
Agile Adoption and the
Software Value Chain

Saturday, September 12
AgileChina 2009

The Agile Manifesto (February 13, 2001)

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck / Mike Beedle / Arie van Bennekum / Alistair Cockburn / Ward Cunningham / Martin Fowler
James Grenning / Jim Highsmith / Andrew Hunt / Ron Jeffries / Jon Kern / Brian Marick / Robert C. Martin

Steve Mellor / Ken Schwaber / Jeff Sutherland / Dave Thomas

http://agilemanifesto.org

Why Agile?

Why do we need better ways of
developing software?

Why do we need software process?

Business has wanted:

Predictable schedule

Predictable budget

Lots and lots of features

Business has delivered:

Unclear and incomplete
specifications

Budget cuts

Schedule pressure

Programmers have wanted:

Clear and complete
specifications

Sufficient resources

Sufficient time

Programmers have delivered:

Missed deadlines

Unforeseen costs

Lots and lots of bugs

Since computers were first invented...

Moral:
Nobody wants uncertainty

Successful software development delivers
predictable functionality for a predictable

budget on a predictable schedule

Solution: The Waterfall approach

If you can give us a complete specification

We can tell you how long it will take to build

And how much it will cost to build

What you specify won't necessarily be what you need

When it is finally built, your needs may have changed

By the time you find out, it will likely be too late to limit
your lost time and money

But...

So, does Waterfall
eliminate the uncertainty?

Does it eliminate the right uncertainty?

New moral:
Successful software recovers

the costs of production

Waterfall process does not provide
certainty of success

The Agile Manifesto (February 13, 2001)

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck / Mike Beedle / Arie van Bennekum / Alistair Cockburn / Ward Cunningham / Martin Fowler
James Grenning / Jim Highsmith / Andrew Hunt / Ron Jeffries / Jon Kern / Brian Marick / Robert C. Martin

Steve Mellor / Ken Schwaber / Jeff Sutherland / Dave Thomas

http://agilemanifesto.org

The Agile Manifesto:
Value over Predictability

Solution: The Agile approach

If you actively participate in our process

We will give you working code soon, and frequently

According to your most immediate, highest value needs

And adjust to your changes quickly and cheaply

We can't predict the distant future

So we won't be able to tell you for certain what exactly
your budget will buy, within your schedule

Until we get there

But...

Benefits of the Agile approach

Shorter time from project conception to code in
production means investment in development
resources sees quicker return to business value

At any given point in time, investment in development
resources is being spent on greatest business value

At any point in time, resources can be reallocated to
higher priority or more valuable functionality

Any discrepancy between stated and actual business
requirements can be detected and remedied within
weeks

Agile process overview

Project scope is decomposed into small, testable,
independent units of functionality, called “stories”

Developers estimate effort to implement stories, and
the customer prioritizes stories by business value

Development activity is divided into short cycles
(typically one to four weeks each), called “iterations”

Each iteration, the customer selects stories for
development by value and expected effort

Each iteration, developers implement and deliver the
selected stories to the customer

User Stories

User Stories are the fundamental unit of Agile software
development

Stories form the basis for metrics and planning

Stories are the “common currency” between business
and developers

Good stories provide the foundation for successful*
software development

Good stories satisfy “INVEST”

INVEST: Independent

Business value stands on its own merit

The Agile contract with business states business may
choose any story in any iteration

…or choose none at all (cancel project at any time)

Story should be worth doing in isolation

Should be possible to implement story in isolation

Not always possible, but should always be a goal

INVEST: Negotiable

Clear distinction between “essential” and “incidental”

Essential aspects are required for business value

Incidental aspects allow for the discretion of developers
(i.e. negotiable)

Business analysis determines what is essential and
what is negotiable, and this is made explicit prior to
development

INVEST: Valuable

Business value is tangible and immediate

Business analysis should, ideally, be able to trace value
back to business value drivers (revenue, cost, risk)

Ideally, business analysis should be able to quantify
value (e.g. business case)

INVEST: Estimable

Implementation effort can reasonably be foreseen

Importance of “essential” vs. “incidental” negotiation

Importance of completeness and accuracy of
acceptance criteria

INVEST: Small

Scope is limited to the minimum immediate,
independent value

Decomposing large stories into smaller stories with
independent value is a key business analysis skill

Be clear on the distinction between “small” stories and
“large” acceptance criteria

A story will have multiple essential acceptance criteria

A story will satisfy INVEST

INVEST: Testable

Successful completion can be demonstrated objectively

Test plans help define stories; business analysis should
coordinate with quality analysis

Tests are how developers know they’re done

The quality of story testability contributes directly to
the efficiency and reliability of the development process

The Software Lifecycle
Value Chain

Software lifecycle overview

Management

Users

IT team

Requirements

Approval

Roll-out

Maintenance Decommissionin
g

Initial programming (~5%)

Developmen
t

Time to recover cost of production

Local vs. global process inefficiency

Local inefficiency

Production of output of a single stage is inefficient

Output does not create inefficiencies for later stages

Example: decisions are delayed because it is hard to
coordinate schedules of decision makers

Global inefficiency

Output of a stage creates inefficiency for downstream
stages

Example: Decision makers decide to make the wrong stuff

Building the wrong software is the worst kind of waste

Local process inefficiency

Management

Users

IT team

Requirements

Approval

Roll-out

Maintenance Decommissionin
g

50% wasted effort in approval process

Developmen
t

Time to recover cost of production

Global process inefficiency

Management

Users

IT team

Requirements

Approval

Roll-out

Maintenance Decommissionin
g

50% wasted effort approving the wrong software

Developmen
t

Time to recover cost of production

Global process inefficiency

Management

Users

IT team

Requirements

Approval

Roll-out

Maintenance Decommissionin
g

50% wasted effort requesting the wrong requirements

Developmen
t

Time to recover cost of production

Local inefficiency in programming

Management

Users

IT team

Requirements

Approval

Roll-out

Maintenance Decommissionin
g

Time to recover cost of production

Initial programming (~5% x 50%)

Developmen
t

Agile Principles and Practices

Agile principles and practices

Agile principles align with “Lean” principles

Accelerate feedback

Increase quality

Reduce waste

“Efficiently produce high quality, high value software”

Agile practices advance Agile principles

Agile practices reinforce each other

Agile practices interact with organizational practices

(for better, or for worse…)

Mutually reinforcing Agile practices

Customer
Collaboration

Common
Vision

Iterative
Planning

Simplicity

INVEST

Refactoring
Test-Driven

Design

OOD/Design
Patterns

Pair
Programming

Lo-fi
Prototyping

User Story
Lifecycle

Face-to-Face
Team

Standups

Collective
Ownership

Continuous
Integration

Short
Releases

Sustainable
Pace

Retrospectives

Core practices

Customer
Collaboration

Common
Vision

Iterative
Planning

Simplicity

INVEST

Refactoring
Test-Driven

Design

OOD/Design
Patterns

Pair
Programming

Lo-fi
Prototyping

User Story
Lifecycle

Face-to-Face
Team

Standups

Collective
Ownership

Continuous
Integration

Short
Releases

Sustainable
Pace

Retrospectives

Development practices

Customer
Collaboration

Common
Vision

Iterative
Planning

Simplicity

INVEST

Refactoring
Test-Driven

Design

OOD/Design
Patterns

Pair
Programming

Lo-fi
Prototyping

User Story
Lifecycle

Face-to-Face
Team

Standups

Collective
Ownership

Continuous
Integration

Short
Releases

Sustainable
Pace

Retrospectives

Project management practices

Customer
Collaboration

Common
Vision

Iterative
Planning

Simplicity

INVEST

Refactoring
Test-Driven

Design

OOD/Design
Patterns

Pair
Programming

Lo-fi
Prototyping

User Story
Lifecycle

Face-to-Face
Team

Standups

Collective
Ownership

Continuous
Integration

Short
Releases

Sustainable
Pace

Retrospectives

Business analysis practices

Customer
Collaboration

Common
Vision

Iterative
Planning

Simplicity

INVEST

Refactoring
Test-Driven

Design

OOD/Design
Patterns

Pair
Programming

Lo-fi
Prototyping

User Story
Lifecycle

Face-to-Face
Team

Standups

Collective
Ownership

Continuous
Integration

Short
Releases

Sustainable
Pace

Retrospectives

Agile Practice: Common Vision

Agile Practice: Short Releases

Agile Practice: Iterative Planning

Agile Practice: Simplicity

Agile Practice: Customer Collaboration

Agile Practice: Standups

Agile Practice: Face-to-face Team

Agile Practice: Retrospectives

Agile Practice: Collective Ownership

Agile Practice: Sustainable Pace

Agile Practice: User Story Lifecycle

Agile Practice: Low-fidelity Prototyping

Agile Practice: INVEST

Agile Practice: Pair Programming

Agile Practice: Refactoring

Agile Practice: OOD / Design Patterns

Agile Practice: Test-Driven Design

Agile Practice: Continuous Integration

Exercise: Agile Adoption Planning

As a group, select three Agile practices for StarHub pilot
implementation (5 min.)

Prioritize on cost-benefit basis

For each of the three selected Agile practices, develop
an implementation plan (10-15 minutes), including:

Resources required

Time required

Adoption challenges

Required participants

Each group selects one person to summarize plan
(2-5 minutes each)

Introduction to Agile Enablement
and Organizational Transformation

Process improvement overview

Assess the “as-is” process

Identify small, specific process improvement
opportunities (“stories”)

Prioritize process improvement stories according to
business value and implementation effort

Make a plan

Implement the selected improvements, adjusting the
plan iteratively

Review and reassess

Agile process assessment

ThoughtWorks® has developed an assessment model that evaluates
the capability of a software development process along a number of
dimensions of interest. This framework provides a comprehensive
overview of all aspects of Agile practice.

These dimensions include:

Testing

Configuration Management

Shared Responsibility

Collaboration

Responsiveness

Requirements

Simplicity

Governance

Lean Alignment

Testing

Tests provide the safety net that allows Agile projects
to proceed at a rapid pace.

Commitment to testing is reflected in the systematic
maintenance of comprehensive automated test suites,
and vigilant remediation of regressions that cause
tests to fail.

Configuration Management

Large, rapid changes of a common code base by
multiple developers are a normal characteristic of
Agile software development.

A Configuration Management system of tools and
practices should support large, efficient modifications
without “breaking the build”.

Shared Responsibility

Team flexibility and cooperation support an efficient
and resilient process. Pigeon-holed knowledge or
skills are potential bottlenecks or single points of
process failure

Pair programming and “just-in-time” work assignments
are signs of the extent to which the team, not
individuals, owns the work.

Collaboration

Communication and collaboration among project
stakeholders allows rapid and accurate delivery of
business value.

A collaborative development process is supported
by co-location, tools, and other practices. At the
highest levels, there is continuous involvement of
the users and business sponsors.

Responsiveness

The term “Agile” originally referred to the ability of
the customer to quickly modify their requirements
in response to changing business circumstances.

Responsiveness measures the speed and quality
with which requirements changes are accommodated.

Requirements

Requirements are an explicit definition of business
value.

The software development process delivers the
greatest business value when requirements are
developed with the participation of actual users
and prioritized by value on a just-in-time basis.

Simplicity

As the design and implementation of the software
becomes more simple, incremental changes to the
functionality become more efficient and less risky.

This produces greater flexibility in adapting to
changing business requirements, which means less
(potentially wasted) investment needs to be made
in attempting to anticipate such requirements in
advance.

Governance

The more adaptive the project planning and
management practices, the more closely the
software development process will be able to track
changing business priorities and accommodate
unforeseen challenges or opportunities.

The ultimate objective is the efficient real-time
integration of the software development process
with business planning and management.

Lean Alignment

Agile software development practices complement
lean management objectives.

Waste in the software development process may
cause, and may be caused by, waste elsewhere in
the end-to-end business value stream.

Systematically identifying, tracking, and eliminating
such waste improves overall organizational
productivity.

Thank you!

www.thoughtworks.com

