provides
feedback.

Control alternates periodically.

Helps alleviate:

Wasted time and development effort due
to simple mistakes.

Concentrated “ownership” of code.,

Unclear or avoidably complex software
design or implementation.

Common adoption challenges:

Team culture does not suppeort pair
programming.

Inadequate or inappropriate physical
facilities for pair programming.

Inappropriate pair balancing or

ThoughtWorks’

assignment.

Agile Practice: Refactoring

What it is:

Programmers improve the internal
implementation or organization of
software without changing its functional
behavior.

How it works:

During the course of development, as new
features are added to software, earlier
desigh or implementation decisions may
prove inappropriate,

When this occurs, programmers make
iterative modifications, verified by tests,
toward a more appropriate design or
implementation, reusing as much of the
original code as practical.

Helps alleviate:

Wasted programmer effort due to working
with an accumulated code base that is
excessively complicated or fragile.

Slow time to production due to “fix one
bug, add one bug” phenomenon.

Common adoption challenges:

Programmers lack appropriate skills or
training.

Software code base lacks comprehensive
test coverage to allow for safe refactoring.

Project sponsor is unwilling to allocate
resources for refactoring.

ThoughtWorks’

Agile Practice: OOD / Design Patterns

What it is: Helps alleviate:
Programmers organize the design and Fragile, complicated, hard-to-modify

implementation of software according to software.

standard design principles.
Hard-to-understand software,

How it works:

Wasted effort in “reinventing the wheel".
Programmers use Object-Oriented Design

(OOD) to segregate and specify the Common adoption challenges:
responsibilities (concerns) of the code in . .
alignment with the underlying business Programmers lack appropriate skills or
functionality. training.

Programmers use design patterns as well- An unsustainable pace leads to rushed
understood, “best practice” solutions to implementations with unclean design.
commeon problems they encounter.

ThoughtWorks’

Agile Practice: Test-Driven Design

What it is:

Developers define the functionality of the
system in the form of automated tests.

The design of the system is driven by the

natural flow and structure of these
automated tests.

How it works:

Developers first translate and formalize
the story acceptance criteria into
automated tests, then implement
software to make the tests pass.
opportunities are built into the process.

Helps alleviate:

Hard-to-test, hard-to-modify software.

Software with excessive defects.

Common adoption challenges:

Programmers lack appropriate skills or
training.

Project sponsors are unwilling to invest in
comprehensive automated tests.

ThoughtWorks’

Agile Practice: Continuous Integration

What it is:

Automatic tools continuously verify the
software in development is working and
functionally correct.

How it works:

As programmers commit modifications to
the software, a software agent detects the
meodification, and automatically builds and
integrates the modifications with the
complete system, and runs a suite of tests
verifying system integrity.

Helps alleviate:

Wasted time and development resources
due to tracking down the modification
responsible for broken functionality.

Delays releasing to production due to long
post-development testing periods.

Common adoption challenges:

Inadequate tool or environment support.

Poor programmer discipline for test
writing and maintenance.

ThoughtWorks’

Exercise: Agile Adoption Planning

a As a group, select three Agile practices for StarHub pilot
Implementation (5 min.)

o Prioritize on cost-benefit basis

o For each of the three selected Agile practices, develop
an implementation plan (10-15 minutes), including:

o Resources required

o Time required

o Adoption challenges
o Required participants

o Each group selects one person to summarize plan
(2-5 minutes each)

ThoughtWorks’

Introduction to Agile Enablement
and Organizational Transformation

ThoughtWorks:

Process improvement overview

o Assess the “as-is” process

a ldentify small, specific process improvement
opportunities (“stories”)

o Prioritize process improvement stories according to
business value and implementation effort

o Make a plan

a Implement the selected improvements, adjusting the
plan iteratively

o Review and reassess

ThoughtWorks’

Agile process assessment

ThoughtWorks® has developed an assessment model that evaluates
the capability of a software development process along a number of
dimensions of interest. This framework provides a comprehensive

overview of all aspects of Agile practice.

These dimensions include:

o Testing 0
o Configuration Management 0
o Shared Responsibility 0
o Collaboration 0

o Responsiveness

Requirements
Simplicity
Governance

Lean Alignment

ThoughtWorks’

Testing

Tests provide the safety net that allows Agile projects
to proceed at a rapid pace.

Commitment to testing is reflected in the systematic

maintenance of comprehensive automated test suites,
and vigilant remediation of regressions that cause
tests to fail.

ThoughtWorks’

Configuration Management

Large, rapid changes of a common code base by
multiple developers are a normal characteristic of
Agile software development.

A Configuration Management system of tools and
practices should support large, efficient modifications
without “breaking the build”.

ThoughtWorks’

Shared Responsibility

Team flexibility and cooperation support an efficient
and resilient process. Pigeon-holed knowledge or

skills are potential bottlenecks or single points of
process failure

Pair programming and “just-in-time” work assignments
are signs of the extent to which the team, not
individuals, owns the work.

ThoughtWorks’

Collaboration

Communication and collaboration among project
stakeholders allows rapid and accurate delivery of
business value.

A collaborative development process is supported
by co-location, tools, and other practices. At the
highest levels, there is continuous involvement of
the users and business sponsors.

ThoughtWorks’

Responsiveness

The term “Aqile” originally referred to the ability of
the customer to quickly modify their requirements
In response to changing business circumstances.

Responsiveness measures the speed and quality
with which requirements changes are accommodated.

ThoughtWorks’

Requirements

Requirements are an explicit definition of business
value.

The software development process delivers the
greatest business value when requirements are
developed with the participation of actual users
and prioritized by value on a just-in-time basis.

ThoughtWorks’

As the design and implementation of the software
becomes more simple, incremental changes to the

functionality become more efficient and less risky.

This produces greater flexibility in adapting to
changing business requirements, which means less
(potentially wasted) investment needs to be made

In attempting to anticipate such requirements in
advance.

ThoughtWorks’

Governance

The more adaptive the project planning and
management practices, the more closely the
software development process will be able to track
changing business priorities and accommodate
unforeseen challenges or opportunities.

The ultimate objective is the efficient real-time
integration of the software development process
with business planning and management.

ThoughtWorks’

Lean Alignment

Agile software development practices complement
lean management objectives.

Waste in the software deve
cause, and may be caused
the end-to-end business va

opment process may
0y, waste elsewhere In

ue stream.

Systematically identifying, tracking, and eliminating

such waste improves overall organizational

productivity.

ThoughtWorks’

Thank you!

www.thoughtworks.com

ThoughtWorks:

