
Code Reviews in the Agile Process
- Exoweb's Story

Kenneth Wong
Geek

Introduction

Code Reviews - A 4 year journey
■ Why we introduced code reviews
■ First iteration - NASA style
■ Second iteration - Top techs review
■ Third iteration - Team based reviews!
■ Tools we use
■ Lessons learned/best practices

■ Project had been following agile
development practices (Scrum) for 8
months

■ Web-based, medium traffic but financial
so accountability had to be very high

■ Product was launched but we still had
quality problems

Why we introduced code reviews:

 Main practices we followed:
■ Scrums/Daily Standup Meetings
■ Continuous Integration
■ Automated Testing
■ Iterative Development
■ Hiring Good People!

Why we introduced code reviews:

Major Agile Methodology NOT Followed: Pair
Programming

■ Most developers tried it and it did not work
out

■ Used successfully a between a couple of
individuals

■ We would try PP 3 more times in different
iterations over the following years

Why we introduced code reviews:

 Problem:
■ Quality wasn't good enough. Mistakes
were still making it into production

■ People weren't sufficiently aware of code
others had written. Too much duplication in
different modules

Why we introduced code reviews:

 Solution:

■ Code Reviews!
■ Article on top ten software engineering
practices no one follows

■ Code Reviews were #1, with the most
case studies and evidence of success

Why we introduced code reviews:

 First Iteration - NASA style code reviews
 (Formal Inspections)

■ Code is assigned to team.
■ Everyone must review it before meeting
■ Meeting lasts no more than two hours
■ Everyone has an assigned role

First Iteration - NASA style code reviews

 Roles
■ Author
■ Moderator
■ Reader
■ Recorder
■ Inspectors

First Iteration - NASA style code reviews

 Problems:
■ Very slow. Everyone has to prepare for at
least 1-2 hours before meeting, then spend
2-3 hours in the meeting. 5 hours * 5
people = 25 man hours gone on a piece of
code that took 8 man hours to write

■ Scheduling meetings
■ Everyone hates meetings

First Iteration - NASA style code reviews

Second iteration - Top techs review
■ Best technical people reviewed all code
committed

■ Once reviewed by 2-3 people, code was
considered completed. Comments emailed
to author

■ Reviews were done individually and
separately

■ Tools were added to Trac (ticketing
system) to track code reviews

Second iteration - Top techs review

Benefits:
■ Code quality improved greatly! Many
defects were found.

■ Far less time wasted compared to NASA
style

■ Tech leads got better faster! Learned from
everyone's mistakes and strengths

■ Very flexible, since tech leads reviewed
when they had time and no meetings
required

Second iteration - Top techs review

Drawbacks:

■ Tech leads were spending most of their
doing code reviews and not enough time
writing code

■ Juniors were improving far slower than
tech leads. Different between them only got
larger and larger

Second iteration - Top techs review

Third iteration - Team based reviews!

■ Basically everyone reviewed every
commit by their team members

■ A review was complete only after all
reviewers were finished

■ Biggest difference with NASA method was
no meetings

■ Introduced a new class of review -
CRITICAL!

Third iteration - Team based reviews!

■Initially resulted in 50% slowdown in
feature creation speed

■ Some junior developers had zero personal
productivity for 2-3 weeks as they reviewed

■ Over time, everyone adjusted and most
developers settled into a routine of 1-2
hours of code reviews in the morning

■ Code reviews are classified as critical
priority tasks to ensure they get done

Third iteration - Team based reviews!

Final results:

■ Slow down in feature completion speed is
about 10-20%

■ Defect rate drops dramatically
■ Developer growth is much faster
■ Colleagues have a much better
understanding of each other's technical
capabilities

Third iteration - Team based reviews!

Tools We Use

Trac

Tools We Use

Trac

Tools We Use

Review Board

Image Forthcoming

Lessons Learned/Best Practices
DO

■ Focus on logic and correctness
■ Two levels of comments - must do and
"nice to have". First must be done, second
is optional

■ One tech leader to make final decision in
case of ambiguity

■ Code review status must be tracked and
public

Lessons Learned/Best Practices

DON'T

■ Fix design or structural issues
■ Code review prototypes

Lessons Learned/Best Practices

Tweaks Added Later:

■ Pair Code Reviews
■ Design Reviews/Pair Design Reviews
■ Pre-Commit Code Reviews

Lessons Learned/Best Practices

Questions?

ken@exoweb.net

Questions?

	company introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

