


Drupal 7 Module Development

Create your own Drupal 7 modules from scratch

Matt Butcher
Greg Dunlap
Matt Farina
Larry Garfield
Ken Rickard
John Albin Wilkins

 BIRMINGHAM - MUMBAI



Drupal 7 Module Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Production Reference: 1301110

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-16-2

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)



Credits

Authors
Matt Butcher

Greg Dunlap

Matt Farina

Larry Garfield

Ken Rickard

John Albin Wilkins

Reviewers
Davy Van Den Bremt

Dave Myburgh

Jojodae Ganesh Sivaji

Acquisition Editor
Sarah Cullington

Development Editors
Mayuri Kokate

Susmita Panda

Technical Editors
Vanjeet D'souza

Harshit Shah

Copy Editor
Neha Shetty

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Srimoyee Ghoshal

Proofreader
Aaron Nash

Indexers
Tejal Daruwale

Hemangini Bari

Graphics
Nilesh R. Mohite

Production Coordinator 
Aparna Bhagat

Cover Work
Aparna Bhagat



Foreword

Drupal has its roots in the humble hobby project of Dries Buytaert, Drupal project 
lead, then a university student. He originally created a small news site and 
web board so that he and his friends could stay in touch. When it was time for 
graduation, this small script was put on the public web, and a small but vibrant 
community of developers, hackers, tinkerers, and innovators started to gather there. 
The script powering the website was open sourced as "Drupal" in January, 2001, and 
attracted attention due to its extensibility and modular architecture.

Since then, both the Drupal project and its community have exploded in growth. 
The community now consists of over 700,000 people all over the world. Drupal also 
now powers over 1% of the web, including the websites of household names such as 
whitehouse.gov and grammy.com.

My current position in the Drupal community is that of the Release Manager for the 
latest release of Drupal, version 7. Dries Buytaert and I work together with the core 
contributor team to help prioritize initiatives, encourage people attacking similar 
problems to work together, act as final quality assurance reviewers on patches, and 
ultimately commit changes to the project once they're ready.

Drupal 7 represents a tremendous leap forward from previous releases. The core 
contributor team together took a very serious look at Drupal's limitations, from 
almost all angles. Usability testing research was done at several universities, 
highlighting long-standing problems with Drupal's user interface, and a usability 
team emerged to tackle the problems. Engineers collaborated together to identify 
and dissect severe API limitations that had plagued previous releases. The quality 
assurance team put tremendous efforts behind integrating automated testing into 
our development workflow, vastly improving our ability to refactor parts of the 
system. Drupal's designer community stepped up and became vocal about Drupal's 
limitations on the theming side that cause them to go flocking to other frameworks. 
An accessibility team emerged, not only pushing patches forward to improve 
Drupal's WCAG compliance, but also educating the members of the community 
about accessibility. Drupal 7 is a remarkable release for a number of reasons, but 
particularly for the diversity of the team involved in creating it.



As a result of all of this effort, however, there is very little in Drupal 7 that hasn't 
changed over previous releases. The database abstraction layer has been completely 
re-written and is now based on the PHP Data Objects (PDO) library, which 
introduces a new object-oriented syntax to queries. In addition to forms and certain 
content, such as node and user data, in Drupal 7 the entirety of the page is built on 
renderable arrays, which has tremendous (and exciting) implications for themes. 
Adding metadata fields to various system entities is now possible through Drupal 
7's integrated field and entity API, which previously required an additional module, 
and was limited to only being able to expand content.  There are literally hundreds  
of other under-the-hood improvements.

The Drupal 7 Module Development book offers a project-based approach that 
walks readers through the most important, new, and changed concepts in-depth, 
allowing you to put these into practice. The authors of this edition of the book 
have much more than "merely" a deep understanding of Drupal 7's internals—in 
many cases, they literally wrote the very patches that put those internals into 
place. Larry Garfield is the chief architect behind Drupal 7's new object-oriented 
database abstraction layer, and Drupal core's database system maintainer. John 
Wilkins engineered much of the improvements to template files and theme system 
internals in Drupal 7, based largely on his cutting-edge work on the Zen theme. 
Ken Rickard spear-headed numerous improvements to Drupal 7's node access 
system after exploring its outer limits in his contributed Domain Access and Menu 
Access modules. Matt Farina assisted with numerous core JavaScript improvements, 
including alterability of CSS and JavaScript, and front-end performance. Greg 
Dunlap's work with core API documentation has many times ferreted out 
particularly hard-to-find bugs.

It's my sincere hope that this book finds many eager readers who are able to not only 
extend Drupal 7 to meet their specific needs, but also join our vibrant development 
community to contribute back what they learn and help make Drupal even better.

Angela Byron

Drupal 7 Core Maintainer

Drupal Association Secretary



About the Authors

Matt Butcher is a web developer and author. He has written five other books 
for Packt, including Drupal 6 JavaScript and jQuery and Learning Drupal 6 Module 
Development. Matt is a Senior Developer at ConsumerSearch.com (a New York 
Times/About.Com company), where he works on one of the largest Drupal sites in 
the world. Matt is active in the Drupal community, managing several modules. He 
also leads a couple of Open Source projects including QueryPath.

I would like to thank Larry, Ken, Sam, Matt, Greg, and John for 
working with me on the book. They are a fantastic group of people 
to work with. I'd also like to thank the technical reviewers of this 
book, all of whom contributed to making this a better work. 
 
I'd also like to thank Austin Smith, Brian Tully, Chachi Kruel, Marc 
McDougall, Theresa Summa, and the rest of the ConsumerSearch.
com team for their support. The folks at Palantir.net were 
instrumental in getting this book off the ground, and I am always 
grateful for their support. Finally, Angie, Anna, Claire, and 
Katherine have sacrificed some weekends and evenings with me for 
the benefit of this book. To them, I owe the biggest debt of gratitude.



Greg Dunlap is a software engineer based in Stockholm, Sweden. Over the past 
15 years, Greg has been involved in a wide variety of projects, including desktop 
database applications, kiosks, embedded software for pinball and slot machines, and 
websites in over a dozen programming languages. Greg has been heavily involved 
with Drupal for three years, and is the maintainer of the Deploy and Services 
modules as well as a frequent speaker at Drupal conferences. Greg is currently a 
Principal Software Developer at NodeOne. 

Several people played crucial roles in my development as a Drupal 
contributor, providing support and encouragement just when I 
needed it most. My deepest gratitude to Gary Love, Jeff Eaton, Boris 
Mann, Angie Byron, and Ken Rickard for helping me kick it up a 
notch. Extra special thanks to the lovely Roya Naini for putting 
up with lost nights and weekends in the service of finishing my 
chapters.

Matt Farina has been a Drupal developer since 2005. He is a senior front-end 
developer, engineer, and technical lead for Palantir.net, where he works on a  
wide variety of projects ranging from museums to large interactive sites. He is  
a contributor to Drupal core as well as a maintainer of multiple contributed  
Drupal modules.

Matt wrote his first computer program when he was in the 5th grade. Since then he 
has programmed in over a dozen languages. He holds a BS in Electrical Engineering 
from Michigan State University.



Larry Garfield is a Senior Architect and Engineer at Palantir.net, a leading Drupal 
development firm based in Chicago. He has been building websites since he was 16, 
which is longer than he'd like to admit, and has been working in PHP since 1999. 
He found Drupal in 2005, when Drupal 4.6 was still new and cool, and never really 
left. He is the principle architect and maintainer of the Drupal database subsystem 
among various other core initiatives and contributed modules.

Previously, Larry was a Palm OS developer and a journalist covering the mobile 
electronics sector and was the technical editor for Building Powerful and Robust 
Websites with Drupal 6, also from Packt. He holds a Bachelors and Masters Degree  
in Computer Science from DePaul University.

If I were to thank all of the people who made this book possible it 
would take several pages, as the Drupal 7 contributor list was well 
over 700 people, the last time I checked. Instead I will simply say 
thank you to the entire community for being so vibrant, supportive, 
and all-around amazing that it still brings a tear to my eye at times 
even after half a decade. 
 
Extra special thanks go to Dries Buytaert, not just for being 
our project lead, but for sitting down on the floor next to me at 
DrupalCon Sunnyvale and encouraging me to run with this crazy 
idea I had, about using this "PDO" thing for Drupal's database layer. 
I doubt he realized how much trouble I'd cause him over the next 
several years. 
 
Of course to my parents, who instilled in me not only a love of 
learning but a level of pedantry and stubbornness without which I 
would never have been able to get this far in Drupal, to say nothing 
of this book.



Ken Rickard is a senior programmer at Palantir.net, a Chicago-based firm 
specializing in developing Drupal websites. He is a frequent contributor to the 
Drupal project, and is the maintainer of the Domain Access, MySite, and Menu  
Node API modules. At Palantir, he architects and builds large-scale websites for  
a diverse range of customers, including Foreign Affairs magazine, NASCAR, and  
the University of Chicago.

From 1998 through 2008, Ken worked in the newspaper industry, beginning his 
career managing websites and later becoming a researcher and consultant for Morris 
DigitalWorks. At Morris, Ken helped launch BlufftonToday.com, the first newspaper 
website launched on the Drupal platform. He later led the Drupal development  
team for SavannahNOW.com. He co-founded the Newspapers on Drupal group 
(http://groups.drupal.org/newspapers-on-drupal) and is a frequent advisor  
to the newspaper and publishing industries.

In 2008, Ken helped start the Knight Drupal Initiative, an open grant process for 
Drupal development, funded by the John L. and James S. Knight Foundation. He is 
also a member of the advisory board of PBS Engage, a Knight Foundation project  
to bring social media to the Public Broadcasting Service.

Prior to this book, Ken was a technical reviewer for Packt Publishing's Drupal 6 Site 
Blueprints by Timi Ogunjobi.

I must thank the entire staff at Palantir, the Drupal community, and, 
most of all, my lovely and patient wife Amy, without whom none of 
this would be possible.



John Albin Wilkins has been a web developer for a long time. In April 1993, 
he was one of the lucky few to use the very first graphical web browser, Mosaic 
1.0, and he's been doing web development professionally since 1994. In 2005, John 
finally learned how idiotic it was to build your own web application framework, and 
discovered the power of Drupal; he never looked back.

In the Drupal community, he is best known as JohnAlbin, one of the top 20 
contributors to Drupal 7 and the maintainer of the Zen theme, which is a highly-
documented, feature-rich "starter" theme with a powerfully flexible CSS framework. 
He has also written several front-end-oriented utility modules, such as the Menu 
Block module. John currently works with a bunch of really cool Drupal developers, 
designers, and themers at Palantir.net.

His occasional musings, videos, and podcasts can be found at  
http://john.albin.net.

I'd to thank the entire Drupal community for its wonderful support, 
friendship, aggravation, snark, and inspiration; just like a family. 
I'd also like to thank my real family, my wife and two kids, Jenny, 
Owen and Ella, for making me want to be a better person. I love  
you all.



About the Reviewers

Davy Van Den Bremt has been developing Drupal websites for about four years. 
He lives in Ghent, Belgium, and works as a Senior Drupal developer at Krimson.

He studied Computer Science at the University of Ghent but rolled into web as a 
designer and client side developer. He became a full time Drupal developer while 
working at VRT, the Flemisch public broadcasting company and has since developed 
websites for most major Belgian media companies, advertising agencies, and 
government institutions.

He maintains a blog at drupalcoder.com where he keeps notes of all things Drupal 
that he discovers during his work and wants to share with other Drupal users.

He has written some patches for Drupal 7 and maintains a few modules like 
Administration Theme and E-mail Marketing Framework.

Dave Myburgh has been involved with computers even before the web existed. 
He studied to become a molecular biologist, but discovered that he liked working 
with computers more than bacteria. He had his own computer business in South 
Africa, (where he grew up) doing technical support and sales. He even created  
a few static websites for clients during that time. 

After moving to Canada, he got sucked into the world of Drupal a few years ago, 
when a friend wanted a site for a local historical society. Since then he has once again 
started his own company and now builds websites exclusively in Drupal (he doesn't 
"do static" anymore). There is no lack of work in the Drupal world and he now 
balances his time between work and family. He has reviewed several Drupal  
books including Drupal 5 Themes, and Drupal 6 Themes.

I would like to thank my family for being so supportive of me and 
what I do. Working from home can be a mixed blessing sometimes, 
but having the opportunity to watch my son grow up makes it all 
worthwhile.



Jojodae Ganesh Sivaji has been involved with the Drupal community for more 
than two years. Sivaji is an active member; he has contributed to the community in 
terms of writing patches to core and contrib modules. He was involved in Google 
Summer of Code 2009. There he worked for the Drupal organization on quiz module 
features enhancement and bug fixing project with Matt Butcher and other Drupal 
developers. The project was completed successfully under the guidance of mentors, 
Matt Butcher and Shyamala.

He has developed and maintains a few contributed modules and themes  
on drupal.org. Sivaji's Drupal user account page can be found at  
http://drupal.org/user/328724.

He is currently the lead web developer and programmer at SG E-ndicus InfoTech  
Pvt Ltd, Chennai. At E-ndicus, he is responsible for requirement analysis, arriving at  
and providing solutions, building and maintaining websites, primarily on Drupal 
and Joomla.

I would like to extend my sincere thanks to my mentor, Matt 
Butcher, for giving me the time and continuous encouragement  
to pursue Drupal, including, reviewing this book. 
 
Also, I would like to thank Mr. Vikram Vijayaragavan,  
Mrs. Shyamala, Mr. Sri Ramadoss, ILUGC, and the entire Drupal 
community (especially the Drupal Chennai community) for their 
support with my continual Drupal evangelism.



www.PacktPub.com

Support files, eBooks, discount offers 
and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published,  
with PDF and ePub files available? You can upgrade to the eBook version at  
www.PacktPub.com and as a print book customer, you are entitled to a discount on 
the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on  
Packt books and eBooks.

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books. 



Why Subscribe?
Fully searchable across every book published by Packt
Copy & paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

•

•

•



Table of Contents
Preface	 1
Chapter 1: Developing for Drupal 7	 7

Introducing Drupal (for developers)	 7
Technologies that drive Drupal	 8

PHP	 9
Databases and MySQL	 9
HTML, CSS, and JavaScript	 10
Other technologies	 10
The web server	 10
The Operating System	 11

Drupal architecture	 11
Drupal core libraries	 13
Drupal hooks	 13
Drupal core modules	 14
The database	 15
The theme system	 16

Drupal's major subsystems	 16
Themes	 16
Menus	 17
Nodes	 17
Files	 18
Users	 18
Comments	 18
Fields and entities	 19
Forms API	 19
Installation Profiles	 19
Simple test	 20
Blocks	 20
Other subsystems	 20



Table of Contents

[ ii ]

Tools for developing Drupal code	 20
Version control with Git and CVS	 21

The book's code and Git	 21
The API site and coding standards	 22
Developer-oriented modules	 22

The developer module	 22
Drush (the Drupal shell)	 23
Coder	 23

Summary	 23
Chapter 2: Creating Your First Module	 25

Our goal: a module with a block	 25
Creating a new module	 26

Module names	 27
Where does our module go?	 27
Creating the module directory	 29
Writing the .info file	 29
Creating a module file	 33

Source code standards	 35
Doxygen-style doc blocks	 36
The help hook	 38
The t() function and translations	 39

Working with the Block API	 42
The block info hook	 43
The block view hook	 45
The first module in action	 48

Writing automated tests	 49
Creating a test	 50

Starting out	 50
Writing a test case	 51
The basic pattern	 51
The getInfo() method	 52
Setting up the test case	 54
Writing a test method	 55

Summary	 60
Chapter 3: Drupal's Theme Layer	 61

Business logic versus presentation logic	 62
Data granularity	 64
Theme engines	 66
Two ways to theme	 66

Theme functions	 66
Preprocess functions	 68
Theme overrides	 69



Table of Contents

[ iii ]

Template files	 70
The preprocess zoo	 72

Render elements	 77
Render properties	 79
hook_element_info	 80
hook_page_alter()	 81

The power of theme()	 82
Theme hook suggestions	 83

Theme registry	 85
Variable default values	 85
hook_theme	 86
hook_theme_registry_alter	 88

What else?	 89
Summary	 90

Chapter 4: Theming a Module	 91
Reusing a default theme implementation	 91

Drupal blocks revisited	 93
Theming a Drupal block	 98
Render element and a theme hook suggestion	 99
Creating a pre_render function	 100
Attaching CSS to render arrays	 102
RTL languages	 103

Steps to build a default theme implementation	 106
hook_theme() implementations	 107
Variables versus render element	 108
Preprocess functions	 109
Template files	 114

Summary	 118
Chapter 5: Building an Admin Interface	 119

The User Warn module	 119
Starting our module	 120
The Drupal menu system	 121

Defining a page callback with hook_menu	 121
Using wildcards in menu paths	 125

Form API	 126
Using drupal_get_form()	 127
Building a form callback function	 128
Managing persistent data	 133
Form submission process	 136



Table of Contents

[ iv ]

A shortcut for system settings	 138
A shortcut for confirmation forms	 139

Sending mail with drupal_mail() and hook_mail()	 141
Calling drupal_mail()	 142
Implementing hook_mail()	 144

The token system	 146
What are tokens?	 146
Implementing tokens in your text	 147

Summary	 149
Chapter 6: Working with Content	 151

Why create your own entities	 151
The goal	 152
Bundles	 152
The Schema API	 152
Declaring our entity	 156

The entity declaration	 156
The entity controller	 161

Entity management	 163
Managing artwork types	 163
Adding artworks	 165

Adding new artwork	 167
Validation callback	 170
Submit callback	 171
Saving your artwork	 172
Handling revisions	 175

Viewing artworks	 176
Editing an artwork	 177
Deleting an artwork	 178

Summary	 182
Chapter 7: Creating New Fields	 183

Our goal: a "dimensions" field	 183
How Field API works	 184
Creating our new field type	 185

Declaring the field	 185
Defining the field structure	 186
Defining empty	 188
Field settings	 188
Field validation	 189

Exposing fields to the Form API with widgets	 191
Declaring a widget	 191



Table of Contents

[ � ]

Simple widget forms	 192
Complex widgets	 194

Using formatters to display our field	 199
Declaring a formatter	 200
Single-value formatters	 200
Complex formatters	 201

Managing non-Field fields	 205
Finding entities and fields	 206
Summary	 210

Chapter 8: Drupal Permissions and Security	 211
Using user_access() to assert permissions	 212
Checking the proper user account	 213
Using hook_permission()	 217

Defining your module's permissions	 218
Writing hook_permission()	 219

Declaring your own access functions	 221
Responding when access is denied	 224
Enabling permissions programmatically	 227
Defining roles programmatically	 228
Securing forms in Drupal	 229

The Forms API	 229
Disabling form elements	 230
Passing secure data via forms	 231
Running access checks on forms	 233

Handling AJAX callbacks securely	 235
Using AJAX in forms	 235
Using AJAX in other contexts	 236

Summary	 240
Chapter 9: Node Access	 241

Node Access compared to user_access() and other  
permission checks	 242

How Drupal grants node permissions	 242
The node_access() function	 244

The access whitelist	 246
Caching the result for performance	 246
Invoking hook_node_access()	 247
Access to a user's own nodes	 248
Invoking the node access API	 248

hook_node_access() compared to {node_access}	 250



Table of Contents

[ vi ]

Using hook_node_access()	 254
A sample access control module	 254
A second access control module	 256
View operations and access control modules	 259

When to write a node access module	 260
The {node_access} table and its role 	 261
{node_access} table schema explained	 263
Defining your module's access rules	 264

Creating the role access module	 266
Using hook_node_access_records()	 266
Using hook_node_grants()	 269
Security considerations	 271
Rebuilding the {node_access} table	 273

Modifying the behavior of other modules	 274
Using hook_node_grants_alter()	 275
Using hook_node_access_records_alter()	 279

Testing and debugging your module	 282
Using Devel Node Access	 282

Using hook_node_access_explain()	 283
Using the Devel Node Access by user block	 284

Summary	 285
Chapter 10: JavaScript in Drupal	 287

JavaScript inside Drupal	 287
Adding JavaScript	 288

Adding JavaScript and CSS files to .info files	 289
Using drupal_add_js()	 289

Adding JavaScript files	 289
Adding CSS files	 292
Passing variables from PHP to JavaScript	 293
Adding inline JavaScript	 294
Adding inline CSS	 294

Using the Library API	 295
Defining a library with hook_library	 296
Altering information in hook_library	 297

Using renderable arrays	 298
Altering JavaScript	 299

Altering CSS	 300
Drupal specific JavaScript	 301

Themeable presentation	 301
Translatable strings	 302
Behaviors	 303



Table of Contents

[ vii ]

AJAX helpers	 305
Adding AJAX to forms	 305
AJAX automatically applied	 307
AJAX commands	 309

ajax_command_after	 309
ajax_command_alert	 309
ajax_command_append	 309
ajax_command_before	 310
ajax_command_changed	 310
ajax_command_css	 310
ajax_command_data	 310
ajax_command_html	 310
ajax_command_prepend	 311
ajax_command_remove	 311
ajax_command_replace	 311
ajax_command_restripe	 311
ajax_command_settings	 312

Summary	 312
Chapter 11: Working with Files and Images	 313

The Twitpic and watermark modules	 313
Files in Drupal	 314
File API	 316
Stream wrappers	 319

Creating a stream wrapper	 320
Images in Drupal	 326

Image API	 326
Image Styles	 331
Creating image effects	 334
Creating image styles from a module	 339

Summary	 342
Chapter 12: Installation Profiles	 343

Introducing installation profiles	 343
Drupal distributions	 344

Setting up a distribution	 344
Standard and minimal profiles	 344
Creating a profile directory	 344
Profile modules and themes	 345

Creating profiles	 345
Enabling modules	 347
The install task system	 348
Choosing an install task or using hook_install	 348
Anatomy of an install task	 348



Table of Contents

[ viii ]

Creating a task	 349
Altering tasks	 354
Configuring blocks	 355
Variable settings	 357
Text filters	 358
Code placement	 359

Running the installer from the command line	 360
Summary	 362

Appendix A: Database Access	 363
Basic queries	 364
Result objects	 365
Dynamic queries	 366
Insert queries	 368
Update queries	 370
Delete queries	 370
Merge queries	 370
Advanced subjects	 372

Transactions	 372
Slave servers	 373

Summary	 374
Appendix B: Security	 375

Thinking securely	 375
Filtering versus escaping	 376

Filtering	 377
Escaping HTML	 377
SQL injection	 378

Node access control	 378
Handling insecure code	 379
Staying up to date	 380
Summary	 381

Index	 383



Preface
Drupal is an award-winning open-source Content Management System. It's a 
modular system, with an elegant hook-based architecture, and great code. Modules 
are plugins for Drupal that extend, build or enhance Drupal core functionality. 
In Drupal 7 Module development book, six professional Drupal developers use a 
practical, example-based approach to introduce PHP developers to the powerful new 
Drupal 7 tools, APIs, and strategies for writing custom Drupal code. 
These tools not only make management and maintenance of websites much easier, 
but they are also great fun to play around with and amazingly easy to use.

What this book covers
Chapter 1, Introduction to Drupal Module Development gives a introduction to the scope 
of Drupal as a web-based Content Management System. It dwells on basic aspects 
such as the technologies that drive Drupal and the architectural layout of Drupal. A 
brief idea of the components (subsystems) of Drupal and the tools that may be used 
to develop it, completes the basic picture of Drupal.

Chapter 2, A First Module, gets things into action, by describing how to start building 
our first module in Drupal. That done, it will tell us how Block API can be used to 
create our custom code for Drupal. Finally, there is a word or two on how to test our 
code by writing Automated tests.

Chapter 3, Drupal Themes, is all about the Theme Layer in Drupal. It starts with ways 
to theme, and then proceeds to aspects associated with Theming. It talks about 
'Render Elements' and concludes by getting us familiar with 'Theme Registry'.

Chapter 4, Theming a Module uses the concepts we saw in the previous chapter  
to theme modules in Drupal. It acquaints us with the concept of re-using a default 
theme implementation, and teaches us to build a theme implementation for  
real-life situations.



Preface

[ � ]

Chapter 5, Building an Admin Interface will show us how to go about building a 
module, complete with an administrative interface. While doing this, basic concepts 
of modules discussed in Chapter 2 will be useful. A 'User Warn' module is developed 
as an illustration, in the chapter.

Chapter 6, Working with Content lays emphasis on managing content. Creation of 
entity, controller class, integrating our entity with the Field API, and displaying 
confirmation forms are some of the things that we come across in this chapter.

Chapter 7, Creating New Fields, will take a look into creating new Fields. Further, 
it teaches us how to use corresponding Widgets to allow users to edit the Fields. 
Finally, to ensure that data is displayed as desired, the role of Formatters is  
discussed in the chapter.

Chapter 8, Module Permissions and Security is all about access control and security. 
It talks about Permissions, which help users to gain access (or be denied access) to 
specific features. Also, the chapter talks about how to manage roles programmatically. 
One of the most crucial areas of website security, Form handling, is detailed here.

Chapter 9, Node Access deals with node access, which is one of the most powerful 
tools in the Drupal API. It sheds light on how access to a node is determined and  
on major operations controlled by the Node Access API, among other things.

Chapter 10, JavaScript in Drupal provides the fundamental knowledge required  
to work with JavaScript within Drupal. This helps to create powerful features  
such as the overlay, auto complete, drag and drop, and so on.

Chapter 11, Working with Files and Images talks about how management and 
maintenance can be made much easier by using File and Image APIs in Drupal 7. 
Also, the chapter tells us about various image processing techniques involved in 
working with images, making things more colorful and fun.

Chapter 12, Installation Profiles outlines the process of working with 'Distributions' 
and 'Installation Profiles' in Drupal. They help to make the developer's job easier.

Appendix A, Database Access, offers helpful insights regarding the developer's ability  
to take advantage of the Database Layer of Drupal 7, in order to make powerful 
cross-database queries.

Appendix B, Security, emphasizes the need to develop a practice to bear the security 
aspect in mind while writing the code. It deals with two ways of dealing with 
potentially insecure data, namely, 'filtering' and 'escaping'.



Preface

[ � ]

Who this book is for
If you are a PHP developer or a Drupal user looking to dive into Drupal 
development, then you will find this book an excellent introduction to coding within 
Drupal. Those with some Drupal experience will also find this an invaluable tool 
for updating their knowledge about the powerful new features of Drupal 7. Theme 
developers looking to extend their abilities will find this an accessible introduction  
to PHP coding within the Drupal environment.

This book assumes that you are familiar with basic PHP programming, along with 
HTML and CSS. No experience in programming Drupal is required, although it is 
also a handy way for experienced Drupal developers to get up to speed with  
Drupal 7.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: " The third argument specifies what  
file_save_data() should do when a file already exists with the same name  
as the file we're trying to save."

A block of code is set as follows:

$contents = ";
$handle = fopen("/var/www/htdocs/images/xyzzy.jpg", "rb");
while (!feof($handle)) {
  $contents .= fread($handle, 8192);

}

fclose($handle);

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

$items['user/%/warn'] = array(
    'title' => 'Warn',
    'description' => 'Send e-mail to a user about improper site  
                      behavior.',
    'page callback' => 'drupal_get_form',

New terms and important words are shown in bold.



Preface

[ � ]

The system for handling this is collectively called the theme system.

Words that you see on the screen, in menus, or dialog boxes for example, appear in 
the text like this: " In the screenshot above, you can see the grouping package Core  
in the upper-left corner."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important  
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send  
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail  
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you 
have purchased from your account at http://www.PacktPub.com. 
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed 
directly to you.



Preface

[ � ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text 
or the code—we would be grateful if you would report it to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.





Developing for Drupal 7
Drupal is a web-based content management system (CMS) and social media 
platform. While it is useful out of the box, it is designed with developers in mind. 
The purpose of this book is to explain how Drupal can be extended in many 
ways and for many purposes. This chapter introduces the terminology, tools, and 
processes for developing Drupal 7. While subsequent chapters focus on code, this 
chapter focuses on concepts. We'll talk about the architecture of Drupal, and how 
you can hook into Drupal at strategic places to extend it for accomplishing new tasks.

The following are the major things we will be covering in this chapter:

An introduction to Drupal development
The architecture of Drupal
Nodes, Fields, Users, and other major subsystems
Tools for developing in Drupal

By the end of this chapter, you will understand the architectural aspects of Drupal 
and be ready to start writing code.

Introducing Drupal (for developers)
Out of the box, Drupal 7 performs all of the standard functions of a web-based 
content management system. Visitors can view published information on the site, 
navigate through menus, and view individual pages, complete with images. Users 
can create accounts and leave comments. Administrators can manage the site 
configuration and control the permissions levels of users. Editors can create content, 
preview it, and then publish it when it is ready. Content can be syndicated to RSS, 
where feed readers can pick up new articles as they are published. With several 
built-in themes, even the look and feel of the site can easily be changed.

•

•

•

•



Developing for Drupal 7

[ � ]

As fantastic as these features are, they will certainly not satisfy the needs of all users. 
To that end, Drupal's capabilities can be easily extended with modules, themes, and 
installation profiles. Take a look at Drupal's main website, http://drupal.org, and 
you will find thousands of modules that provide new features, and thousands of 
themes that transform the look and feel of the site.

The fact that almost all aspects of Drupal's behavior can be intercepted and 
transformed through the module and theme mechanisms has lead many to claim  
that Drupal isn't just a Content Management System (CMS), but a Content 
Management Framework (CMF) capable of being re-tooled to specific needs  
and functional requirements.

Whether or not Drupal is rightly called a CMS or a CMF is beyond our present 
interests, but it is certain that Drupal's most tremendous asset is its extensibility. Want 
to use a directory server for authentication? There's a Drupal module for that. Want  
to export data to CSV (Comma Separated Version) files? There are several modules 
for that (depending on what data you want to export). Interested in Facebook 
support, integration with Twitter, or adding a Share This button? Yup, there are 
modules for all of these too—all of which are available at http://drupal.org/.

Want to integrate Drupal with that custom tool you wrote to solve your specific 
business needs? There may not be a module for that, but with a little bit of code,  
you can write your own. In fact, that is the subject of this book.

The purpose of this book is to get you ramped up (as quickly as possible) for Drupal 
development. As we move chapter by chapter through this book, we cover the  
APIs and tools that you will use to build custom Drupal sites, and we don't stick to 
theory. Each chapter provides working, practically-oriented example code designed 
to show you how to build code. We follow Drupal coding conventions and we  
utilize Drupal design patterns in an effort to illustrate the correct way to write code. 
While we certainly can't write the exact code to meet your needs, our hope is that  
the code mentioned in this chapter can serve as a foundation for your bigger and 
better applications.

So let's get started with a few preliminary matters.

Technologies that drive Drupal
Many books of this ilk will begin with a chapter on installing the platform. We have 
decided not to follow this pattern for a few reasons. First of all, Drupal is incredibly 
well documented in this regard. The README file included with Drupal's download 
should meet your needs. Secondly, our experience has been that such chapters are 
unnecessary. Software developers rarely need step-by-step guides to installing a 
system as simple as Drupal.



Chapter 1

[ � ]

However, what we do want to start with, is a quick overview of the technologies 
utilized in Drupal.

PHP
Drupal is written in the PHP programming language (http://php.net). PHP is a 
widely supported, multi-platform, web-centric scripting language. Since Drupal is 
written in PHP, this book is largely focused on PHP development.

One specific piece of information should be made explicit: As of Drupal 7, the 
minimum PHP version is PHP 5.2 (as of this writing, the current version of PHP  
is 5.3.3). Prior versions of Drupal included PHP 4.x support, but this is no longer  
the case.

Another thing worth mentioning is the style of PHP coding that Drupal uses. While 
many PHP applications are now written using Object Oriented Programming, 
Drupal does not follow suit. For many reasons, some historical, some practical, 
Drupal is largely written using procedural programming. Rather than relying 
strongly on classes and interfaces, Drupal modules are composed of collections  
of functions.

Before anyone jumps to conclusions, though, we would like to make a few 
qualifications on what we've just said:

Drupal frequently uses objects
Drupal does have certain subsystems that are object-oriented
Many Drupal modules are substantially object-oriented
Drupal makes frequent use of design patterns, for it is certainly the case that 
procedural code can use design patterns too

While the majority of this book uses procedural coding strategies, you will encounter 
OOP here and there. If you are not familiar with object oriented conventions and 
coding styles, don't worry. We will explain these pieces as we go.

Databases and MySQL
In the past, Drupal has supported two databases: MySQL and PostgreSQL. Drupal 
7 has moved beyond this. Drupal now uses the powerful PDO (PHP Data Objects) 
library that is standard in PHP 5. This library is an abstraction layer that allows 
developers to support numerous databases including MySQL, PostgreSQL, SQLite, 
MariaDB, and many, many others. While Drupal does testing on only a few specific 
databases (namely, MySQL, PostgreSQL, and now SQLite), it is possible to move 
beyond these to SQL Server, Oracle, DB2, and others.

•

•

•

•



Developing for Drupal 7

[ 10 ]

However, for the sake of size and readability, we have focused our examples on 
MySQL. We believe that our SQL should run on MariaDB, PostgreSQL, and SQLite 
without modification, but we have not made any attempt to test against other 
databases. If you find a bug, we'd appreciate hearing about it. Packt Publishing 
tracks errata on their website (http://packtpub.com), and you can submit errors 
that you find through the form you find there.

Drupal provides a database API along with some SQL coding conventions (such 
as "don't use LIMIT in your SQL"). The intent of these is to combine code and 
convention to make it as easy as possible to write portable code. Thus, we not only 
illustrate the API throughout this book, but we also focus on writing SQL statements 
that comply with standard Drupal conventions.

HTML, CSS, and JavaScript
The de facto web data format is HTML (HyperText Markup Language) styled with 
CSS (Cascading Style Sheets). Client-side interactive components are scripted with 
JavaScript. As Drupal developers, we will encounter all three of these technologies in 
this book. While you needn't be a JavaScript ninja to understand the code here, you 
will get the most from this book if you are comfortable with these three technologies.

Other technologies
The Internet thrives on change, it seems, and there are many other web technologies 
that have become common. Here and there, we will mention technologies such as 
RSS (Really Simple Syndication), XML (eXtensible Markup Language), XML-RPC, 
and others. However, these are all of secondary importance to us. While Drupal 
offers support for many of these things, using them is not integral to module or 
theme development.

The web server
Apache has long been the predominant web server, but it is by no means the only 
server. While Drupal was originally written with Apache in mind, many other web 
servers (including IIS, LigHTTPD, and nginx) can run Drupal.

We do not explicitly cover the web server layer anywhere here, primarily because 
development rarely requires working at that low level. However, Drupal expects  
a fair amount of processing from the web server layer, including handling of  
URL rewriting.



Chapter 1

[ 11 ]

The Operating System

Windows, Linux, Mac OS, BSD. These are terms that spark modern online 
holy wars. However, we don't care to take part in the argument. Drupal 
will run on most (if not all) popular server operating systems, including 
Windows and many UNIX/Linux variants.

In the interest of full disclosure, the authors of this book work primarily on Linux 
and Mac OS X systems. However, our code should run on any Drupal system.  
Again, if you find examples where our code does not run because of the operating 
system, submit an erratum on Packt Publishing's website. Drupal strives to be  
cross-platform, and so do we.

With these preliminaries behind us, let's move on to Drupal's architecture.

Drupal architecture
In the preceding section, we introduced the technologies that drive Drupal. 
However, how do they all fit together? In this section, we provide an overview  
of Drupal's architecture.

Let's begin with a visual representation. The following diagram sketches Drupal's 
main components:



Developing for Drupal 7

[ 12 ]

The preceding figure represents, in a roughshod way, how Drupal is structured. It 
also indicates how Drupal handles a request. We will talk about the components 
in the remainder of this section. As a first approach, though, let's walk through a 
simplified example of a typical request as it is handled on a Drupal website:

A user enters the URL http://example.com/node/123 in a web browser 
and hits Enter
The browser contacts the web server at example.com and requests the 
resource at /node/123
The web server recognizes that the request must be handled by PHP, and 
starts up (or contacts) a PHP environment to handle the request
PHP executes Drupal's index.php file, handing it the path /node/123
The Drupal core undergoes a bootstrap process, initializing resources, and 
then uses the menu system to find out how to handle /node/123
The node system responds to the request for /node/123 by loading the  
node (piece of content) with the ID 123. This data is typically loaded  
from a database
The theme system takes the node information and applies formatting and 
style information to it, essentially transforming data into chunks of HTML 
with associated CSS
The Drupal core completes all processing (giving many other subsystems the 
opportunity to handle various bits of data processing) and then returns the 
data to the client
The client web browser transforms the HTML and CSS into a visual 
presentation for the user, running any necessary JavaScript along the way
The user views the document

While this illustration hasn't hit every technical detail, it does provide a glimpse 
into the way Drupal functions on the web. In the following section, we will spend 
some time looking at the big Drupal subsystems—nodes, themes, menus, and so on. 
However, in the present section, we are more concerned with the general way in 
which these systems work together.

Earlier, we saw that under normal conditions, PHP loads Drupal's index.php file to 
handle a Drupal request. This short script is responsible for starting up the Drupal 
environment, and it is part of what we typically call the Drupal core.

•

•

•

•

•

•

•

•

•

•



Chapter 1

[ 13 ]

Drupal core is the foundational layer of Drupal which ships with a handful of core 
libraries along with over a dozen core modules. The index file loads the libraries  
and then initializes Drupal, a process called bootstrapping.

Drupal core libraries
The core libraries provide the functions and services used throughout Drupal. 
Facilities for interacting with the database, translating between languages, sanitizing 
user data, building forms, and encoding data are all found in Drupal's core libraries. 
These tools are what we might call utilities: They facilitate effective data processing, 
but are not responsible for handling the lifecycle of a request. The lifecycle is handled 
by modules.

Once Drupal has loaded core libraries and initialized the database, it loads the 
enabled modules and themes, and then it begins a systematic, step-by-step process  
of handling the request. This process is what I call the lifecycle of a request. It works 
as follows.

Drupal steps through a number of pre-determined operations. It checks to see if any 
modules need to be initialized. It looks up what code is responsible for handling the 
given URL. It checks whether the current user has access to the requested resource. It 
checks to see if some data can be retrieved from cache. It continues stepping through 
such operations until the request is complete.

However, the most important thing about this step-by-step process is the way 
Drupal does it.

Drupal hooks
The Drupal core doesn't attempt to do the processing for each of these steps. Instead, 
after each step, it offers one or more modules the opportunity to handle that step. Put in 
Drupal parlance, it offers opportunities for modules to hook into the lifecycle.



Developing for Drupal 7

[ 14 ]

For example, we noted that Drupal checks to see if any module needs to be 
initialized. What it actually does, is look to see if any modules implement a hook for 
initialization. How does it do this? It scans the loaded modules to see if any of them 
implement the function hook_init(). To implement a hook in Drupal is to declare a 
function that follows the hook naming pattern. For a fictional module named hello 
to implement hook_init(), it would merely need to declare a function named 
hello_init() (replacing the word hook with the name of the module).

Developers with a background in OOP or with strong knowledge 
of design patterns might recognize this as being similar to the event 
handling paradigm, captured in the Passive Observer pattern. 
When some particular event occurs, Drupal allows modules the 
opportunity to respond to that event.

Through this hook_init() hook, Drupal provides modules the ability to initialize 
themselves or their own resources right at the beginning of the request. Once 
all of these modules have been initialized, Drupal moves on to the next step. As 
it progresses through the request, it calls hook after hook, giving modules the 
opportunity to do their thing. Finally, it makes one last call for modules that 
implement hook_exit(), and then it returns any remaining data to the client  
and terminates the request.

Drupal's hook system is perhaps the single most important aspect of Drupal 
programming. Most (if not all) modules are nothing more than a collection of hook 
implementations that Drupal automatically calls as it works its way through the 
request lifecycle. It's not just the Drupal core that declares and calls hooks. Any module 
can declare and call its own hook. Many modules do in fact declare their own hooks, 
offering other modules the opportunity to integrate deeply with their services.

Drupal core modules
As noted earlier, Drupal provides several core modules. These modules cannot be 
disabled, as their capabilities are integral to the standard functioning of Drupal. Just 
like other modules (including the ones we will be writing), core modules function by 
implementing Drupal hooks.

As Drupal invokes these hooks, each core module will respond as necessary, 
performing crucial functions at specific times during the course of a request.

In the following section, we will discuss several core modules in more detail, 
explaining what purposes these modules serve.



Chapter 1

[ 15 ]

The database
We have taken a brisk walk through a typical Drupal request, and we have learned a 
little about modules and libraries. However, what about the database?

Unlike many architectures, for Drupal the database doesn't stand front and center. 
The database layer is not a module, nor do modules need to declare a specific 
relationship with the database. In fact, many Drupal modules do not ever interact 
directly with the database.

Unlike Model-View-Controller (MVC) frameworks, Drupal 
does not require that modules follow an MVC pattern. For 
that reason, a module can exist, yet not have any database 
structures (models), a central controller, or even any user-
centered theming (view).

Instead of treating the database as a central architectural component, Drupal merely 
provides an API for working with the database. In Drupal, the database is just a 
place to store data. Need custom tables? Drupal provides a system for declaring 
them. Need to get data out of the database, or insert or update new data? Drupal 
provides functions and an OO library for doing so. However, if you don't need such 
features for your code, you needn't work with the database at all. In fact, in the next 
chapter we will write our first module without writing a single SQL query.

Later in this book, we will see how to interact with the database using Drupal's 
robust database tools.

More than just data
The Drupal database does not store just application data (or 
content), but also configuration, caches, metadata (data about 
data), structural information, and sometimes even PHP code.

While Drupal may not be database centric, it most certainly requires a database. 
During initialization, Drupal will connect to a database and retrieve certain 
configuration data. Later, as many of the core modules load, they too, contact the 
database to retrieve or update information. For most Drupal modules, the database  
is the location for data storage.



Developing for Drupal 7

[ 16 ]

The theme system
The final component from our initial architectural diagram is the theme system. 
Drupal separates the look-and-feel components of the system from the rest of 
Drupal, and provides a programmatic way for theming data. The system for 
handling this is collectively called the theme system.

Some of the theme system resides in the Drupal core libraries. This part is 
responsible for initializing themes and locating what theme functions and  
templates should be applied under certain circumstances.

However, the majority of the theme code resides in themes and modules.

A theme is a structured bundle of code (like a module) that provides tools  
for transforming raw data into formatted output. Sites use at least one theme  
to apply a consistent and custom look-and-feel to all of the pages on the site.

However, Not all theme code resides inside of a theme. One of the distinct 
advantages offered by Drupal is the capability to define default theming inside 
modules, and then provide mechanisms by which the theme layer can selectively 
override those themes. In other words, a module might declare a rough layout for a 
component, but Drupal provides the structure for a theme developer to later modify 
the theme (not the module) to re-layout that component in a different way.

If this all sounds conceptually difficult, don't worry. Chapter 3 and Chapter 4 of this 
book are dedicated to working with the theming system.

Now that we've had a quick architectural overview, let's change perspectives and 
quickly peruse the major subsystems offered by Drupal.

Drupal's major subsystems
In the previous section we took a birds-eye view of Drupal's architecture. Now we 
are going to refine our perspective a bit. We are going to walk through the major 
subsystems that Drupal 7 has to offer.

Themes
The theme subsystem was introduced above, and since Chapter 3 and Chapter 4 will 
cover it, we won't dwell too much on it here. However, there are a few details that 
should be mentioned at the outset.



Chapter 1

[ 17 ]

The responsibility of theming a given piece of data is spread out over the Drupal 
core, the modules, and the applied theme itself. While we don't modify the Drupal 
core code, it is important for developers to be able to understand that both module 
code and theme code can manipulate the look and feel of data.

In this book, our focus will be on the module perspective. We work primarily with 
theming functions and templates that are defined within the module. Typically, it is 
the best practice to work this way first—to ensure that every module has the ability 
to theme it's own data.

Menus
Drupal not only maintains content, but also details about how the site itself is 
organized. That is, it structures how content is related.

The principle way that it does this is through the menu subsystem. This system 
provides APIs for generating, retrieving, and modifying elements that describe the 
site structure. Put in common parlance, it handles the system's navigational menus.

Two menu systems?
One source of frustration for developers new to Drupal is the fact 
that the application's front controller is called the menu router. 
However, this system is not identical to the menu subsystem. Its 
responsibility is to actually map the URLs to callback functions. 
We will return to the menu router in later chapters.

Menus are hierarchical, that is, they have a tree-like structure. A menu item can have 
multiple children, each of which may have their own children, and so on. In this 
way, we can use the menu system to structure our site into sections and subsections.

Nodes
Perhaps the most important subsystem to know is the node system. In Drupal 
parlance, a node is a piece of text-based, publishable content. It can have numerous 
fields defined, but typically it has a title, a body, and various pieces of auxiliary data, 
such as timestamps, publishing state, and author identification.

Nodes are content
In computer science, the term "node" often has a special meaning. 
Drupal's own definition of node is distinct. It is not a point on a 
graph, but rather a piece of content. One might prefer to think of 
a Drupal node as a structured document.



Developing for Drupal 7

[ 18 ]

The node system is mostly implemented in the node module. This sophisticated 
module provides dozens of hooks, though means that many other modules can  
and do interact with the node module via hook implementations.

Since nodes account for the content of the site, understanding the node system is 
an indispensable requirement for the Drupal developer. For that reason, we discuss 
aspects of the system throughout the book.

Files
In previous versions of Drupal, externally generated files (notably images) were not 
handled directly by Drupal itself. Instead, there were a plethora of modules available 
for working with files.

This has changed in Drupal 7, which now has a file-centered subsystem. This means 
working with images, documents, and so on is now substantially easier.

While Drupal has long had a sophisticated suite of tools for dealing with the 
filesystem (in the files.inc core library) there is now also a file module.

Chapter 11 discusses this new API.

Users
Drupal is not designed to be merely a CMS, but also a platform for social media. 
Central to any concept of social media is a robust user system that can support not 
only administrative users, but also site members. Drupal offers a powerful user 
subsystem that allows developers to work with just about all aspects of user lifecycle, 
from what fields show up on a user profile, to what permissions (at a fine-grained 
level) users have, to what particular encryption scheme is used to encrypt the  
user's password.

Drupal's user system even provides tools for making authentication and  
other aspects of user management pluggable. Modules provide, for instance,  
LDAP integration or authentication through many of the publicly available 
authentication services like OpenID.

We discuss the user system, particularly the permissions aspects, throughout  
this book.

Comments
Perhaps the most common social media tool is comments. Drupal provides a 
subsystem that provides comment functionality for nodes (and by extension,  
other data types).



Chapter 1

[ 19 ]

While one could imagine that comments are merely a type of node (and, in fact, there 
are modules that do this), Drupal developers have chosen to implement comments 
as a separate type. The comment module contains the majority of the comment code. 
However, again, as with the node system, it provides numerous hooks, and thus 
many other modules interact with the comment system.

Fields and entities
In previous versions of Drupal, the node system was really the only system for 
creating structured pieces of textual content. (Comments are too focused to be 
generally useful for extension.) In order to extend node content beyond simple title 
and body fields, one needed to either write custom node types or use the Content 
Construction Kit (CCK) to build node types.

However, Drupal 7 introduces two substantial subsystems that change this:

The fields system brings most of CCK's functionality into core
The entities system makes it possible to define other structured data types 
that are not nodes

Already these new systems are making waves among Drupal developers, with the 
Drupal Commerce module leading the way in defining sophisticated entities that  
are not nodes.

These two subsystems are new, important, and also complex. So we will cover them 
in detail in Chapter 6.

Forms API
Another remarkable subsystem that is provided in Drupal's core is the Forms API 
(FAPI). This system provides a robust programmatic tool for defining, displaying, 
validating, and submitting forms. It takes much of the busy-work out of developing 
forms, and also adds a layer of security. FAPI is so integral to Drupal that we use it 
numerous times throughout the book.

Installation Profiles
More sophisticated Drupal use-cases may benefit from the ability to customize the 
installation process. Drupal provides an installation profile subsystem that can be 
leveraged to create a custom installer.

•

•



Developing for Drupal 7

[ 20 ]

Using this, developers can set custom themes and modules, change installation 
parameters, and generally streamline the process of installing sophisticated  
Drupal sites.

Simple test
Programmatically testing code is a well-established practice in the software 
development industry. In Drupal 7, it is a capability of the core Drupal distribution. 
Using the Simple Test framework, developers can now use functional and unit tests 
to validate their code.

We employ testing throughout this book. In fact, we will write some of our first tests 
in Chapter 2.

Blocks
Along with the primary content, most web pages also have additional content 
displayed along the top, bottom, or sides of the page. Drupal's block subsystem 
handles the configuration and display of these units of content.

Most of this functionality is concentrated in the block module, and we will develop 
our first custom block in Chapter 2.

Other subsystems
In this section, we have provided some basic information on several high-profile 
subsystems. However, this list is not exhaustive. There are numerous others, and 
even some very important ones (like Views) that are not in core, but provided by 
third party modules.

Some of these other subsystems will be introduced and discussed throughout this 
book. However, Drupal is a sophisticated system, and no book of a manageable 
length can go into all of the details. For that reason, we provide references 
throughout the book pointing developers to the appropriate resources on  
the web and elsewhere.

Tools for developing Drupal code
Drupal is a sophisticated platform, and from the glimpse above we can see already 
that there are numerous systems and structures to keep track of. In this section, we 
try to provide tools that simplify or streamline the development process.



Chapter 1

[ 21 ]

We assume that you have your own web server stack and your own PHP 
development tools. The authors of this book each use different editors, operating 
systems, and web server stacks, so we collectively understand that there are many 
good tools for developing PHP applications. And Drupal itself doesn't require 
anything special.

If you are just getting started, you may want to look at Acquia Drupal  
(http://acquia.com). They offer entire application stacks to get you started on 
Windows, Linux, or Mac OS X.

While running a PHP debugger is certainly not necessary, you may find running 
Xdebug or the Zend Debugger to be useful. (One of the authors of this book first 
learned how Drupal worked by stepping through an entire page load.)

Version control with Git and CVS
Managing source code is a major part of any software development lifecycle. In this 
regard, Drupal 7 coincides with a major transition period for the Drupal community.

In years past, Drupal's source code has been maintained in the venerable old CVS 
(Concurrent Versioning System) tool. However, Drupal has grown and the needs of 
the community have changed. Drupal is now moving to the Git distributed version 
control system.

As we begin working with Drupal code, it will help to be able to have the tools 
necessary to work with Git. From command-line programs to full-featured desktop 
applications, there is no shortage of tools for this.

The book's code and Git
The authors of this book have been working with Git for some time (one, in fact, is 
leading the CVS-to-Git conversion). We have done our best to make sure that all of 
the code contributions in this book are available from a Git repository.

You can access the code for this book, view it online in a web browser, submit 
patches, or even branch your own copy and build your own tool. All the code is 
located at GitHub:

http://github.com/LearningDrupal7Development

From there you will be able to access each chapter's code—and in some cases, 
multiple versions of the same code.



Developing for Drupal 7

[ 22 ]

The API site and coding standards
A lot of background knowledge is required for writing good Drupal code. Of course, 
the aim of a book such as this is to provide that background knowledge. However, 
there are two reference resources that a burgeoning Drupal developer should have 
on-hand.

The first is the official online API documentation. Just about every function in 
Drupal is documented using in-line code documentation. The Doxygen program is 
then used to extract that documentation and format it. You can access the full API 
documentation online at http://api.drupal.org. 

Along with using the Drupal APIs, we strive to comply with Drupal's coding 
conventions. Best practices in software development include keeping code clean, 
consistent, and readable. One aspect of this is removing nuances in code formatting 
by following a fixed standard.

This is particularly important on a platform like Drupal where thousands of 
developers all contribute to the code. Without coding standards, the code would 
become a cluttered mishmash of styles, and valuable development time would be 
spent merely deciphering code instead of working on it.

The Drupal site has a manual on best practices (http://drupal.org/node/360052) 
that includes a section on coding standards (http://drupal.org/coding-
standards). All Drupal developers abide by these standards.

While we have attempted to follow all of the coding guidelines in this book, we 
don't always explicitly point out what these standards are. So new developers are 
encouraged to peruse the coding standards given on the previously mentioned  
web address.

Developer-oriented modules
There are a few Drupal-specific development and administrative modules that 
deserve a mention. These are tools that are installed on the server to help simplify 
Drupal development.

The developer module
The Developer module provides several sophisticated tools designed to help 
developers create and debug Drupal code. For this, please refer to the following  
page: http://drupal.org/project/devel



Chapter 1

[ 23 ]

The following are a few of the features of this module:

Functions used for dumping objects and arrays into formatted Drupal output
Tools for analyzing database usage and performance
A theme tool which indicates (graphically) which elements of a page were 
themed by which functions or templates
A content generator for quickly populating your site with testing content

Drush (the Drupal shell)
Sometimes it is much easier to run some tasks with a single command in a console. 
Drush provides a command-line Drupal interface. It can be used to execute tasks 
with a few keystrokes at the console: http://drupal.org/project/drush

When developing, we often have to clear caches, run specific tasks, or deploy data  
to a remote server. Drush can help accomplish tasks like this.

Coder
The Coder module provides two big features:

It can examine code for compliance against the Drupal coding standards 
It can automatically convert modules from one version of Drupal to another: 
http://drupal.org/project/coder

For those new to Drupal, it is nice to be able to have a module automatically evaluate 
whether or not new code follows the existing standards.

Summary
This chapter has been an overview of Drupal for developers. We saw what 
technologies Drupal uses. We looked at Drupal's architecture. We took a cursory 
glance at several prominent subsystems of Drupal's. We also got a feel of which 
developer-oriented tools are to be used while working with Drupal.

Starting in the next chapter, we will be working with code. In fact, each of the 
subsequent chapters will focus on practical aspects of working with Drupal. Coming 
up next is an introduction to the block system, where we will write our first module.

•

•

•

•

•

•





Creating Your First Module
The focus of this chapter is module creation. In the last chapter we surveyed Drupal's 
architecture advanced. We learned about the basic features and subsystems. We also 
saw some tools available for development. Now we are going to begin coding.

Here are some of the important topics that we will cover in this chapter:

Starting a new module
Creating .info files to provide Drupal with module information
Creating .module files to store Drupal code
Adding new blocks using the Block Subsystem
Using common Drupal functions
Formatting code according to the Drupal coding standards
Writing an automated test for Drupal

By the end of this chapter, you should have the foundational knowledge necessary 
for building your own module from scratch.

Our goal: a module with a block
In this chapter we are going to build a simple module. The module will use the Block 
Subsystem to add a new custom block. The block that we add will simply display a 
list of all of the currently enabled modules on our Drupal installation.

The block subsystem was introduced in the previous chapter 
alongside other important Drupal subsystems.

•

•

•

•

•

•

•



Creating Your First Module

[ 26 ]

We are going to divide this task of building a new module into the three parts:

Create a new module folder and module files
Work with the Block Subsystem
Write automated tests using the SimpleTest framework included in Drupal

We are going to proceed in that order for the sake of simplicity. One might object 
that, following agile development processes, we ought to begin by writing our  
tests. This approach is called Test-driven Development (TDD), and is a justly 
popular methodology.

Agile software development is a particular methodology designed to 
help teams of developers effectively and efficiently build software. While 
Drupal itself has not been developed using an agile process, it does 
facilitate many of the agile practices. To learn more about agile, visit 
http://agilemanifesto.org/.

However, our goal here is not to exemplify a particular methodology, but to discover 
how to write modules. It is easier to learn module development by first writing the 
module, and then learn how to write unit tests. It is easier for two reasons:

SimpleTest (in spite of its name) is the least simple part of this chapter. It will 
have double the code-weight of our actual module.
We will need to become acquainted with the APIs we are going to use in 
development before we attempt to write tests that assume knowledge of 
those APIs.

In regular module development, though, you may certainly choose to follow the 
TDD approach of writing tests first, and then writing the module.

Let's now move on to the first step of creating a new module.

Creating a new module
Creating Drupal modules is easy. How easy? Easy enough that over 5,000 modules 
have been developed, and many Drupal developers are even PHP novices! In fact, 
the code in this chapter is an illustration of how easy module coding can be. We are 
going to create our first module with only one directory and two small files.

•

•

•

•

•



Chapter 2

[ 27 ]

Module names
It goes without saying that building a new module requires naming the module. 
However, there is one minor ambiguity that ought to be cleared up at the outset,  
a Drupal module has two names:

A human-readable name: This name is designed to be read by humans, and 
should be one or a couple of words long. The words should be capitalized 
and separated by spaces. For example, one of the most popular Drupal 
modules has the human-readable name Views. A less-popular (but perhaps 
more creatively named) Drupal 6 module has the human-readable name 
Eldorado Superfly.
A machine-readable name: This name is used internally by Drupal. It can be 
composed of lower-case and upper-case letters, digits, and the underscore 
character (using upper-case letters in machine names is frowned upon, 
though). No other characters are allowed. The machine names of the above 
two modules are views and eldorado_superfly, respectively.

By convention, the two names ought to be as similar as possible. Spaces should  
be replaced by underscores. Upper-case letters should generally be changed to 
lower-case. 

Because of the convention of similar naming, the two names can usually be used 
interchangeably, and most of the time it is not necessary to specifically declare which 
of the two names we are referring to. In cases where the difference needs to be made 
(as in the next section), the authors will be careful to make it.

Where does our module go?
One of the less intuitive aspects of Drupal development is the filesystem layout. 
Where do we put a new module? The obvious answer would be to put it in the  
/modules directory alongside all of the core modules.

•

•



Creating Your First Module

[ 28 ]

As obvious as this may seem, the /modules folder is not the right place for your 
modules. In fact, you should never change anything in that directory. It is reserved 
for core Drupal modules only, and will be overwritten during upgrades.

The second, far less obvious place to put modules is in /sites/all/modules. This is 
the location where all unmodified add-on modules ought to go, and tools like Drush 
( a Drupal command line tool) will download modules to this directory.

In some sense, it is okay to put modules here. They will not be automatically 
overwritten during core upgrades.

However, as of this writing, /sites/all/modules is not the recommended place 
to put custom modules unless you are running a multi-site configuration and the 
custom module needs to be accessible on all sites.

The current recommendation is to put custom modules in the /sites/default/
modules directory, which does not exist by default. This has a few advantages. One 
is that standard add-on modules are stored elsewhere, and this separation makes it 
easier for us to find our own code without sorting through clutter. There are other 
benefits (such as the loading order of module directories), but none will have a direct 
impact on us.

Throughout this book, we will always be putting our custom 
modules in /sites/default/modules. This follows Drupal 
best practices, and also makes it easy to find our modules as 
opposed to all of the other add-on modules.

The one disadvantage of storing all custom modules in /sites/default/modules 
appears only under a specific set of circumstances. If you have Drupal configured 
to serve multiple sites off of one single instance, then the /sites/default folder is 
only used for the default site. What this means, in practice, is that modules stored 
there will not be loaded at all for other sites.

In such cases, it is generally advised to move your custom modules into  
/sites/all/modules/custom.

Other module directories
Drupal does look in a few other places for modules. However, 
those places are reserved for special purposes.



Chapter 2

[ 29 ]

Creating the module directory
Now that we know that our modules should go in /sites/default/modules, we 
can create a new module there.

Modules can be organized in a variety of ways, but the best practice is to create a 
module directory in /sites/default/modules, and then place at least two files 
inside the directory: a .info (pronounced "dot-info") file and a .module ("dot-
module") file.

The directory should be named with the machine-readable name of the module. 
Similarly, both the .info and .module files should use the machine-readable name.

We are going to name our first module with the machine-readable name first, 
since it is our first module. Thus, we will create a new directory, /sites/default/
modules/first, and then create a first.info file and a first.module file:

Those are the only files we will need for our module.

For permissions, make sure that your webserver can read both the .info and 
.module files. It should not be able to write to either file, though.

In some sense, the only file absolutely necessary for a module is the 
.info file located at a proper place in the system. However, since 
the .info file simply provides information about the module, no 
interesting module can be built with just this file.

Next, we will write the contents of the .info file.

Writing the .info file
The purpose of the .info file is to provide Drupal with information about a 
module—information such as the human-readable name, what other modules  
this module requires, and what code files this module provides.

A .info file is a plain text file in a format similar to the standard INI configuration 
file. A directive in the .info file is composed of a name, and equal sign, and a value:

name = value



Creating Your First Module

[ 30 ]

By Drupal's coding conventions, there should always be one space on each side of 
the equals sign.

Some directives use an array-like syntax to declare that one name has multiple 
values. The array-like format looks like this:

name[] = value1
name[] = value2

Note that there is no blank space between the opening square bracket and the closing 
square bracket.

If a value spans more than one line, it should be enclosed in quotation marks.

Any line that begins with a ; (semi-colon) is treated as a comment, and is ignored by 
the Drupal INI parser.

Drupal does not support INI-style section headers such as 
those found in the php.ini file.

To begin, let's take a look at a complete first.info file for our first module:

;$Id$

name = First
description = A first module.
package = Drupal 7 Development
core = 7.x
files[] = first.module

;dependencies[] = autoload
;php = 5.2

This ten-line file is about as complex as a module's .info file ever gets.

The first line is a standard. Every .info file should begin with ;$Id$. What is this? 
It is the placeholder for the version control system to store information about the file. 
When the file is checked into Drupal's CVS repository, the line will be automatically 
expanded to something like this:

;$Id: first.info,v 1.1 2009/03/18 20:27:12 mbutcher Exp $

This information indicates when the file was last checked into CVS, and who checked 
it in.



Chapter 2

[ 31 ]

CVS is going away, and so is $Id$. While Drupal has been 
developed in CVS from the early days through Drupal 7, it is 
now being migrated to a Git repository. Git does not use $Id$, 
so it is likely that between the release of Drupal 7 and the 
release of Drupal 8, $Id$ tags will be removed.

Throughout this book you will see all PHP and .info files beginning with the $Id$ 
marker. Once Drupal uses Git, those tags may go away.

The next couple of lines of interest in first.info are these:

name = First
description = A first module.
package = Drupal 7 Development

The first two are required in every .info file. The name directive is used to declare 
what the module's human-readable name is. The description provides a one or 
two-sentence description of what this module provides or is used for. Among other 
places, this information is displayed on the module configuration section of the 
administration interface in Modules.

In the screenshot, the values of the name and description fields are displayed in 
their respective columns.

The third item, package, identifies which family (package) of modules this  
module is related to. Core modules, for example, all have the package Core. In the 
screenshot above, you can see the grouping package Core in the upper-left corner. 
Our module will be grouped under the package Drupal 7 Development to represent  
its relationship to this book. As you may notice, package names are written as 
human-readable values.

When choosing a human-readable module name, remember to adhere to 
the specifications mentioned earlier in this section.



Creating Your First Module

[ 32 ]

The next directive is the core directive: core = 7.x. This simply declares which 
main-line version of Drupal is required by the module. All Drupal 7 modules will 
have the line core = 7.x.

Along with the core version, a .info file can also specify what version of PHP it 
requires. By default, Drupal 7 requires Drupal 5.1 or newer. However, if one were  
to use, say, closures (a feature introduced in PHP 5.3), then the following line would 
need to be added:

php = 5.3

Next, every .info file must declare which files in the module contain PHP  
functions, classes, or interfaces. This is done using the files[] directive. Our  
small initial module will only have one file, first.module. So we need only one 
files[] directive.

files[] = first.module

More complex files will often have several files[] directives, each declaring a 
separate PHP source code file.

JavaScript, CSS, image files, and PHP files (like templates) that 
do not contain functions that the module needs to know about 
needn't be included in files[] directives. The point of the 
directive is simply to indicate to Drupal that these files should 
be examined by Drupal.

One directive that we will not use for this module, but which plays a very important 
role is the dependencies[] directive. This is used to list the other modules that must 
be installed and active for this module to function correctly. Drupal will not allow  
a module to be enabled unless its dependencies have been satisfied.

Drupal does not contain a directive to indicate that another 
module is recommended or is optional. It is the task of the 
developer to appropriately document this fact and make it 
known. There is currently no recommended best practice to 
provide such information.



Chapter 2

[ 33 ]

Now we have created our first.info file. As soon as Drupal reads this file, the 
module will appear on our Modules page.

In the screenshot, notice that the module appears in the DRUPAL 7 DEVELOPMENT 
package, and has the NAME and DESCRIPTION as assigned in the .info file.

With our .info file completed, we can now move on and code our .module file.

Modules checked into Drupal's version control system will 
automatically have a version directive added to the .info file. 
This should typically not be altered.

Creating a module file
The .module file is a PHP file that conventionally contains all of the major hook 
implementations for a module. We discussed hooks at a high level in the first 
chapter. Now we will gain some practical knowledge of them.

A hook implementation is a function that follows a certain naming pattern in order 
to indicate to Drupal that it should be used as a callback for a particular event in the 
Drupal system. For Object-oriented programmers, it may be helpful to think of a 
hook as similar to the Observer design pattern. 



Creating Your First Module

[ 34 ]

When Drupal encounters an event for which there is a hook (and there are  
hundreds of such events), Drupal will look through all of the modules for matching 
hook implementations. It will then execute each hook implementation, one after 
another. Once all hook implementations have been executed, Drupal will continue  
its processing.

In the past, all Drupal hook implementations had to reside in the .module file. 
Drupal 7's requirements are more lenient, but in most moderately sized modules,  
it is still preferable to store most hook implementations in the .module file.

Later in this book you will encounter cases where hook 
implementations belong in other files. In such cases, the reasons 
for organizing the module in such a way will be explained.

To begin, we will create a simple .module file that contains a single hook 
implementation – one that provides help information.

<?php
// $Id$

/**
 * @file
 * A module exemplifying Drupal coding practices and APIs.
 *
 * This module provides a block that lists all of the 
 * installed modules. It illustrates coding standards, 
 * practices, and API use for Drupal 7.
 */

/**
 * Implements hook_help().
 */
function first_help($path, $arg) {
  if ($path == 'admin/help#first') {
    return t('A demonstration module.');
  }
}

Before we get to the code itself, we will talk about a few stylistic items.

To begin, notice that this file, like the .info file, contains an $Id$ marker that CVS 
will replace when the file is checked in. All PHP files should have this marker 
following a double-slash-style comment: // $Id$.

Next, the preceding code illustrates a few of the important coding standards  
for Drupal.



Chapter 2

[ 35 ]

Source code standards
Drupal has a thorough and strictly enforced set of coding standards. All core code 
adheres to these standards. Most add-on modules do, too. (Those that don't generally 
receive bug reports for not conforming.) Before you begin coding, it is a good idea to 
familiarize yourself with the standards as documented here: http://drupal.org/
coding-standards The Coder module mentioned in the last chapter can evaluate 
your code and alert you to any infringement upon the coding standards.

Throughout this book we will adhere to the Drupal coding 
standards. In many cases, we will explain the standards as 
we go along. Still, the definitive source for standards is the 
URL listed above, not our code here.

We will not re-iterate the coding standards in this book. The details can be found 
online. However, several prominent standards deserve immediate mention. I will just 
mention them here, and we will see examples in action as we work through the code.

Indenting: All PHP and JavaScript files use two spaces to indent. Tabs are 
never used for code formatting.
The <?php ?> processor instruction: Files that are completely PHP should 
begin with <?php, but should omit the closing ?>. This is done for several 
reasons, most notably to prevent the inclusion of whitespace from breaking 
HTTP headers.
Comments: Drupal uses Doxygen-style (/** */) doc-blocks to comment 
functions, classes, interfaces, constants, files, and globals. All other comments 
should use the double-slash (//) comment. The pound sign (#) should  not be 
used for commenting.
Spaces around operators: Most operators should have a whitespace 
character on each side.
Spacing in control structures: Control structures should have spaces after 
the name and before the curly brace. The bodies of all control structures 
should be surrounded by curly braces, and even that of if statements with 
one-line bodies.
Functions: Functions should be named in lowercase letters using underscores 
to separate words. Later we will see how class method names differ  
from this.
Variables: Variable names should be in all lowercase letters using underscores 
to separate words. Member variables in objects are named differently.

As we work through examples, we will see these and other standards in action.

•

•

•

•

•

•

•



Creating Your First Module

[ 36 ]

Doxygen-style doc blocks
Drupal uses Doxygen to extract API documentation from source code. Experienced 
PHP coders may recognize this concept, as it is similar to PhpDocumentor comments 
(or Java's JavaDoc). However, Drupal does have its idiosyncrasies, and does not 
follow the same conventions as these systems.

We will only look at the documentation blocks as they apply to our preceding 
specific example. As we proceed through the book, we will see more advanced 
examples of correct documentation practices.

Let's take a closer look at the first dozen lines of our module:

<?php
// $Id$

/**
 * @file
 * A module exemplifying Drupal coding practices and APIs.
 *
 * This module provides a block that lists all of the 
 * installed modules. It illustrates coding standards, 
 * practices, and API use for Drupal 7.
 */

After the PHP processor instruction and the $Id$ line, the part of the code is a large 
comment. The comment begins with a slash and two asterisks (/**) and ends with a 
single asterisk and a slash (*/). Every line between begins with an asterisk. This style 
of comment is called a doc block or documentation block.

A doc block is a comment that contains API information. It can be extracted 
automatically by external tools, which can then format the information for use  
by developers.

Doc blocks in action: api.drupal.org
Drupal's doc blocks are used to generate the definitive source of Drupal 
API documentation at http://api.drupal.org. This site is a 
fantastic searchable interface to each and every one of Drupal's functions, 
classes, interfaces, and constants. It also contains some useful how-to 
documentation.

All of Drupal is documented using doc blocks, and you should always use them  
to document your code.



Chapter 2

[ 37 ]

The initial doc block in the code fragment above begins with the @file decorator. 
This indicates that the doc block describes the file as a whole, not a part of it. Every 
file should begin with a file-level doc block.

From there, the format of this doc block is simple: It begins with a single-sentence 
description of the file (which should always be on one line), followed by a blank line, 
followed by one or more paragraph descriptions of what this file does.

The Drupal coding standards stipulate that doc blocks should always be written 
using full, grammatically correct, punctuated sentences.

If we look a little further down in our module file, we can see our first  
function declaration:

/**
 * Implements hook_help().
 */
function first_help($path, $arg) {
  if ($path == 'admin/help#first') {
    return t('A demonstration module.');
  }
}

Before moving onto the function, let's take a look at the doc block here. It is a single 
sentence: Implements hook_help(). This single-sentence description follows a 
Drupal doc block coding standard, too. When a function is a hook implementation, 
it should state so in exactly the format used above: Implements NAME OF HOOK. Why 
the formula? So that developers can very quickly identify the general purpose of the 
function, and also so that automated tools can find hook implementations.

Note that we don't add any more of a description, nor do we document the 
parameters. This is okay when two things are true:

The function implements a hook
The function is simple

In such cases, the single-line description will do, since coders can simply refer to the 
API documentation for the hook to learn more.

Later we will see how non-hook functions and more complex hook implementations 
have an extended form of doc block comment. For now, though, we have addressed 
the basics of doc blocks. We will move on and look at the help function.

•

•



Creating Your First Module

[ 38 ]

The help hook
Drupal defines a hook called hook_help(). The help hook is invoked (called) when  
a user browses the help system. Each module can have one implementation of  
hook_help(). Our module provides brief help text by implementing the help hook.

function first_help($path, $arg) {
  if ($path == 'admin/help#first') {
    return t('A demonstration module.');
  }
}

How does this function become a hook implementation? Strictly by virtue of its 
name: first_help(). The name follows the hook pattern. If the hook is named 
hook_help(), then to implement it, we replace the word hook with the name of  
the module. Thus, to implement hook_help(), we simply declare a function in  
our first module named first_help().

Each hook has its own parameters, and all core Drupal hooks are documented at 
http://api.drupal.org.

A hook_help() implementation takes two arguments:

$path: The help system URI path
$arg: The arguments used when accessing this URL

In our case, we are only concerned with the first of these two. Basically, the help 
system works by matching URI paths to help text. Our module needs to declare  
what help text should be returned for specific URIs.

Specifically, the module-wide help text should be made available at the URI admin/
help#MODULE_NAME, where MODULE_NAME is the machine-readable name of the module.

Our function works by checking the $path. If the $path is set to admin/help#first, 
the default help screen for a module, then it will return some simple help text.

If we were to enable our new module and then look at Drupal's help text page with 
our new module enabled, we would see this:

•

•



Chapter 2

[ 39 ]

Notice that Help now shows up under OPERATIONS. If we were to click on the 
Help link, we would see our help text:

The key to make this system work is in the use of the $path checking, which displays 
the help information only when the context-sensitive help for this module is enabled 
via hook_help().

  if ($path == 'admin/help#first') {
    return t('A demonstration module.');
  }

Since this is our first module, we will dwell on the details a little more carefully than 
we will do in subsequent chapters.

First, the previous code conforms to Drupal's coding standards, which we briefly 
covered earlier. Whitespace separates the if and the opening parenthesis (, and 
there is also a space between the closing parenthesis ) and the opening curly brace 
({). There are also spaces on both sides of the equality operator ==. Code is indented 
with two spaces per level, and we never use tabs. In general, Drupal coders tend to 
use single quotes (') to surround strings because of the (admittedly slight) speed 
improvement gained by skipping interpolation.

Also important from the perspective of coding standards is the fact that we enclose 
the body of the if statement in curly braces even though the body is only one line 
long. And we split it over three lines, though we might have been able to fit it on one. 
Drupal standards require that we always do this.

Finally, in the example above we see one new Drupal function: t().

The t() function and translations
Every natural language string that may be displayed to a user should be wrapped in 
the t() function. Why? Because the t() function is responsible for translating strings 
from one language into other.



Creating Your First Module

[ 40 ]

Drupal supports dozens of languages. This is one of the strongest features of 
Drupal's internationalization and localization effort. The method by which  
Drupal supports translation is largely through the t() function.

There are three features of this function that every developer should understand:

What happens when t() is called
How Drupal builds the translation table
Additional features you get by using the t() function

First, let's look at what the t() function does when it is called. If no language 
support is enabled and no second argument is passed to t(), it simply returns the 
string unaltered. If more languages are enabled and the user's language is something 
other than English, Drupal will attempt to replace the English language string with a 
string in the appropriate language.

The second thing to look at is how Drupal builds the translation information. There 
are two aspects to this: The human aspect and the technical one. The translations 
themselves are done by dozens and dozens of volunteers who translate not only 
Drupal's core, but also many of the add-on modules. Their translations are then 
made into downloadable language bundles (.po files) that you can install on  
your site.

On the more technical side, this dedicated group of translators does not simply 
search the source code looking for calls to the t() function. Instead, an automated 
tool culls the code and identifies all of the translatable strings. This automated tool, 
though, can only extract string literals. In other words, it looks for calls like this:

t('This is my string');

It cannot do anything with lines like this, though:

$variable = 'This is a string';
t($variable);

Why won't the translation system work in the case above? Because when the 
automated translation system runs through the code, it does not execute the code. 
It simply reads it. For that reason, it would become cumbersome (and many times 
impossible) to determine what the correct value of a variable is.

The locale module can, under certain circumstances, identify 
other strings that were not correctly passed into the t() function 
and make them available to translators. This, however, should not 
be relied upon.

•

•

•



Chapter 2

[ 41 ]

So the t() function should always be given a literal string for its first argument.

The third thing to note about the t() function is that it does more than translate 
strings. It offers a method of variable interpolation that is more secure than the  
usual method.

In many PHP applications, you will see code like this:

print "Welcome, $username.";

The code above will replace $username with the value of the $username variable. 
This code leaves open the possibility that the value of $username contains data  
that will break the HTML in the output – or worse, that it will open an avenue  
for a malicious user to inject JavaScript or other code into the output.

The t() function provides an alternate, and more secure, method for replacing 
placeholders in text with a value. The function takes an optional second argument, 
which is an associative array of items that can be substituted. Here's an example  
that replaces the the previous code:

$values = array('@user' => $username);
print t('Welcome, @user', $values);

In the previous case, we declare a placeholder named @user, the value of which 
is the value of the $username variable. When the t() function is executed, the 
mappings in $values are used to substitute placeholders with the correct data.  
But there is an additional benefit: these substitutions are done in a secure way.

If the placeholder begins with @, then before it inserts the value, Drupal sanitizes  
the value using its internal check_plain() function (which we will encounter  
many times in subsequent chapters).

If you are sure that the string doesn't contain any dangerous information, you can 
use a different symbol to begin your placeholder: the exclamation mark (!). When 
that is used, Drupal will simply insert the value as is. This can be very useful when 
you need to insert data that should not be translated:

$values = array('!url' => 'http://example.com'); 
print t('The website can be found at !url', $values);

In this case, the URL will be entered with no escaping. We can do this safely only 
because we already know the value of URL. It does not come from a distrusted user.



Creating Your First Module

[ 42 ]

Finally, there is a third placeholder decorator: the percent sign (%) tells Drupal  
to escape the code and to mark it as emphasized.

$values = array('%color' => 'blue'); 
print t('My favorite color is %color.', $values);

Not only will this remove any dangerous characters from the value, but it will also 
insert markup to treat that text as emphasized text. By default, the preceding code 
would result in the printing of the string My favorite color is <em>blue</em>. The 
emphasis tags were added by a theme function (theme_placeholder()) called by 
the t() function.

There are more things that can be done with t(), format_plural(), translation 
contexts, and other translation system features. To learn more, you may want to  
start with the API documentation for t() at http://api.drupal.org/api/
function/t/7.

We have taken a sizable detour to talk about the translation system, but with good 
reason. It is a tremendously powerful feature of Drupal, and should be used in all of 
your code. Not only does it make modules translatable, but it adds a layer of security. 
It can even be put to some interesting (if unorthodox) uses, as is exemplified by the 
String Overrides module at http://drupal.org/project/stringoverrides.

At this point, we have created a working module, though the only thing that it does 
is display help text. It's time to make this module a little more interesting. In the next 
section we will use the Block API to write code that generates a block listing all of the 
currently enabled modules.

Working with the Block API
In the first chapter we talked about blocks, and in your passing usage of Drupal, you 
have already no doubt encountered block configuration and management. In this 
section, we are going to learn how to create blocks in code. The Block API provides 
the tools for hooking custom code into the block subsystem.

The Block API has changed substantially since Drupal 6. In Drupal 6, 
there was only one function used for all block operations. Now there 
is a family of related functions.

We are going to create a block that displays a bulleted list of all of the modules 
currently enabled on our site.



Chapter 2

[ 43 ]

There are half a dozen hooks in the Block API, providing opportunities to do 
everything from declaring new blocks to altering the content and behavior of  
existing blocks. For our simple module, we are going to use two different hooks:

hook_block_info(): This is used to tell Drupal about the new block or 
blocks that we will declare
hook_block_view(): This tells Drupal what to do when a block is requested 
for viewing

One thing to keep in mind, in the context of the Block API as well as other APIs is 
that each module can only implement a given hook once. There can be only one 
first_block_info() function.

Since modules should be able to create multiple blocks, that means that the  
Block API must make it possible for one block implementation to manage multiple 
blocks. Thus, first_block_info() can declare any number of blocks, and  
first_block_view() can return any number of blocks.

The entire Block API is documented in the official Drupal 7 
API documentation, and even includes an example module: 
http://api.drupal.org/api/drupal/developer--
examples--block_example.module/7.

To keep our example simple, we will be creating only one block. However, it is good 
to keep in mind that the API was designed in a way that would allow us to create as 
many blocks as we want.

Let's start with an implementation of hook_block_info().

The block info hook
All of the functions in our module will go inside of the first.module file—the 
default location for hook implementations in Drupal. Before, we created  
first_help(), an implementation of hook_help(). Now, we are going to 
implement the hook_block_info() hook.

The purpose of this hook is to tell Drupal about all of the blocks that the module 
provides. Note that, as with any hook, you only need to implement it in cases where 
your module needs to provide this functionality. In other words, if the hook is not 
implemented, Drupal will simply assume that this module has no associated blocks.

•

•



Creating Your First Module

[ 44 ]

Here's our 'block info' hook implementation declaring a single block:

/**
 * Implements hook_block_info().
 */
function first_block_info() {
  $blocks = array();
  
  $blocks['list_modules'] = array(
    'info' => t('A listing of all of the enabled modules.'),
    'cache' => DRUPAL_NO_CACHE,
  );
  
  return $blocks;
}

Once again, this function is preceded by a doc block. And since we are writing  
a trivial implementation of hook_block_info(), we needn't add anything other  
than the standard documentation.

An implementation of hook_block_info() takes no arguments and is expected  
to return an associative array.

Associative arrays: Drupal's data structure of choice
Arrays in PHP are very fast. They are well supported, and because they 
serve double duty as both indexed arrays and dictionary-style associative 
arrays, they are flexible. For those reasons Drupal makes heavy use of 
arrays—often in places where one would expect objects, linked lists, 
maps, or trees.

The returned array should contain one entry for every block that this module declares, 
and the entry should be of the form $name => array($property => $value).

Thus, the important part of our function above is this piece:

  $blocks['list_modules'] = array(
    'info' => t('A listing of all of the enabled modules.'),
    'cache' => DRUPAL_NO_CACHE,
  );



Chapter 2

[ 45 ]

This defines a block named list_modules that has two properties:

info: This provides a one-sentence description of what this block does. The 
text is used on the block administration screens.
cache: This tells Drupal how to cache the data from this block. Here in the 
code I have set this to DRUPAL_NO_CACHE, which will simply forgo caching 
altogether. There are several other settings providing global caching,  
per-user caching, and so on.

There are a handful of other possible properties that Drupal recognizes. You can  
read about these in the Drupal API documentation at http://api.drupal.org/
api/function/hook_block_info/7.

We have now created a function that tells Drupal about a block named list_modules. 
With this information, Drupal will assume that when it requests that block for viewing, 
some function will provide the block's contents. The next function we implement will 
handle displaying the block.

The block view hook
In the section above we implemented the hook that tells Drupal about our module's 
new block. Now we need to implement a second hook—a hook responsible for 
building the contents of the block. This hook will be called whenever Drupal  
tries to display the block.

An implementation of hook_block_view() is expected to take one argument—the 
name of the block to retrieve—and return an array of data for the given name.

Our implementation will provide content for the block named list_modules.  
Here is the code:

/**
 * Implements hook_block_view().
 */
function first_block_view($block_name = '') {
  if ($block_name == 'list_modules') {
    $list = module_list();
    
    $theme_args = array('items' => $list, 'type' => 'ol');
    $content = theme('item_list', $theme_args);
    
    $block = array(
      'subject' => t('Enabled Modules'),
      'content' => $content,

•

•



Creating Your First Module

[ 46 ]

    );
    
    return $block;
  }
}

By now, the doc block should be familiar. The Drupal coding style should also look 
familiar. Again, we have implemented hook_block_view() simply by following the 
naming convention.

The argument that our first_block_view() function takes, is the name of the 
block. As you look through Drupal documentation you may see this argument called 
$which_block or $delta—terms intended to identify the fact that the value passed 
in is the identifier for which block should be returned.

The term $delta is used for historical reasons. It is not a particularly 
apt description for the role of the variable, and more recently it has been 
replaced by more descriptive terms.

The only block name that our function should handle is the one we declared  
in first_block_info(). If the $block_name is list_modules, we need to  
return content.

Let's take a close look at what happens when a request comes in for the  
list_modules block. This is the content of the if statement above:

$list = module_list();
    
$theme_args = array('items' => $list, 'type' => 'ol');
$content = theme('item_list', $theme_args);
    
$block = array(
  'subject' => t('Enabled Modules'),
  'content' => $content,
);
    
return $block;

On the first line, we call the Drupal function module_list(). This function simply 
returns an array of module names. (In fact, it is actually an associative array of module 
names to module names. This duplicate mapping is done to speed up lookups.)

Now we have a raw array of data. The next thing we need to do is format that for 
display. In Drupal formatting is almost always done by the theming layer. Here, we 
want to pass off the data to the theme layer and have it turn our module list into an 
HTML ordered list.



Chapter 2

[ 47 ]

The next few chapters will take a detailed look at the theming system. For 
now, though, we will simply grant the fact that when we use the theme 
function in the way we have done above, it returns formatted HTML.

The main function for working with the theming system is theme(). In Drupal 7, 
theme() takes one or two arguments:

The name of the theme operation
An associative array of variables to pass onto the theme operation

Previous versions of Drupal took any number of arguments, depending 
on the theme operation being performed. That is no longer the case in 
Drupal 7. The details of this are covered in the later chapters.

To format an array of strings into an HTML list, we use the item_list theme, and 
we pass in an associative array containing two variables:

the items we want listed
the type of listing we want

From theme() we get a string of HTML.

Now all we need to do is assemble the data that our block view must return. An 
implementation of hook_block_view() is expected to return an array with two 
items in it:

subject: The name or title of the block.
content: The content of the block, as formatted text or HTML.

So in the first place we set a hard-coded, translatable string. In the second, we set 
content to the value built by theme().

One thing you may notice about the $block array in the code above is its formatting:

$block = array(
  'subject' => t('Enabled Modules'),
  'content' => $content,
);

This is how larger arrays should be formatted according to the Drupal coding 
standards. And that trailing comma is not a error. Drupal standards require that 
multi-line arrays terminate each line—including the last item—with a comma. This is 
perfectly legal in PHP syntax, and it eliminates simple coding syntax problems that 
occur when items are added to or removed from the array code.

•

•

•

•

•

•



Creating Your First Module

[ 48 ]

Not in JavaScript!
Drupal programmers make the mistake of using a similar syntax in 
Drupal JavaScript. Object literal definitions (the JavaScript equivalent of 
associative arrays) do not allow the last item to terminate with a comma. 
Doing so causes bugs in IE and other browsers.

Now we have walked through our first module's code. For all practical purposes, we 
have written an entire module (though we still have some automated testing code to 
write). Let's see what this looks like in the browser.

The first module in action
Our module is written and ready to run. To test this out, we need to first enable the 
module, and then go to the block administration page.

The module can be enabled through the Modules menu. Once it is enabled, go to 
Structure | Blocks. You should be able to find a block described as A listing of all of 
the enabled modules. (This text came from our first_block_info() declaration.)

Once you have placed this module in one of the block regions, you should be able to 
see something like this:



Chapter 2

[ 49 ]

The output from our module is a simple ordered list of modules. Like any other 
block, it can be positioned in any of the block regions on the site, and responds  
in all the ways that a block is expected to respond.

Now that we have a working module, we are going to write a couple of automated 
tests for it.

Writing automated tests
The final thing we are going to do in this chapter is write automated tests to verify 
that our module works as anticipated. Again, some development methodologies 
call for writing tests before writing code. Such a methodology is perfectly applicable 
with Drupal modules. However, we have delayed writing tests until we had a little 
Drupal coding under our belts. Now that we have worked up a complete module, 
we are ready to write some tests.

Drupal uses an automated testing tool called SimpleTest (or just Testing). It is 
largely derived from the Open Source SimpleTest testing framework, though with 
many modifications. SimpleTest comes with Drupal 7.

In Drupal 6, SimpleTest was an add-on module and required core patches. This is 
no longer the case in Drupal 7.

There are various types of test that can be constructed in code. Two popular ones are 
unit tests and functional tests.

A unit test is focused on testing discrete pieces of code. In object-oriented code, 
the focus of unit testing is often the exercising every method of an object (or class). 
In procedural code, unit tests focus on functions and even, occasionally, on global 
variables. The objective is simply to make sure that each piece (each unit) is doing its 
job as expected.

Most of the tests written for Drupal are not unit tests. Instead, they are functional 
tests. That is, the tests are designed to verify that when a given piece of code is 
inserted into Drupal, it functions as expected within the context of the application. 
This is a broader category of testing than unit tests. Larger chunks of code (like, say, 
Drupal as a whole) are expected to function correctly already before the functional 
test can accurately measure the correctness of the code being tested. And rather 
than calling the functions-to-be-tested directly, often times a functional test will 
execute the entire application under conditions which make it easy to check, whether 
the code being tested is working. For example, Drupal's functional tests often 
start Drupal, add a user, enable some modules, then retrieve URLs over an HTTP 
connection and finally test the output.



Creating Your First Module

[ 50 ]

There are many excellent sources of information on testing strategies and their 
strengths and weaknesses. We will skip any discussion of this and dive right into 
the code. Just keep in mind as we go that our goal is to verify that our block functions 
as expected. Since unit tests are easier to construct, and since our module is extremely 
simple, we will construct a unit test for our module.

While the Testing module is included with Drupal 7, it is not enabled by default. 
Go to the Modules page and enable it. Once it is enabled, you should be able to 
go to the Configuration tab and, under the Development section, find the Testing 
configuration page. This is the point of entry into the testing user interface.

Creating a test
Tests should reside in their own file. Just as the module's main module code is in 
MODULENAME/MODULENAME.module, a test should be in MODULENAME/MODULENAME.test. 
The testing framework will automatically pick it up.

Starting out
As with other files in a module, the file containing the unit tests needs to be declared 
in the module's .info file. All we need to do is add it to the files array:

;$Id$

name = First
description = A first module.
core = 7.x
package = Drupal 7 Development
files[] = first.module
files[] = first.test

All we have done is added first.test beneath first.module. This simply tells 
Drupal to inspect the contents of this file during execution. When the testing 
framework is invoked, it will find the tests automatically by inspecting the  
contents of first.test.

Once your module is installed, Drupal caches the contents of the .info file. After 
adding a new item to the file, you should re-visit the Modules page to force Drupal 
to re-parse the .info file.

Now we are ready to add some code to first.test.



Chapter 2

[ 51 ]

Writing a test case
There are a few areas of Drupal that make use of PHP's Object-oriented features. 
One is the database API that we will see later in the book. Another is the testing 
framework. It uses class inheritance to declare tests. This is primarily a vestige  
of the SimpleTest API upon which Drupal's testing is based.

Since this is a book on Drupal programming, not PHP, we will not spend  
time introducing PHP's Object-Oriented features. If you are not familiar with 
Object-oriented Programming (OOP) in PHP, you may want to learn the basics 
before moving on to this section. Since most tests follow a formulaic pattern, there 
is no need to master OOP before writing simple tests. However, some background 
knowledge will ease the transition. A good starting point is PHP.net’s OOP manual 
available at the URL http://www.php.net/manual/en/language.oop5.php.

The basic pattern
Most test cases follow a simple pattern:

Create a new class that extends DrupalWebTestCase
Add a getInfo() function
Do any necessary configuration in the setUp() method
Write one or more test methods, beginning each method with the word test
In each test method, use one or more assertions to test actual values

As we go through our own tests, we will walk through each of these steps

First, we will begin by adding a test class inside our first.test file. It should look 
something like this:

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {
  // Methods will go here.
}

As usual, we begin the test file with a doc block. After that, we declare our new  
test case.

•

•

•

•

•



Creating Your First Module

[ 52 ]

The examples you see in this chapter are derived largely from the block.
test file that ships with Drupal core (modules/block/block.test). If 
you are anxious to dive into some detailed unit tests, that is one place  
to start.

We have just created a new test case class—that is, a class that handles testing 
a particular related group of features. In our case, we are going to test the block 
implementation we wrote in this chapter. You can, if you would like, create  
multiple test cases in the same .test file. For our simple case, there is no need  
to do this, though.

The test case extends a base class called DrupalWebTestCase. DrupalWebTestCase 
provides many utilities for running tests, as well as core testing logic that is not 
necessarily exposed to or used by individual test cases. For these two reasons,  
every Drupal test should extend either this class or another class that already  
extends DrupalWebTestCase.

Once we have the class declared, we can create our first method, getInfo().

Naming conventions and Classes
Drupal functions are named in all lowercase, with words separated 
by underscore (_) Classes and methods are different. Classes should 
be named in uppercase "CamelCase" notation, with the first letter 
capitalized. Methods should be named in "camelCase" with the first letter 
in lowercase. Underscores should not be used in class or method names.

The getInfo() method
Already we have seen a few cases where Drupal uses nested associative arrays 
to pass information. Our first_block_info() function did just this. The 
DrupalWebTestCase::getInfo() method also returns an array of information.  
This time, the information is about the test.

The method looks like this (shown in the context of the entire class)

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {



Chapter 2

[ 53 ]

  public function getInfo() {
    return array(
      'name' => 'First module block functionality',
      'description' => 'Test blocks in the First module.',
      'group' => 'First',
    );
  }
}

The getInfo() method returns an array with three items:

name: The name of the test.
description: A sentence describing what the tests do.
group: The name of the group to which these tests belong.

All three of these are intended to be human-readable. The first two are used for 
purely informational purposes. The third, group, is also used to group similar  
tests together under the same heading.

When viewed from Configuration | Testing, the information above is displayed  
like this:

Clean the environment
If you have already run tests and your new test is not showing up, you 
may need to press the Clean environment button to reset the testing 
environment.

Above you can see how the value of group became a grouping field, and name and 
description were used to describe the test.

The getInfo() function might seem, at first blush, to be unimportant, but your  
test, absolutely must have it. Otherwise, the test case will not be made available  
for execution.

•

•

•



Creating Your First Module

[ 54 ]

Setting up the test case
Often, a test case will require some setup and configuration, where shared values are 
initialized and subsystems made available.

Fortunately, Drupal handles most of the basics. The database layer, module system, 
and initial configuration are all done. However, test cases often have to handle some 
initialization themselves. In cases where you need to do this, there is an existing 
method that will be called before tests are executed. This is the setUp() method. 
While we don't need any set up for our module, I am going to show it anyway  
so that we can see a few important things.

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {

  public function setUp() {
    parent::setUp('first');
  }
  
  public function getInfo() {
    return array(
      'name' => 'First module block functionality',
      'description' => 'Test blocks in the First module.',
      'group' => 'First',
    );
  }

Again, a setup method is not strictly necessary, but when you use one it must have  
at least the lines shown in the example above.

Of particular importance is this bit:

parent::setUp('first');

This tells the setup method to call the setUp() method that exists on the 
DrupalWebTestCase class. Why would we do this?



Chapter 2

[ 55 ]

DrupalWebTestCase::setUp() performs some necessary setup operations—things 
that need to be done before our tests will run successfully. For that reason, we need 
to make sure that when we override that method, we explicitly call it. We pass this 
function the name of the module we are testing (first), so that it knows to initialize 
that module for us. This means we do not need to worry about installing the module 
in our testing code.

When writing your own cases, you can add more lines of configuration code beneath 
the parent::setUp() call. Later in the book you will see more robust examples of 
setup methods.

For now, though, we are going to move on to the next type of method. We are going 
to write our first test.

Writing a test method
Most of the methods in a test case are test methods; that is, they run operations with 
the intent of verifying that they work. But, as you will notice, nowhere in our code 
do we explicitly call those test methods.

So how does SimpleTest know to call our methods? As with Drupal hooks, the 
answer is in the naming convention. Any method that starts with the word test  
is assumed to be a test case, and is automatically run by the testing framework.

Let's write two test methods, again shown in the context of the entire class.

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {

  public function setUp() {
    parent::setUp();
  }
  
  public function getInfo() {
    return array(
      'name' => 'First module block functionality',
      'description' => 'Test blocks in the First module.',
      'group' => 'First',



Creating Your First Module

[ 56 ]

    );
  }
  
  public function testBlockInfo() {
    $info = module_invoke('first', 'block_info');
    
    $this->assertEqual(1, count($info), 
      t('Module defines a block.'));
    
    $this->assertTrue(isset($info['list_modules']), 
      t('Module list exists.'));
  }
  
  public function testBlockView() {
    $data  = module_invoke('first', 'block_view', 
      'list_modules');
    
    $this->assertTrue(is_array($data), 
      t('Block returns renderable array.'));
    $this->assertEqual(t('Enabled Modules'), $data['subject'],
     t('Subject is set'));
  }

}

The code above has two test methods:

testBlockInfo()

testBlockView()

As the names imply, each method is responsible for testing one of the two block 
functions we wrote earlier.

We will begin by taking a close look at testBlockInfo().

  public function testBlockInfo() {
    $info = module_invoke('first', 'block_info');
    
    $this->assertEqual(1, count($info), 
      t('Module defines a block.'));
    
    $this->assertTrue(isset($info['list_modules']), 
      t('Module list exists.'));
  }

•

•



Chapter 2

[ 57 ]

This function does three things.

First, it runs a function called module_invoke(), storing its results in $info. The 
module_invoke() function calls a particular hook for a particular module.

This function is the infrequently used counterpart of 
module_invoke_all(), which executes a hook in all 
of the modules in which that hook appears.

The module_invoke() method takes two parameters: The name of the module 
and the name of the hook to call. The call in this code, module_invoke('first', 
'block_info') is semantically equivalent to calling first_block_info(). Our only 
advantage gained here is in ensuring that it can be called through the hook system.

Basically, then, we have simulated the circumstances under which our block info 
hook would have been executed by Drupal. The next thing to do is ensure that the 
information returned by our hook is as expected.

We do this by making a couple of statements—assertions, about what we expect. The 
testing framework then validates these exceptions. If the code functions as expected, 
the test passes. If not, the test fails.

Here are the two tests:

$this->assertEqual(1, count($info), 
  t('Module defines a block.'));
    
$this->assertTrue(isset($info['list_modules']), 
  t('Module list exists.'));

(Note that each of these two lines were split onto one line for formatting.)

Each assertion is typically of the form $this->assertSOMETHING($conditions, 
$message), where SOMETHING is a type of assertion, $conditions are the conditions 
that must be satisfied for the test to pass, and $message is a message describing  
the test.

In our first test, the test asserts that 1 and count($info) should be equal. (The 
message is simply used by the testing interface to show what it was testing.)



Creating Your First Module

[ 58 ]

You might notice that the function began $this->assertEqual() which is a 
member method, but one that we did not define. ($this, for those new to PHP's 
OOP, is a shorthand way of referring to the present object.) The parent class, 
DrupalWebTestCase, provides a dozen or so assertion methods that make writing 
tests easier. Many of these will come up in subsequent chapters, but in our tests we 
use two:

$this->assertEqual(): Assert that the first (known) value equals the 
second (tested) value.
$this->assertTrue(): Assert that the given value evaluates to TRUE.

While the first assertion validates that we defined one block in our block info  
hook implementation, the second assertion verifies that the name of this block is 
list_modules. Thus, by the time this test has run, we can be sure that our info  
hook is returning information about our single block.

The next test verifies that the first_block_view() function is returning the  
correct information.

  public function testBlockView() {
    $data  = module_invoke('first', 'block_view', 
      'list_modules');
    
    $this->assertTrue(is_array($data), 
      t('Block returns renderable array.'));
    $this->assertEqual(t('Enabled Modules'), $data['subject'],
     t('Subject is set'));
  }

Again, module_invoke() is used to execute a hook—this time the block view hook 
implementation. And again we perform two assertions. First, we check to make sure 
that an array is returned from first_block_view(). Second, we verify that the title 
is Enabled Modules, as we expect.

We could go on and add another assertion—something that makes sure that the 
$data['content'] field has the expected data in it. But that information is a little 
volatile. We are not positive about which other modules will be enabled, and testing 
against that would be injecting an external dependency into our test, which is 
considered bad form.

At this point, we have defined one test case, FirstTestCase, which defines four 
methods. Two of those methods are tests, each containing two assertions. So when 
we run the test, we should see one test case, two tests, and two assertions for  
each test.

•

•



Chapter 2

[ 59 ]

To run the test, go to Configuration | Testing. As long as your test case is 
implemented correctly (including the getInfo() method), then it should  
show up in the list.

If we select our group of tests, and then press the Run tests button, our test case 
will be executed. Test cases often take a long time to run. Behind the scenes, Drupal 
actually builds a special installation of Drupal that will be used only for this round of 
tests. But after a minute or two, the test framework should print a report that looks 
something like this:



Creating Your First Module

[ 60 ]

The report above shows us that all four of our assertions were run (two for each test), 
and that all passed.

Should a test not pass, it will be displayed in red, with the status flag set to a red X 
instead of a green checkmark. A warning message may be displayed, too (depending 
on the error or failure).

Summary
We have now completed an end-to-end walk through the creation of a module. We 
began by creating the module directory, followed by the .info file. Next, we added a 
.module file and implemented three hooks, taking advantage of several core Drupal 
functions in the process. Finally, we wrote our first test for this module, learning 
about Drupal's OO testing framework as we went.

Along the way, we learned about basic coding guidelines, translation support, the 
mechanics of hooks, and using the block API.

In subsequent chapters, we will build on this knowledge to create more powerful 
modules, making use of the database layer, the menu system, nodes, and other tools. 
In the next few chapters, we will look at the theme system, a powerful and extensible 
mechanism for structuring and formatting output.



Drupal's Theme Layer
The most obvious part of Drupal's theming system is the Appearance page, which 
lists all of the themes installed on your website. When you choose a theme from 
the Appearance admin page, you are applying a specific graphic design to your 
website's data and functionality. However, the applied theme is in reality only a 
small part of the entire theming layer.



Drupal’s Theme Layer

[ 62 ]

This book is mostly focused on building modules that encapsulate discrete chunks 
of functionality. However, since we're ultimately building a web application, 
everything outputted by your functionality will need to be marked up with HTML. 
Drupal calls the process of wrapping your data in HTML and CSS as theming.

For the next two chapters, we will discuss how your module should integrate  
with the theme layer. Chapter 3 will talk about the architecture of the system,  
theme functions, templates, render elements, and the theme registry. Chapter 4  
will use these newly acquired concepts to integrate an example module with  
the theming layer.

Business logic versus presentation logic
So what would be the best way to get our data and functionality marked up? Do we 
simply wrap each piece of data in HTML and return the whole as a giant string? Like 
the following example:

return '<div class="wrapper">' . $data . '</div>';

Fortunately, we don't. Like all other well-designed applications, Drupal separates its 
business logic from its presentation logic. Traditionally, the primary motivations for 
this separation of concerns are as follows:

1.	 To make the code easier to maintain.
2.	 To make it possible to easily swap out one layer's implementation without 

having to re-write the other layers.

As we shall see, Drupal takes the "swap-ability" aspect to the extreme.

As we mentioned in the introduction of this chapter, the default theme selected on 
the Appearance page is the most obvious part of the theme layer. Also, you might 
think that the theme is responsible for applying the HTML and CSS for the website. 
However, there are thousands of contributed modules on drupal.org. Should the 
theme be responsible for marking up all of those modules' data? Obviously not.

Since a module is most intimately familiar with its own data and functionality,  
it's the module's responsibility to provide the default theme implementation.  
As long as the module uses the theme system properly, a theme will be able to 
override any HTML and CSS by hot-swapping its own implementation for the 
module's implementation.



Chapter 3

[ 63 ]

After the data has been retrieved and manipulated in the heart of your module (the 
business logic), it will need to provide the default theme implementation. Sometimes 
a particular theme will need to override your implementation in order for it to 
achieve a specific design goal; if the theme provides its own implementation, Drupal 
will use the theme implementation instead of the module's default implementation.

When building our first module in Chapter 2, we saw a brief example of this in action 
as follows:

$variables = array('items' => $list, 'type' => 'ol');
$content = theme('item_list', $variables);

By calling the theme() function, we are delegating the responsibility of determining 
and using the proper theme implementation. We're saying:

"Hey, theme()! I want to markup my data as an item_list. Can you do that for me? 
I don't need to know the details. kthxbye."

Our module just needs to decide which theme hook it wants to use to markup its 
data. Should the data be displayed in an unordered list, a table, or a wordle?

Hook crazy?

In addition to API hooks, Drupal also has theme hooks. A theme 
hook is simply the name of a particular way to markup some data. For 
example, passing data to the item_list theme hook will result in 
different markup then passing data to the links theme hook. However, 
while normally every module's hook function will be called when Drupal 
invokes an API hook, only one theme hook implementation will be 
invoked when Drupal invokes a theme hook.



Drupal’s Theme Layer

[ 64 ]

There are actually two different ways you can make an implementation (which  
we will discuss later), but for now we'll only talk about the simplest method for 
module developers—theme functions. When you call theme(), it will look for a 
default theme function named theme_HOOKNAME and for an optional theme override 
function called THEMENAME_HOOKNAME. If you dig into Drupal's internals, you'll find 
a theme_item_list() inside includes.inc or theme.inc. This is Drupal's default 
theme implementation for an item_list. If our active theme was Bartik, and if 
Bartik implemented a theme override called bartik_item_list(), then theme() 
would use the Bartik theme's implementation instead of the default one.

The preceding figure shows one piece of data as it passes through a module and a 
theme. However, in order for you to understand the full power of Drupal's theme 
layer, you also need to understand how the entire page is built.

However, since all of the active theme's modifications occur after any module 
modifications, from a module developer's perspective, all of this theme inheritance 
is transparent. Since modules don't need to know anything about the structure of 
the theme and its ancestry, we'll simply talk about "the theme" in this book. Just be 
aware that the actual theme may be more complex.

Base themes and sub-themes
If you've previously read anything about Drupal theming, you've 
probably heard about base themes and sub-themes. Any theme can 
declare a parent theme in its .info file using the base theme key and it 
will inherit all the hook implementations from its parent theme (and its 
parent's parent theme, and so on).

Data granularity
One of the things that makes Drupal theming so powerful is its granularity. Each 
piece of content is handled separately as it's passed through the theming system. 
Each bit of data is themed individually, then combined into ever-larger chunks. At 
each step in the aggregation process, it's themed again. The following illustration 
will make this clearer:



Chapter 3

[ 65 ]

As you can see in the preceding illustration, for a typical blog post, each comment 
is pulled from the database and sent through the theme system to get HTML 
markup added to it. Then all the comments are aggregated together into a "comment 
wrapper" where additional markup and, usually, a "new comment" form is added. 
Then the single group of comments is passed to the node theming where it is 
combined with other pieces of the blog post's content. This process of theming bits 
of content, aggregation, and theming again is repeated until we've built the entire 
HTML page ready to be sent to a web browser.

There are two advantages to this granular system. First, since each module is 
responsible for theming its own data, it can either create a very specialized theme 
hook for its data or it can re-use an existing theme hook. Re-using a theme hook 
ensures a consistent set of markup for similar data structures while still allowing 
customized CSS classes (Most theme hooks allow custom classes to be passed 
as parameters.) For example, the list of links after a node (read more, add new 
comment, and so on) re-uses the links theme hook, and the links after each 
comment use the same links theme hook.

The second advantage is for the theme developer. Having a fine-grained theming 
system means that a theme, if it chooses to, can literally rewrite all of the markup for 
its own design purposes. As module developers we need to be keenly aware of the 
themer's desire to have granular theming overrides.



Drupal’s Theme Layer

[ 66 ]

Theme engines
Some themes require alternate theme engines. Theme engines can provide alternate 
template syntax, naming standards, and helper functions. Several theme engines are 
available for download at http://drupal.org/project/theme+engines. However, 
we won't be discussing any theme engines except for Drupal's default theme engine, 
PHPTemplate. The PHPTemplate theme engine has been the default theme since 
Drupal 4.7, has been continuously improved with each version, and has proven its 
worth again and again. Over 99% of themes available for download on drupal.org 
use the default PHPTemplate theme engine. All of the examples in this book assume 
you are using PHPTemplate. So, enough said.

Two ways to theme
So now that we have a good understanding of higher level concepts, let's get down 
to the nitty-gritty of theme implementations. As mentioned earlier in the chapter, 
there are actually two different ways to implement a theme hook:

Theme functions: pass data to a PHP function to wrap it in markup
Templates: pass data to a template which is a PHP file mixed with markup 
and PHP print statements

Let's look at each of these in turn.

Theme functions
For a module developer, the easiest type of implementation to understand is a theme 
function. Theme functions just need to follow a few simple rules in order for them  
to work properly.

First, the name of the theme function follows the pattern:

theme_[theme hook name]

Since the theme hook name is used directly in the theme function's 
name, theme hook names have the same constraints on naming as 
regular PHP function names; the only valid characters in theme hook 
names are alphanumeric characters and underscores. So if a module 
has created an example_format theme hook, it would implement it 
with theme function named theme_example_format().

•

•



Chapter 3

[ 67 ]

Second, the theme function will only have a single parameter, as follows:

function theme_THEME_HOOK_NAME($variables) {…}

The theme function variables are an associative array containing the pieces of data 
we wish to markup and any options we want to pass to the function. It may seem 
extremely odd not to use multiple parameters and PHP's ability to specify default 
values for each parameter. In fact, previous versions of Drupal did use multiple 
parameters. We'll see why Drupal now only uses one parameter in just a moment 
when we talk about preprocess functions.

For an example of a $variables array, let's look at how the DocBlock of the  
theme_item_list() function defines it:

Items: An array of items to be displayed in the list. If an item is a string, then 
it is used as is. If an item is an array, then the "data" element of the array is 
used as the contents of the list item. If an item is an array with a "children" 
element, those children are displayed in a nested list. All other elements are 
treated as attributes of the list item element.
Title: The title of the list.
Type: The type of list to return (e.g. ul, ol).
Attributes: The attributes applied to the list element.

The items and title keys hold the actual data, and the type and attributes keys 
are options that specify how to build the item list.

Third, the theme function should return a string that contains the rendered 
representation of the data. This is usually a string of HTML, but some theme hooks 
return other types of themed markup. For example, theme_syslog_format returns  
a simple string with pipe-separated data values for use in a *NIX syslog error log.

That's it! As you can see, theme functions have very simple requirements and in 
every other way are standard PHP functions.

The major difference between most functions and theme functions is that you should 
never call theme functions directly. It may be tempting to take your data and call 
theme_item_list($vars) directly, but you should instead call theme("item_list", 
$vars). This method of calling theme functions indirectly ensures that themes are 
able to override any module's default theme function (or template). It also allows the 
theme() function to work additional magic, including allowing other modules to alter 
the theme function's variables before they are used.

•

•

•

•



Drupal’s Theme Layer

[ 68 ]

Preprocess functions
Now we're starting to see the real flexibility of the theme system. Preprocess 
functions allow one module to alter the variables used by another module when it 
calls a theme hook. So if some code passes data to theme() for a particular theme 
hook, preprocess functions will be called to alter the data before the actual theme 
hook implementation is called. The following steps are carried out:

1.	 Code calls theme('hook_name', $variables).
2.	 theme() calls preprocess functions for hook_name.
3.	 Preprocess functions modify variables.
4.	 theme() calls actual implementation for hook_name with modified variables.

All preprocess functions take the form of:

[module]_preprocess_[theme hook name](&$variables)

So if the foo module wants to alter the variables for the item_list theme hook, it 
could define the function as follows:

function foo_preprocess_item_list(&$variables) {
  // Add a class to the list wrapper.
  $variables['attributes']['class'][] = 'foo-list';
}

Notice that the $variables parameter is defined with an ampersand in front of 
it. That's PHP notation to pass the parameter by reference. Instead of getting a copy 
of the variables, the foo_preprocess_item_list() function will get access to the 
actual $variables which is later passed to the theme function implementation. So 
any modifications that the preprocess function makes to the $variables parameter 
will be preserved when those variables are passed to the theme function. That's 
the reason our example foo_preprocess_item_list() function doesn't return 
anything; its work is done directly on the original $variables.

This is extremely handy for module developers as it allows all sorts of integration 
with other modules. Since the variables parameter is a mix of data and options, 
modules can alter both the raw data and change the way data will be rendered. This 
can be as simple as one module needing a special class for use in its JavaScript code 
and adding that class to another module's themed content by appending to the $var
iables['attributes']['class'] array, or can be more complex interactions like 
the i18n module translating the language used in blocks.

Imagine we've built a retro module that integrates GeoCities and we want to replace 
all links to a user's profile page with a link to the user's GeoCities homepage. We can 
do that relatively easily with a preprocess function.



Chapter 3

[ 69 ]

First let's look at the following theme_username function's documentation:

/**
 * Format a username.
 *
 * @param $variables
 *   An associative array containing:
 *   - account: The user object to format.
 *   - name: The user's name, sanitized.
 *   - extra: Additional text to append to the user's name, sanitized.
 *   - link_path: The path or URL of the user's profile page, home  
 *     page, or other desired page to link to for more information  
 *     about the user.
 *   - link_options: An array of options to pass to the l() function's
 *     $options parameter if linking the user's name to the user's  
 *     page.
 *   - attributes_array: An array of attributes to pass to the
 *     drupal_attributes() function if not linking to the user's page.
 */

Quite conveniently, theme_username() has a handy $link_path variable that we 
want to alter to achieve our old-school giggles. Assuming that we've used some 
other business logic with the user module's hooks to load our GeoCities URL into  
the user's account (the "hard" part), replacing the link to the user's profile page can  
be accomplished with the following simple preprocess function:

/**
 * Implements awesomeness with hook_preprocess_username().
 */
function retro_preprocess_username(&$variables) {
  $variables['link_path'] = $variables['account']->geocities_url;
}

That's it! We don't have to override the user module's theme implementation; we just 
modify its parameters.

Theme overrides
While module developers usually don't have to worry about whether a theme 
overrides a particular theme function or not, it's still important to understand how 
this mechanism works.



Drupal’s Theme Layer

[ 70 ]

A Drupal theme is normally composed of CSS, images, JavaScripts, template files 
(discussed shortly), a .info file, and a template.php file. The template.php file 
is analogous to a module's .module file. It contains all of the PHP functions for the 
theme and is automatically loaded when the theme is initialized.

If a theme wants to override a particular theme function, it needs to copy the theme 
function from its original location and paste it into its template.php file. Then it 
needs to change the function's prefix from theme to its own name and finally, it 
needs to start making the desired changes to the function.

For example, if the Bartik theme wants to override the theme_menu_local_tasks() 
function in order to add some markup around the page's tabs, it would copy the 
entire function from includes/menu.inc, paste it into Bartik's template.php, and 
rename it to bartik_menu_local_tasks().

Fortunately, when a theme overrides a default theme function, a module's preprocess 
functions continue to work as normal.

Themes also have the ability to create preprocess functions. If the Bartik theme  
decides to format a user's name in "last name, first name" format, it can implement 
a bartik_preprocess_username() function. Fortunately, a theme's preprocess 
functions do not override a module's preprocess functions. All preprocess  
functions are run; first any module's preprocess functions and then the theme's 
preprocess function.

Template files
While theme functions might be the easiest for module developers to understand, 
template files are the easiest for themers to grasp. When a theme hook is implemented 
with template files, they are used instead of theme functions. However, from a module 
developer's standpoint, there is actually a remarkable amount of similarity between 
template files and theme functions. First, let's take a closer look at template files.

Templates are files primarily containing HTML but with some PHP statements 
mixed in using the template's variables. Instead of declaring a theme_hook_name() 
function, a module would instead create a hook-name.tpl.php file. The following 
are the contents of a typical template file, typical-hook.tpl.php:

<div class="<?php print $classes; ?>"<?php print $attributes; ?>>

  <?php if ($title): ?>
    <h2<?php print $title_attributes; ?>>
      <?php print $title; ?>
    </h2>
  <?php endif;?>



Chapter 3

[ 71 ]

  <div class="submitted">
  <?php print t('By !author @time ago', array(
    '@time' => $time,
    '!author' => $author,
    )); ?>
  </div>

  <div class="content"<?php print $content_attributes; ?>>
    <?php
      // We hide the links now so that we can render them later.
      hide($content['links']);
      print render($content);
    ?>
  </div>

  <?php print render($content['links']); ?>
</div>

The preceding example shows the full gamut of the things that you are likely see  
in a template file. They are as follows:

Printing a variable containing a string
Printing a translatable string using t()
Conditional if/else/endif statement
Delaying rendering on part of a render element with hide()
Printing a render element

All of the PHP in a template should be limited to printing out variables. This limited 
amount of PHP makes it much easier for non-programmers to learn how to use 
template files compared to theme functions. However, for module developers, the 
template implementation is still very similar to the theme function implementation; 
the handful of differences are relatively minor.

As with theme function implementations, our module would still need to invoke the 
theme hook using theme().

$variables = array('typical' => $typical_object);
$output = theme('typical_hook', $variables);

•

•

•

•

•



Drupal’s Theme Layer

[ 72 ]

The theme() function would discover that the typical_hook theme hook was 
implemented as a template and render the corresponding typical-hook.tpl.php file.

As we mentioned earlier in the chapter, the only valid 
characters in theme hook names are alphanumeric characters 
and underscores. This is true of all theme hooks, regardless 
of whether they are implemented as a theme function or as 
a template file. However, when theme() looks for template 
implementations, it will automatically convert any underscores 
in the theme hook name into hyphens while searching for the 
template file. For example, calling theme('user_picture', 
$variables) will result in the template file named user-
picture.tpl.php being rendered.

Also, just like theme functions, other modules can modify the variables using 
preprocess functions.

In template files the focus is on printing out variables in various places in the 
markup. So for template files, the preprocess function takes on a more important 
role. The only difference between a theme function's preprocess functions and a 
template file's are the number and type of preprocess functions.

The preprocess zoo
When you write a theme function, its natural to pass the raw data in as parameters 
and generate any display-related meta-data inside the function. With a template 
file, that's not really possible without putting complex PHP inside the template. 
However, as was stated earlier, all of the PHP in a template file should be limited to 
just the bare minimum required to print out a PHP variable. Any processing that we 
need to do on the raw data parameters to ease it into print-ready variables should be 
done in preprocess functions.

"template_" preprocess functions
When a module defines a theme hook by creating a template file, that module should 
also create a corresponding preprocess function to set up and process any variables 
that are needed by the template file, but are not passed as parameters to theme().  
By convention, that preprocess function should be of the following form: 

template_preprocess_[theme hook name](&$variables)

The template_ prefix tells Drupal's theme system that this preprocess function is  
the primary preprocessor for the theme hook's variables and should be run before  
any other module's preprocess function.



Chapter 3

[ 73 ]

Here's an example that should make this concept a bit clearer. This is an actual code 
snippet from Drupal's block preprocess function. In each page region, all of the 
blocks in the region get a variable whose value alternates between "odd" and "even". 
These values can be used to create zebra-striped styling, that is, alternate styling on 
every other block in a region.

function template_preprocess_block(&$variables) {
  // We store all block counters using drupal_static().
  $block_counter = &drupal_static(__FUNCTION__, array());

  // All blocks get an independent counter for each region.
  if (!isset($block_counter[$variables['block']->region])) {
    $block_counter[$variables['block']->region] = 1;
  }

  // Generate the zebra striping variable.
  $variables['block_zebra'] = ($block_counter[$variables['block']-
>region] % 2) ? 'odd' : 'even';

  // Increment the region's block count.
  $block_counter[$variables['block']->region]++;
}

The PHP logic in this function is directly related to the display of the block and  
not to the general business logic of this data. So, it doesn't make sense that the  
block module would calculate that meta data before calling theme(); the meta data 
clearly belongs to the display logic, which is why it's placed in the block module's 
preprocess function.

Multi-hook preprocess functions
In some rare circumstances, you may need to alter or provide some variables for 
all theme hooks. In fact, Drupal's theme system does provide some variables to all 
templates; the preprocess function that provides these variables is both a "template_" 
preprocess function and a multi-hook preprocess function. Multi-hook preprocess 
functions are simply functions that don't have a _HOOK suffix added to their name 
and are run for every single template file. Their name is of the following form:

[module]_preprocess(&$variables, $hook)

Obviously, there can be a big performance hit if a module needlessly implements 
a multi-hook preprocess function. If you're contemplating writing one, if at all 
possible, consider writing several preprocess functions that target the specific  
hooks you need instead, rather then hit all hooks.



Drupal’s Theme Layer

[ 74 ]

Now, if you were paying close attention to the form of the name, you'll also notice 
that these functions actually receive two parameters, namely, the $variables array 
and a $hook parameter. $hook, as the name suggests, contains the name of the 
actual theme hook currently being run. So, while a foo_preprocess(&$variables, 
$hook) function is run for every template file, it will still be able to tell which 
template is currently being requested. In fact, $hook is the second parameter for all 
preprocess functions, but $hook is only useful for multi-hook preprocess functions.

For a good example of a multi-hook preprocess function, let's look at the function 
that the theme system uses to set up several variables common to all template  
files—the template_preprocess() function, which is as follows:

function template_preprocess(&$variables, $hook) {
  // Tell all templates where they are located.
  $variables['directory'] = path_to_theme();

  // Initialize html class attribute for the current hook.
  $variables['classes_array'] = array(drupal_html_class($hook));
}

As you can see, this preprocess function creates a $directory variable which  
can be used to tell where the template file is located on the web server. In the 
$classes_array variable, it also starts to set up the CSS classes used in the  
outer-most wrapping div of the template.

Process functions
Obviously, inside our template file, when we print out our dynamically created list 
of classes, we'll need the variable to be a string. <?php print $classes_array; ?> 
will, most unhelpfully print out "array". In earlier versions of Drupal, classes were 
dynamically created but were immediately concatenated into strings. So themes would 
see one long string with multiple classes in it, menu-block-wrapper menu-block-1 
menu-name-management, for example. This made removing or altering classes difficult 
as themers had to master PHP's string-manipulation functions or even (gasp!)  
regular expressions.

In Drupal 7, this problem for themers has been solved using the new process 
functions. Process functions are an additional phase of variable processing  
functions that run after the initial preprocess functions. In all respects, process 
functions are exactly like preprocess functions; there are template_ prefixed process 
functions, multi-hook process functions, module-provided process functions, and 
theme-provided process functions. The only difference is that process functions are 
run after all preprocess functions have been run.



Chapter 3

[ 75 ]

Process functions are extremely useful when you have meta data that is likely to be 
manipulated by other modules or themes and you wish to delay the rendering of the 
meta data until just before the template file itself is rendered.

In the preceding code example, the template_preprocess() function creates a 
$classes_array variable that holds an array of classes to be used on the wrapping 
div in the template file. Modules and themes can easily add classes by simply adding 
an additional array element from inside their preprocess function, as follows:

$variables['classes_array'][] = 'extra-savoir-faire';

Themes can use much simpler array manipulation functions in order to remove or 
alter classes.

// Search for the bogus class and return its array key
// location. If not found, array_search returns FALSE.
// Remember that 0 is a valid key.
$key = array_search('bogus', $variables['classes_array']);
if ($key !== FALSE) {
  // Alter the class.
  $variables['classes_array'][$key] .= '-dude';
}
// Or remove the no-soup class.
$variables['classes_array'] = array_diff($variables['classes_array'], 
array('no-soup'));

In addition to the $classes_array variable, the template_preprocess()  
function also creates $attributes_array, $title_attributes_array, and 
$content_attributes_array variables which are used for HTML attributes on the 
outermost wrapping div, the title's heading tag, and the content's wrapping div, 
respectively. You'll see each of these variables used in the typical-hook.tpl.php 
example, given earlier in the chapter.

After modules and themes are given an opportunity to alter these variables, the 
theme system uses the template_process() function to render those arrays into  
a simple string, as follows:

function template_process(&$variables, $hook) {
  // Flatten out classes.
  $variables['classes'] = implode(' ', $variables['classes_array']);

  // Flatten out attributes, title_attributes, and content_attributes.
  $variables['attributes'] = drupal_attributes( 
$variables['attributes_array']);
  $variables['title_attributes'] = drupal_attributes( 
$variables['title_attributes_array']);
  $variables['content_attributes'] = drupal_attributes( 
$variables['content_attributes_array']);
}



Drupal’s Theme Layer

[ 76 ]

A similar problem troubled module developers in Drupal 6. It was impossible to call 
drupal_add_css() or drupal_add_js() in a MODULE_preprocess_page() function 
because the lists of CSS files and JavaScript files were already generated before any 
of the preprocess functions were run. Again, process functions come to the rescue. 
Drupal 7 delays the generation of these lists until the template_process_html() 
function is run.

Order of preprocess execution
Now with all these different flavors of processing functions, it can get a bit confusing 
as to which function runs in what order. Fortunately, there are just three simple rules 
that are used to determine the order of processing. They are as follows:

All preprocess functions run before all process functions
template_ prefixed functions run first. [module]_ prefixed functions run 
next. [theme]_ prefixed functions run last
Multi-hook functions run before hook-specific functions

This results in the following order of execution for a particular theme hook:

1.	 template_preprocess()

2.	 template_preprocesss_HOOK()

3.	 MODULE_preprocess()

4.	 MODULE_preprocess_HOOK()

5.	 THEME_preprocess()

6.	 THEME_preprocess_HOOK()

7.	 template_process()

8.	 template_processs_HOOK()

9.	 MODULE_process()

10.	 MODULE_process_HOOK()
11.	 THEME_process()
12.	 THEME_process_HOOK()

Whew.

If the THEME is actually a list of inherited base and sub-themes, each 
THEME_-prefixed item above could be a list of each base theme's and sub-
theme's functions, which would make the list even longer. See the "Base 
themes and sub-themes" tip near the beginning of this chapter if you 
haven't read it already.

•

•

•



Chapter 3

[ 77 ]

By the way, does your brain hurt yet? You may want to take a break now; go out and 
get some air, or, at the very least, have a strong drink handy when you start reading 
the next section.

Render elements
Render elements are new to Drupal 7's theme layer. They've existed since Drupal 4.7 
as part of the Form API, but they've now been injected into the heart of the theme 
system. A Render element is a complex data structure passed as a single parameter 
to theme(), as one of its variables. Render elements are fundamentally nested arrays 
that can include:

The data to be rendered
Other render elements which are considered "children" of the element
An array of structures such as CSS and JavaScript files, that should be 
attached to the page when it is rendered
A list of theme hooks that can be used to theme the data
A list of callback functions to run on the element before and after it  
is themed

In template files, render elements are handled slightly differently then normal 
variables, using the syntax we saw earlier in our typical-hook.tpl.php example:

<?php print render($element); ?>

In theme functions, render elements are included with its output using the  
drupal_render() function:

$output .= drupal_render($element);

Let's look at a simple render element:

$element = array(
  '#prefix' => '<div class="plain">',
  '#markup' => '<p>' . t('There is no spoon.') . '</p>',
  '#suffix' => '</div>',
);

In the preceding render element our main property is the #markup property which 
uses a string containing HTML markup as-is for the rendered element. The other 
properties do exactly what they hint at, prepending or appending HTML markup 
to the rendered element. If drupal_render($element) was called, it would simply 
return the three strings concatenated together.

•

•

•

•

•



Drupal’s Theme Layer

[ 78 ]

Now, that was an extremely simple example, but when we start looking at more 
complex render elements, we'll see that each array key in a render element can be 
one of the following three things:

1.	 A render element property. These are prefixed by #.
2.	 A child element. All array keys not prefixed by # are considered to be  

a child elements.
3.	 A variable to be passed to a theme function. In the render element these 

variable's names are prefixed with # (just like properties are), but theme() 
will strip the # from the name before sending it on to the actual theme 
implementation.

Taking these slightly mush rules, we can examine the following render element:

$element = array(
  '#prefix' => '<div class="less-simple">',
  '#suffix' => '!</div>',
  'kitten' => array(
    '#type' => 'link',
    '#title' => t('Kill me'),
    '#href' => 'admin/core/hack',
  ),
  'separator' => array(
    '#markup' => '<br />',
  ),
  'domo' => array(
    '#theme' => 'username',
    '#account' => $account,
  ),
);

First, we should identify the children since they are the simplest to spot. kitten, 
separator, and domo are the child elements of our render element. The separator 
child element is another example of a simple #markup render element.

Looking at the domo element, we see that its #theme property is set to username. 
drupal_render() will take that child element and pass it to theme() with a theme 
hook of username; meaning that theme('username', $element['domo']) will be 
called and theme() will strip the # characters from the front of all of the variables 
before passing the data to theme_username().



Chapter 3

[ 79 ]

Lastly, the kitten element's #type property is set to link. The #type property  
tells drupal_render() how to render that element. When we learn about  
hook_element_info(), we'll understand why, but for now drupal_render()  
will pass the kitten element to the drupal_pre_render_link() function which 
will render the element using l() and return its output.

Render properties
Render element properties are defined in two places. The first place where properties 
are defined is directly inside drupal_render() and its helper functions. The 
following is a complete list of properties used by drupal_render():

#access: A Boolean indicating if the current user has access to view  
the element.
#cache: An array indicating whether the element should optionally  
be retrieved from cache or stored in cache after rendering. See  
drupal_render() for more information.
#markup: A string containing markup (such as HTML). If this property is  
set, the #type property does not need to be set, as it will automatically be  
set to markup.
#type: A string indicating which element is being rendered. The default 
properties for this type of element are extracted from the data specified  
with hook_element_info() and merged with the render element.
#defaults_loaded: A Boolean indicating whether the element type's default 
properties have already been loaded. If this is false or not set, the default 
properties from element_info() are added before drupal_render() looks 
at any other render properties (except for #access and #cache).
#pre_render: An array of callbacks to apply to the element before theming.
#theme: A string specifying the theme hook to be used on the element.
#theme_wrappers: An array of theme hooks to be used on the element after 
initial theming and/or after the child elements have been rendered. Theme 
functions that are to be used as wrappers need to be specially written to look 
for the #children property in the render element passed to it from theme.
#post_render: An array of callbacks to apply to the element after theming.
#children: The rendered element and its children. It is normally built up 
internally by drupal_render() as it renders the elements, but can also be  
set by a #pre_render callback.
#prefix: A string containing markup to be prepended to the  
#children property.

•

•

•

•

•

•

•

•

•

•

•



Drupal’s Theme Layer

[ 80 ]

#suffix: A string containing markup to be appended to the  
#children property.
#weight: A number used to sort child elements.
#sorted: A Boolean indicating if the child elements have already been 
sorted. Since sorting a render array is expensive, if you know the data is 
already sorted (for example, the data was sorted when retrieved from the 
database), you should set this property to TRUE.
#states: JavaScript state information.
#attached: An array of CSS, JavaScript, libraries, or other associated 
attachments related to the element. See drupal_process_attached()  
for more information.
#printed: A Boolean indicating if the element has already been rendered.

hook_element_info
The second place properties are defined is inside hook_element_info().  
Each #type of render element needs to be defined in an implementation of  
hook_element_info(). system_element_info() defines most of Drupal core's 
render elements, which include several useful elements such as the markup element, 
the link element, and all the form elements. The following is a short snippet from 
system_element_info():

/**
 * Implements hook_element_info().
 */
function system_element_info() {
  // HTML markup.
  $types['markup'] = array(
    '#markup' => '',
    '#pre_render' => array('drupal_pre_render_markup'),
  );
  // A HTML link.
  $types['link'] = array(
    '#pre_render' => array('drupal_pre_render_link',  
'drupal_pre_render_markup'),
  );
  // A hidden form element.
  $types['hidden'] = array(
    '#input' => TRUE,
    '#process' => array('ajax_process_form'),
    '#theme' => 'hidden',
  );

  return $types;
}

•

•

•

•

•

•



Chapter 3

[ 81 ]

As you can see, the link type specifies that the render element should be passed 
to two #pre_render functions. And it is the drupal_pre_render_link() function 
that looks for the special render element properties in our example's link element, 
namely, #title, #href, and #options.

So to reiterate, hook_element_info() defines the default properties for its render 
element types, and it also specifies render callbacks that have their own internal API, 
defining render element properties.

Using this framework, modules can create their own complex render element  
by implementing hook_element_info(), using the properties specified by  
drupal_render(), and by creating any render callbacks and associated APIs.

hook_page_alter()
So what's the point? By creating these complex render elements, we delay rendering 
of the data and allow opportunities to alter that data before it is rendered into a 
string. Before render elements were used in Drupal's theme system, themers and 
module developers often had to completely re-render data after it had been rendered 
the default way. This was obviously inefficient. Now each of these render elements 
can be altered in preprocess functions or even directly in a template file with the 
show() and hide() functions.

Now that we've looked at the guts of the Render API, it becomes much easier to 
understand how the template-embedded hide() function works. If a template file 
calls hide($element['child']); it simply sets the #printed property to TRUE, so 
when print render($element); is later called, the child element is not printed. 
We can then later call print render($element['child']); and render() will set 
#printed to FALSE and pass $element to drupal_render().

Drupal's theme implementations use render elements in various places throughout 
its theme hooks. But the two primary places render elements get used are in the 
block and page theme hooks.

Any hook_block_view() implementation should return a renderable element,  
and any menu callback which supplies a page's main content should also return  
a render element.

Once the page's main content is retrieved, drupal_render_page() will  
decorate the $page element using hook_page_build(). During the block module's 
block_page_build(), all of the page's regions are added to the $page element as 
child elements; and each of the region's child elements contain child elements for 
each of the blocks in that region. drupal_render_page() will then allow modules  
to modify the giant $page render element using hook_page_alter().



Drupal’s Theme Layer

[ 82 ]

Two powerful use cases for hook_page_alter() would be to allow the insertion of 
a block inside the page's main content, or doing the reverse, moving a "Field" into 
a certain spot in a page region. Of course, you'll have to read the Field API chapter 
(Chapter 7, Creating New Fields) first!

The power of theme()
It turns out that the theme() function has to do quite a bit of work once it's  
called. The following diagram should make its responsibilities and its order  
of operations clearer:



Chapter 3

[ 83 ]

We've actually already discussed most of the work flow of theme(). There's only one 
aspect we haven't yet seen. So far, we've only called theme() with a simple string 
passed to its $hook parameter. However, we can actually pass more complex data to 
it and make use of the theme system's theme hook suggestions.

Theme hook suggestions
So re-using theme hooks in various places in our code is a good thing, of course. 
However, one problem you'll encounter is that theme functions lose context when 
a theme hook is re-used. For example, theme_links() has no idea if it's theming 
node links or comment links, which makes it difficult to style them differently. 
Fortunately, we can provide context to the theme system by providing a theme hook 
pattern as its first parameter:

[base hook]__[context]

The parts of the pattern are separated with a double underscore since some theme 
hooks (like user and user_profile) could be confusing if we were to use a single 
underscore to delineate the parts of the pattern. In fact, we can provide additional 
contexts if needed, as follows:

[base hook]__[context]__[even more context]__[don't get crazy]

So how does this work and how does it help? In Drupal 7, we theme the  
node's links by calling theme('links__node', $vars). So theme() will use a 
theme_links__node() function if one has been provided. However, if one doesn't 
exist, it will use theme_links(). This allows us to know the context based on the 
theme function we are implementing. A more complex example is when Drupal 7 
themes the node's contextual links; it calls theme('links__contextual__node', 
$vars). So, theme() will search for a theme_links__contextual__node(), then  
for theme_links__contextual(), and lastly theme_links(), shortening the  
pattern by one unit of context each time.

The theme hook pattern is an easy-to-use method of providing context, but some 
contributed modules need to provide more complex lists of context than the simple 
string pattern can provide. For this reason, an array of possible hook suggestions can 
also be passed to theme(). For example, both Views and the Menu block module 
use this method. While theming trees of menus, Menu block provides the following 
array to theme:

$hook = array(
  'menu_tree__menu_block__' . $delta,
  'menu_tree__menu_block__' . $menu_name,
  'menu_tree__menu_block',



Drupal’s Theme Layer

[ 84 ]

  'menu_tree__' . $menu_name,
  'menu_tree',
);
theme($hook, $tree);

This allows themers to provide either a THEME_menu_tree__menu_block__1() 
function to override the display of just the 1st configured menu block (with a 
delta ID of 1), or to override the display of all trees displaying the management 
menu with a THEME_menu_tree__menu_block__management(). Of course, if the 
theme provides none of those functions, theme() will continue to use the default 
implementation, theme_menu_tree(). To be clear about how this works, theme() 
takes the array of suggestions and checks them from left to right until it finds an 
actual implementation.

If you look at the preceding figure again, you'll notice that after the preprocess and 
process functions have been run, theme() examines the $variables for additional 
theme hook suggestions. Of course, only the calling code can specify hook suggestions 
in the first parameter to theme(). In order to allow other modules and themes to add 
its own suggestions, theme() will examine two variables $theme_hook_suggestion 
and $theme_hook_suggestions. theme() will first check the singular form of that 
variable name. If the $theme_hook_suggestion string doesn't match an actual 
implementation, theme() will check the $theme_hook_suggestions array from  
left to right to find an implementation. If theme() doesn't find any implementations 
from those two variables, it will continue to use the theme hook it had previously  
been using.

Since themes can completely override the value of $theme_hook_suggestion, it 
is recommended that modules stick to modifying the $theme_hook_suggestions 
array. This is how it is done:

// Add our suggestions to the front of the list, since our
// module is the most important one in the universe!
array_unshift($variables['theme_hook_suggestions'],
              'links__retro__geocities', 'links__retro');

Note that $theme_hook_suggestions and $theme_hook_suggestion do not  
take patterns. If you want theme() to look for links__retro__geocities  
and links__retro, you'll need to provide both of those strings in the  
$theme_hook_suggestions array.

One last note, all of the above examples assumed theme functions, but the same is 
true for theme hook suggestions of template files. If you provide a node__blog__1 
pattern to theme(), it will search for a node--blog--1.tpl.php file and then for a 
node--blog.tpl.php file.



Chapter 3

[ 85 ]

Theme registry
So all of the wonderful things that theme() does, take a considerable amount of 
work. It's extremely inefficient for theme() to determine all of this information 
about theme hooks on the fly each time it's called. So to help its load and improve 
performance, Drupal uses a theme registry.

The theme registry holds a list of all the theme hooks known by the system, and for 
each theme hook, it also stores the following:

Whether it's a theme function or a template
The list of preprocess functions to run
The list of process functions to run
The path to the template file (which includes whether the original module 
template file is used or a theme version of it.)
The theme function name (which indicates if it's the original module theme 
function or one overridden by a theme.)
The list of variables that should be passed to theme() when this theme hook 
is called and a default value for each variable
Whether, instead of a list of variables, the theme function expects a  
single render element as its parameter, and what that render element  
should be named

While this theme registry does improve performance for the website user, it does 
cause some inconvenience for module and theme developers. Since Drupal is caching 
data about theme hooks, if you are actively writing or altering a theme hook, you'll 
need to make sure that you rebuild the theme registry before testing your changes. 
Fortunately, this can easily by accomplished by clicking the Clear all caches button 
on the Performance page found in the Configuration admin (admin/config/
development/performance). The devel module also has a handy Rebuild the 
theme registry on every page load option in its settings.

Variable default values
Earlier when we talked about theme functions and the single $variables parameter, 
you may have noticed one short-coming of that parameter. When you have a normal 
list of parameters in a function definition, you specify the default values for parameters 
that are optional. This allows code to only list a few parameters when calling the 
function and have the additional parameters just get sensible default values.

•

•

•

•

•

•

•



Drupal’s Theme Layer

[ 86 ]

If a function were defined as follows:

function foo_spaghettify($code, $type = 'thin', $sticky = TRUE) { }

Then, code that called it could just call foo_spaghettify($code) and the $type and 
$sticky parameters would get the default values defined in the function definition. 
With a single $variables parameter we have an issue. If we tried the following:

function foo_spaghettify($variables = array('code' => array(),
                         'type' => 'thin', 'sticky' => TRUE) { }

And then called:

$variables = array('code' => $code);
$result = foo_spaghettify($variables);

Then, we would discover that $variables['type'] and $variables['sticky'] 
don't get the default value, and they are also undefined. The reason is simple; default 
parameter values only get used if the parameter is not specified when calling the 
function, but we did specify the $variables parameter, so its default is not used.

So how do we solve this problem in Drupal? We have modules that define the 
default variables in their hook_theme functions.

hook_theme
A module's hook_theme is primarily responsible for specifying a few things,  
as follows:

The theme hooks that the module is responsible for
The type of theme implementation (theme function or template)
The theme hooks' default variable values
If the hook expects a render element instead of variables

In addition to those main responsibilities, the hook_theme can optionally specify: 

Which file contains the theme function or preprocess functions (if it isn't in 
the main module file)
A pattern to use during the auto-discovery search of a theme's overridden 
theme hook suggestions

Some other esoteric things you can read about in its documentation:
http://api.drupal.org/api/function/hook_theme/7

•

•

•

•

•

•

•



Chapter 3

[ 87 ]

A module's hook_theme implementation just needs to return an array of theme 
hooks it is creating. For example:

/**
 * Implements hook_theme().
 */
function retro_theme() {
  return array(
    // The array key is the name of the theme hook.
    'wonder' => array(
      // Use a template and give the template's name.
      'template' => 'wonder',

      // Specify the default variable names and their values.
      'variables' => array(
        'twin' => 'zen',
        'with_monkey' => FALSE,
        'activations' => array(),
      ),

      // Add a partial pattern to help hook theme suggestion
      // matches.
      'pattern' => 'wonder__',
    ),

    'austinite' => array(
      // Specify the name of the render element.
      'render element' => 'my_element',

      // We don't use this theme function often, so let's put
      // it in a separate file that is lazy loaded, if needed.
      'file' => 'retro.texas.inc',
    ),
  );
}

Let's examine this data. By default a theme hook will be assumed to be implemented 
as a theme function named theme_hook_name(). We can override the hook name 
using a function key/value inside our austinite array, but please don't confuse 
our poor themers; leave the default function name alone. If a theme hook instead 
wants to use template implementation, it needs to specify the name of the template 
file (without the .tpl.php extension) in the template key/value. Our wonder theme 
hook will use a wonder.tpl.php template.



Drupal’s Theme Layer

[ 88 ]

We've also specified a pattern for that hook. After the theme registry retrieves the 
information from our retro_theme() function, it will try to auto-discover any 
template files whose names begin with the pattern that we specify. So the theme 
registry will search for any template beginning with wonder__ and will add an entry 
for it in the theme registry. When theme() is passed theme hook suggestions, it 
doesn't search the file directory, it searches the theme registry instead, so this  
pattern is essential to making theme hook suggestions work.

Lastly in our wonder definition, we specified several variables with the 'variables' 
key/value set, namely, twin (a string), with_monkey (a boolean), and activations 
(an array), and gave them each a default value.

Instead of a list of variables, the theme_austinite() function expects a single 
render element as its parameter, so we need to specify the name of the render 
element. We'll be able to access the render element of theme_austinite() from 
$variables['my_element']. In the preceding example, we used my_element to 
make it obvious that the value specified in render element is the key that needs to 
be used in $variables to access that element. However, by convention, Drupal core 
usually uses element or elements for that value.

To be clear, a theme hook should either use 'render element' or 'variables' in its 
dataset. Note that even if you use 'variables', one of those variables can still be a 
render element.

Finally, we used a file key to specify that we're storing our theme_austinite() 
function in a retro.texas.inc file. theme() will lazy load this file if it needs to  
use this theme hook on a particular page.

Full documentation can be found in the DocBlock for the hook_theme() API at the 
following site:

http://api.drupal.org/api/function/hook_theme/7

hook_theme_registry_alter
There are some extreme cases where a module may want to alter the registry  
entry for a particular theme hook. Fortunately, there's a hook for that.™ The  
hook_theme_registry_alter() hook can be implemented to alter the theme 
registry directly after it has been built with hook_theme() and the theme system's 
auto-discovery mechanisms. Let's suppose a Spook module wants to control  
whether Drupal's status messages are displayed to the user. If you look at 
template_preprocess_page(), you'll see that the $show_messages variable 
controls whether the status messages are displayed. Unfortunately, if we tried  



Chapter 3

[ 89 ]

to simply implement a spook_preprocess_page() function, it would be run after 
template_preprocess_page() and, thus, too late. So, instead we need to implement 
the following code:

/**
 * Implements hook_theme_registry_alter().
 */
function spook_theme_registry_alter(&$theme_registry) {
  // Add our custom preprocess function to the beginning of
  // the preprocess function list.
  array_unshift($theme_registry['page']['preprocess functions'], 
'spook_control_page_messages');
}

/**
 * Implements a custom preprocess function; one that is not  
 * auto-discovered during the theme registry build.
 */
function spook_control_page_messages(&variables) {
  // Override #show_messages before template_preprocess_page()
  // accesses it.
  $variables['page']['#show_messages'] = spook_get_control();
}

The order of preprocess functions described in the earlier section is created during 
the theme's system registry build and is based on the naming conventions. However, 
hook_theme_registry_alter() allows us to alter that ordering to suit our own 
nefarious purposes.

What else?
For most modules you write, the contents of this chapter cover everything you 
need to learn about the theme system. Actually, this chapter might have been TMI. 
However, the theme system is chock full of yummy goodness not covered here, 
including accessibility classes, hook_theme_enable, and hook_theme_disable to 
name just a few. Drupal's online documentation includes a theme reference guide 
which can be a very handy tool for understanding some of the more obscure topics. 
It can be found at the following site:

http://drupal.org/theme-guide



Drupal’s Theme Layer

[ 90 ]

Summary
You've learned a lot in this chapter. Since many of these theme concepts are inter-
related, its challenging to learn them (and explain them!), so that the entire complex 
system makes sense. We touched on almost all parts of the theme system, including:

Theme functions and template files
Preprocess and process functions
Default theme implementations and theme overrides
drupal_render(), render elements and their properties
hook_element_info()

hook_page_alter()

theme(), theme hooks and theme hook suggestions
Theme registry, hook_theme(), and hook_theme_registry_alter()

I once created a graph that showed all the parts of theme system in one graphic, but 
it was more scary then useful. Or course, if you like horror, head over to:

http://www.slideshare.net/JohnAlbin/default-theme-implementations

In the next chapter, we'll take some of the most important topics in this chapter and 
use them to build a real world example.

•

•

•

•

•

•

•

•



Theming a Module
Now that you've learned the architecture of the theme layer, let's put that knowledge 
to practical use. In this chapter, we'll write some real code that both uses existing 
theme implementations and builds new theme implementations.

While the previous chapter was a whirlwind tour of the theme layer, this chapter 
will be a more thoughtful exploration of the system and how to best use it. We'll 
touch on the following ideas:

The advantages of being lazy by reusing code
Finding and reusing a theme hook
Attaching CSS to render elements
Creating stylesheets for RTL languages
Building a theme hook

To help us learn these points, we're going to build a simple module in our examples. 
Drupal comes with the blog module, which creates multi-user blogs, one for each 
user and one aggregate blog. However, many websites only need a single blog. We're 
going to re-create some of the functionality of the blog module, and re-purpose it 
for a single blog that uses Drupal's default article content type. If you try out this 
chapter's code, you should disable Drupal 7's blog module first.

Reusing a default theme implementation
Now the first question you need to ask is "Should I reuse an existing theme hook or 
build my own?" Code reuse is one of the virtues of a lazy programmer. So the answer 
to that question is "Yes, be lazy!"

•

•

•

•

•



Theming a Module

[ 92 ]

After all, if you choose an existing theme hook, you only have to build the data.  
You don't have to worry about building the implementation, registering it with 
hook_theme, building any helper pre-render functions, deciding on the best HTML 
to use, and building any supporting CSS and jQuery. What's not to like about 
skipping extra work?

However, laziness isn't the only reason you'll want to reuse existing theme hooks. 
Not only is it the easy way out, you'll also discover interesting integrations with 
other modules. As we learned in Chapter 3, Drupal's Theme Layer, modules can alter 
the way a theme implementation works by using preprocess/process functions. 
Those alterations aren't linked to only Drupal core's use of the theme hook; they are 
run even when your module uses the theme hook.

For example, when writing the menu_block module, I could have used my own 
theme hooks to theme the various parts of the menu trees that it displays. However, 
I decided to reuse core's menu tree-related theme hooks and just pump the data 
with lots of extra meta-data that core's usage lacked. I later discovered that another 
module was designed to modify core's menu trees and make them expand and 
collapse dynamically. That module did this by altering core's theme hooks. Since 
my menu_block module used the same hooks, the two modules were instantly 
interoperable. Neither module developer had to write any integration code. Score!

The hardest part to reusing existing theme hooks is simply finding the right one  
for you. You can browse all of Drupal core's default theme implementations at: 
http://api.drupal.org/api/group/themeable/7

Any hook implemented as a theme function is listed first. The template files are listed 
next, under the Files section.

In Drupal 7, there are 184 theme hooks that you could use in your own code. 
Many of those theme hooks are specific to a core module's usage, like theming an 
administration form, but it's still useful to go through the entire list to find hooks 
you could reuse. To make it even easier, we've included a list of the most commonly 
reused theme hooks:

Common theme hooks
file_link Returns HTML for a link to a file.
html_tag Returns HTML for a generic HTML tag with attributes. This can often be 

too generic a theme hook to use, but is really useful for adding a tag to 
the <head> of a document or for theming a tag inside a render element.

image Returns HTML for an image.
image_style Returns HTML for an image using a specific image style.
item_list Returns HTML for a list of items which can optionally be nested.



Chapter 4

[ 93 ]

Common theme hooks
links Returns HTML for a list of links (cannot be nested).
more_link Returns HTML for a more link, often used on blocks.
pager Returns HTML for a pager query element, a list of pages for result sets 

too long for one page.
progress_bar Returns HTML for an indicator showing a task's progress.
table Returns HTML for a table.
username Returns HTML for a username.
user_list Returns HTML for a list of users.
user_picture Returns HTML for a picture configured for the user's account.

The theme hooks listed above are the most used hooks in Drupal core and also in 
Drupal contrib modules.

Drupal blocks revisited
So let's start building our single_blog module. We'll start with the .info file,  
of course. All of the lines in this .info file should be familiar to you:

;$Id$

name = Single blog
description = Enables a single blog for an individual or multiple 
users.

core = 7.x
package = Drupal 7 Development

files[] = single_blog.module

One of the things that the blog module provides is a block listing recent blog entries. 
We're going to use the Block API that was introduced in Chapter 2, Creating Your First 
Module, as we build a couple basic hooks and an API function for our new module:

<?php
// $Id$

/**
 * @file



Theming a Module

[ 94 ]

 * Enables a single-user blog.
 */

// After you learn Form API in Chapter 5, you'll be able to
// make these settings configurable.
define('SINGLE_BLOG_NODE_TYPE', 'article');
define('SINGLE_BLOG_LIST_COUNT', 3);

/**
 * Returns a list of blog entries.
 *
 * @param $number
 *   The number of blog entries to return.
 * @return
 *   A result set object containing the list of blog entries.
 */
function single_blog_list($number) {
  // Use the Database API to retrieve our data.
  // @see http://drupal.org/node/310069
  $query = db_select('node', 'n')
    ->fields('n', array('nid', 'title', 'created', 'uid'))
    ->condition('type', SINGLE_BLOG_NODE_TYPE)
    ->condition('status', 1)
    ->orderBy('created', 'DESC')
    ->range(0, $number)
    ->addTag('node_access')
    ->execute();

  return $query;
}

/**
 * Implements hook_block_info().
 */
function single_blog_block_info() {
  $blocks = array();

  // The array key defines the $delta parameter used in all
  // other block hooks.
  $blocks['recent'] = array(
    // The name of the block on the blocks administration page.
    'info' => t('Recent blog posts'),
  );

  return $blocks;
}



Chapter 4

[ 95 ]

In Chapter 5, Building an Admin Interface, you'll learn how to build administration 
forms that could make our single_blog module configurable, but in this chapter we 
simply created a few PHP constants that define the node type to use for blog entries 
and the list count for block.

Next up, we provided a simple API for our module that allows any code to retrieve 
a list of blog nodes; we've called the function single_blog_list(). We're using 
Drupal's Database API to query for the data. You can learn more about it from 
Drupal's online documentation at http://drupal.org/node/310069. For now, 
you'll have to rely on DB API's relatively self-documenting method names. We 
selected the unique node ID, title, creation date and author (uid stands for user ID) 
fields of nodes that are of the SINGLE_BLOG_NODE_TYPE content type and that are 
published (status = 1). We only selected the $number latest nodes that have  
been created.

Why did we create a single_blog_list() function instead of just putting that 
database query code inside hook_block_view()? Some Drupal developers get so 
caught up in hooking into Drupal's APIs that they forget to write abstracted APIs for 
their own module's business logic. Don't make that same mistake. We could put the 
database query inside a Drupal hook, but that reduces the chance that other modules 
can integrate with your module in ways you could never anticipate. Remember, be 
lazy. If your module's API is good enough, some other developer will write the code 
to integrate your module with theirs.

Now that we have our API function written, let's use it to build the block using 
Drupal's Block API:

/**
 * Implements hook_block_info().
 */
function single_blog_block_info() {
  $blocks = array();

  // The array key defines the $delta parameter used in all
  // other block hooks.
  $blocks['recent'] = array(
    // The name of the block on the blocks administration page.
    'info' => t('Recent blog posts'),
  );

  return $blocks;
}

/**
 * Implements hook_block_view().
 *



Theming a Module

[ 96 ]

 * First draft!
 *
 * @pararm $delta
 *   The name of the requested block.
 */
function single_blog_block_view($delta = '') {
  // Create an empty block.
  $block = array(
    'subject' => '',
    'content' => '',
  );

  // Check which block is being requested.
  if ($delta == 'recent') {
    // Set the block title.
    $block['subject'] = t('Recent blog posts');

    // Check if the user can access content.
    if (user_access('access content')) {
      // Retrieve the most recent nodes.
      $result = single_blog_list(SINGLE_BLOG_LIST_COUNT);

      // Create links for each blog entry.
      $items = array();
      foreach ($result as $node) {
        $items[] = array(
          'data' => l($node->title, 'node/' . $node->nid),
          'class' => array('node-' . $node->nid),
        );
      }

      if (!empty($items)) {
        // Theme the list of blog entries.
        $block['content'] = theme('item_list', array( 
                            'items' => $items));
      }
    }
  }

  return $block;
}



Chapter 4

[ 97 ]

Our single_blog_block_info() function is a simple hook_block_info() 
implementation as described in Chapter 2. We return an array of information that 
describes the blocks that our module provides. Each key in the array is the "delta"  
for that block. The delta, when combined with the name of the module, creates  
the unique block ID for a block which is stored in the block.tpl.php file's  
$block_html_id. For example, we've defined our "recent blog posts" block as  
having a delta of recent, so its full block ID is single-blog-recent. The block ID  
is used by Drupal to assign blocks to regions. The "info" returned by our  
single_blog_block_info() function defines the block "name" that you see  
on the block administration page.

The single_blog_block_view() function implements hook_block_view(). 
When Drupal wants to render a particular block, it calls the hook_block_view() 
implementation of the module responsible for the block, passing in the block's 
$delta as a parameter. Our function first checks the $delta given to it and then 
returns the requested block's data as an array containing the block title in the 
subject key and its contents in the content key. First, we're going to set the block 
title using the t() function. From Chapter 2, you should recall that t() translates 
English language strings into other languages. Then our function checks that the 
user viewing the page can access the website's content via user_access('access 
content'); this call checks if the current user has the access content permission. If 
the current user doesn't have the proper permission, you'll notice that our function 
returns an empty content key; this signals to Drupal that the requested block should 
not be rendered.

The last thing we're going to do before we finally start theming is to call our API 
function, single_blog_list(), in order to get the raw data from the database. 
Actually, single_blog_list() returns a result set object, but we haven't learned 
any special Database API functions to retrieve each row from the result set object. If 
we just iterate over this object using foreach, we'll get a series of objects that contain 
each row's data.

foreach ($result as $node) { }

Specifically, each time through the foreach loop, $node will be an object with 
properties for each database field we requested, nid, title, created, and uid.  
When the $result object has processed all the rows, the foreach loop will 
automatically end.



Theming a Module

[ 98 ]

Theming a Drupal block
So, now that we know how to get all our data, we need to decide how  
we're going to theme it. We're actually going to build three versions of our  
single_blog_block_view(). This will allow us to try out several different methods 
of theming and to apply all the aspects of the theme layer we learned in Chapter 3.

Looking back at the previous table, Common theme hooks, will help us decide which 
existing theme hooks would be good candidates for our data. Initially, we're creating 
a list of links to our blog posts, so theme_links() would actually be a perfect match. 
However, in the next iteration of our hook_block_view() function we're going to 
create more then a simple list of links, so let's look again. The item_list hook will 
allow us to create a list that contains arbitrary data.

// Theme the list of blog entries.
$block['content'] = theme('item_list', array('items' => $items));

By looking at the documentation for theme_item_list() (available at  
http://api.drupal.org/api/function/theme_item_list/7) we can see that it 
expects as a parameter an items array. Each list item can be a simple string or the 
string can be placed in the data key of an array in which the other keys are treated  
as attributes for the list item:

$items[] = array(
  'data' => l($node->title, 'node/' . $node->nid),
  'class' => array('node-' . $node->nid),
);

On the surface, this construct looks similar to the Render API, but this is simply the 
convention used by this theme function; it doesn't use drupal_render() to convert 
the array to a string.

The internal path to a node is always "node/[node ID]". Fortunately, even if the 
author gives the blog post a URL alias, we don't have to figure out the alias as the 
l() function will automatically rewrite it to use the proper URL. So with the l() 
function, we're taking each node's title and node ID and constructing a simple link  
to the node and placing it in the list item's data element. theme_item_list() treats 
the class element as an attribute for the wrapping <li> element.

Okay. We've finished our first draft of our module. Looking at the following 
screenshot, you can see that our block displays as a simple unordered list of node 
titles. If this were a Drupal 6 theme implementation, we'd be done! However, in 
Drupal 7, all hook_block_view() and all page callbacks (the functions that return 
the main contents of a page) should return a renderable array instead of a string. 
So, while our code works (since Drupal 7 considers a plain string to be a degenerate 
renderable array), we'll need to fix that minor flaw in our second draft.  



Chapter 4

[ 99 ]

The following is a screenshot of version one of our module's block:

Render element and a theme hook suggestion
Ok, let's first fix the bug we left in our first version of hook_block_view() by 
converting that incorrect theme() call into a render array. This is actually quite  
easy, we simply need to edit our single_blog_block_view() and replace:

$block['content'] = theme('item_list', array('items' => $items));

with the following code:

$block['content'] = array(
  '#theme' => 'item_list__single_blog',
  '#items' => $items,
);

As you can see from the new code, we just need to convert all the array keys passed 
in the $variables parameter to theme() into # prefixed key names. items becomes 
#items, and so on. We're also going to take this opportunity to add a hook theme 
suggestion as described in Chapter 3. theme() will check for a item_list__single_
blog implementation before using the default item_list theme hook.



Theming a Module

[ 100 ]

Converting a theme call to a render element was rather painless, no? Let's add 
some more content to our block. Drupal core's blog module provides a page (and 
menu callback) that displays teasers of recent blog posts at the path /blog. Since 
menu callbacks aren't part of the theme system, we're going to leave that page 
unimplemented, but let's pretend that we did implement it. In that case, our block 
should provide a more link that goes to the blog page.

Adding additional content to a render element is easy. Since our $block['content'] 
is a single render element, we first need to move that existing render element as a child 
element, which we can do by moving it to $block['content']['list']. The list 
name is just an arbitrary label that we are giving to a child element; as long as it doesn't 
start with a #, it doesn't matter much what we call it. We'll add our new more link as  
a sibling to the list child:

// Theme the list of blog entries.
$block['content']['list'] = array(
  '#theme' => 'item_list__single_blog',
  '#items' => $items,
);
// Add a link to the full list of blog entries.
$block['content']['more'] = array(
  '#theme' => 'more_link',
  '#url' => 'blog',
  '#title' => t('Read the latest blog entries.'),
);

Glancing back at our common theme hooks list, you should have noticed the  
more_link theme hook which we used for our block's more link. Again we just need 
to examine the documentation for theme_more_link to determine how to structure the 
child element. See http://api.drupal.org/api/function/theme_more_link/7.

Creating a pre_render function
Now looking at our content, you'll probably notice that there is one piece of content 
that is still locked up in a string instead of being modifiable in a render element: 
the data element of each of the $items passed to our item_list render element. 
Converting the l() call to a render element is again straightforward; just change  
the following line:

'data' => l($node->title, 'node/' . $node->nid),



Chapter 4

[ 101 ]

into these lines:

'data' => array(
  '#type' => 'link',
  '#title' => $node->title,
  '#href' => 'node/' . $node->nid,
),

system_element_info() defines the link element and we can see from its 
declaration and examining its #pre_render callbacks that render elements  
with a #type of link will be rendered into a link using l().

Unfortunately, the theme_item_list() function does not expect a render element 
in its data key, so it will choke on these contents. Considering the push to make 
everything alterable with render arrays, this seems like an oversight. If you 
encounter a bug or inconsistency in Drupal (and you will!), you can contribute 
simply by making a note of it and creating an issue in Drupal's issue queue. In fact, I 
just created a new issue for this problem at http://drupal.org/node/891112.

In the meantime, we'll have to work around this problem rather then hacking Drupal 
core. Fortunately, a close inspection of the render element properties available to us 
(again, see Chapter 3) indicate that we can use a #pre_render callback to alter our 
render element before it is passed to the element's theme function. Let's add one  
to our $block['content']['list'] child element:

$block['content']['list'] = array(
  '#theme' => 'item_list__single_blog',
  '#items' => $items,
  '#pre_render' => array('single_blog_item_list_child_render'),
);

Since drupal_render() will pass the entire child element to our #pre_render 
callback, we just need to make sure our callback modifies the data element of  
all our items.

/**
 * Render the child elements of theme_item_list() before its
 * data is themed.
 */
function single_blog_item_list_child_render($elements) {
  foreach (array_keys($elements['#items']) AS $key) {
    // Take the renderable array that we set in 
    // single_blog_block_view() and render it into the string
    // that theme_item_list() expects.



Theming a Module

[ 102 ]

    if (is_array($elements['#items'][$key]['data'])) {
      $elements['#items'][$key]['data'] = 
             drupal_render($elements['#items'][$key]['data']);
    }
  }
  return $elements;
}

In our single_blog_item_list_child_render() function, we simply loop through 
all the #items, determine if they have an array in their data element and call 
drupal_render() on its contents.

Attaching CSS to render arrays
If you look at the screenshot of the first version, you can see that the default styling 
of our block is less then inspiring, so let's tweak that by giving our content some 
sensible default styling by adding a CSS stylesheet.

Since version 5, Drupal has had a drupal_add_css() function to add CSS stylesheets 
to pages. What's new in Drupal 7 is that, due to Drupal's block and page caching and 
the capabilities of hook_page_alter(), we now need to attach our stylesheet directly 
to the render element that we are creating. If we were to use drupal_add_css(), the 
stylesheet would not be cached with its block and it would also be considerably more 
difficult to alter the stylesheet if a hook_page_alter() implementation desired  
to (For example if it removed the block and wanted to remove the CSS too.)

So instead of calling drupal_add_css() from within our  
single_blog_block_view() function, we add it to the returned render array:

// Add a CSS file to style the block.
$block['content']['#attached']['css'][] = drupal_get_path('module',
                         'single_blog') . '/single-blog.css';

We use drupal_get_path() to find the path to our module relative to the website 
root. The #attached array can contain a list of CSS files and JS files to attach to 
our render element. For JavaScript files, just append them to the js array via 
['#attached']['js'][].

And here are the contents of our single-blog.css stylesheet:

/* $Id$ */

.block-single-blog .content ul {
  padding-left: 0; /* LTR */
}



Chapter 4

[ 103 ]

.block-single-blog .content ul li {
  margin-bottom: 10px;
  list-style-type: none;
}

RTL languages
One thing you'll need to be aware of when writing stylesheets is Drupal's support for 
RTL languages, those languages that are read Right To Left, for example Arabic or 
Hebrew. Users of RTL websites expect everything about that website to flow right-
to-left instead of English's normal left-to-right. The convention used by websites that 
support both RTL and LTR languages is to flip the layout of the design horizontally 
depending on the directionality of the language.

A great live example of how right-to-left website layouts are flipped is Amnesty 
International's website; compare the Arabic language version at http://www.
amnesty.org/ar with the English language version at http://www.amnesty.org/en. 
Notice how the sidebar changes sides depending on the language:

 

From a CSS standpoint, this means HTML elements whose left-side styling differs 
from their right-side styling need to have their styling altered when the current 
language is RTL. If a RTL language is being displayed, Drupal will, for each 
stylesheet, look for a supplemental RTL stylesheet to load. So, if Hebrew is the active 
language, Drupal will look for single-blog-rtl.css to load in addition to (and 
just after) the requested single-blog.css file. Since our -rtl stylesheet is loaded 
in addition to the standard stylesheet, we simply need to include the rules and 
properties needed to override the LTR version of our styles. To make it easier to keep 
track of those properties, Drupal modules should place a /* LTR */ comment next to 
each property that needs to be overridden. 



Theming a Module

[ 104 ]

Notice that the .block-single-blog .content ul rule in the single-blog.css 
stylesheet specifies a left padding. Since that's the only property that is directional, 
it's the only one we need to override in the single-blog-rtl.css file.

/* $Id$ */

.block-single-blog .content ul {
  padding-right: 0;
}

Note that if our original left padding was 10px, we would have needed to  
override that in our RTL stylesheet by setting padding-left to 0 and then  
setting padding-right to 10px. The following is a screenshot of version two  
of our module block:

If you look at the screenshot, you can see the new More link and how the display of 
our block has improved.



Chapter 4

[ 105 ]

After all these modifications, the second draft of our single_blog_block_view() 
function is now complete and should look like this:

/**
 * Implements hook_block_view().
 *
 * Second draft!
 *
 * @pararm $delta
 *   The name of the requested block.
 */
function single_blog_block_view($delta = '') {
  // Create an empty block.
  $block = array(
    'subject' => '',
    'content' => '',
  );

  // Check which block is being requested.
  if ($delta == 'recent') {
    // Set the block title.
    $block['subject'] = t('Recent blog posts');

    // Check if the user can access content.
    if (user_access('access content')) {
      // Retrieve the most recent nodes.
      $result = single_blog_list(SINGLE_BLOG_LIST_COUNT);

      // Create links for each blog entry.
      $items = array();
      foreach ($result as $node) {
        $items[] = array(
          'data' => array(
            '#type' => 'link',
            '#title' => $node->title,
            '#href' => 'node/' . $node->nid,
          ),
          'class' => array('node-' . $node->nid),
        );
      }

      if (!empty($items)) {
        // Theme the list of blog entries.



Theming a Module

[ 106 ]

        $block['content']['list'] = array(
          '#theme' => 'item_list__single_blog',
          '#items' => $items,
          '#pre_render' => 
                  array('single_blog_item_list_child_render'),
        );
        // Add a link to the full list of blog entries.
        $block['content']['more'] = array(
          '#theme' => 'more_link',
          '#url' => 'blog',
          '#title' => t('Read the latest blog entries.'),
        );
        // Add a CSS file to style the block.
        $block['content']['#attached']['css'][] = 
    drupal_get_path('module', 'single_blog') . '/single-blog.css';
      }
    }
  }

  return $block;
}

Steps to build a default theme 
implementation
Okay, now it's time to exorcise our lazy-developer habit and practice building 
our own theme hook. From Chapter 3, you should recall that we'll need to do the 
following things:

1.	 Register the theme hook and define default variables.
2.	 Build the default implementation of our theme hook.
3.	 Re-build the theme registry.
4.	 Build a render element to use the theme hook.

Our current implementation of the Recent blog posts block simply shows a list of 
blog titles. But it would be nice to include the date of each post, as well as the author 
(if we have multiple people creating posts). So in this third and final version of our 
module, we're going to create a single-blog-block-item.tpl.php to render the 
contents of each item in our list of blog posts. By convention in Drupal, any CSS, 
JavaScript, or template files needed by a module should use dashes instead  
of underscores in their filenames.



Chapter 4

[ 107 ]

Before we begin building the required single_blog_block_item theme hook, let's 
first add all the data we will need for the third version of our module. Looking back 
at how we generate the items for our list, we can see that all the data we want is in 
the $node variable.

// Create links for each blog entry.
$items = array();
foreach ($result as $node) {
  $items[] = array(
    'data' => array(
      '#type' => 'link',
      '#title' => $node->title,
      '#href' => 'node/' . $node->nid,
    ),
    'class' => array('node-' . $node->nid),
  );
}

So, instead of creating a simple render element using bits of the $node variable, let's 
just pass that entire variable to our new theme hook:

// Create links for each blog entry.
$items = array();
foreach ($result as $node) {
  $items[] = array(
    'data' => array(
      '#theme' => 'single_blog_block_item',
      '#node' => $node,
    ),
    'class' => array('node-' . $node->nid),
  );
}

hook_theme() implementations
We'll need to create a single_blog_theme() implementation of hook_theme() and 
register a single_blog_block_item theme hook.

/**
 * Implements hook_theme().
 */
function single_blog_theme($existing, $type, $theme, $path) {
  return array(
    'single_blog_block_item' => array(



Theming a Module

[ 108 ]

      'variables' => array(
        'node' => NULL,
      ),
      'template' => 'single-blog-block-item',
    ),
  );
}

I'll explain the variables array in the very next section, but let's quickly go over the 
other key now.

Since this is a theme hook, and is to be implemented using a template instead of a 
theme function, we'll need to include the template key and specify the base name 
of the template file, single-blog-block-item. Drupal will automatically add the 
.tpl.php to the end of the base name when looking for the file, so we shouldn't 
include it.

Variables versus render element
In Chapter 3, we learned about the differences between using the variables key and 
using the render element key in your hook_theme(). One and only one of those keys 
must be present in each theme hook declaration. However it still can be somewhat 
confusing as to which to use when you are building your theme implementation.

There is only one situation in which you could use the render element key: if your 
data could be represented by a single render element or by a single renderable array 
containing nested render elements. If that is not the case, then you must specify the 
variables key and specify the variables you will be passed to theme() and their 
default values.

So does our data conform to the render element requirement above? Our $node 
variable is just a partial node object and not a render element, so we must use the 
variables key and specify the default values for all our variables.

As a side note, if we instead look at the way we've built the data element in the 
second version of our module (a link #type render element), we can see that we 
could go ahead and use render element as the key if our second version of the 
module had a hook_theme() implementation.

Since the node variable is an object, we set the default value to simply be the  
NULL value.



Chapter 4

[ 109 ]

Preprocess functions
Our theme hook is now given a $node object, but template files expect variables 
containing strings or render elements. So we're going to need to transform the $node 
object's data into a series of variables. Technically, we could have performed this 
business logic directly inside our single_blog_block_view() function, but instead 
we're going to do this transformation in a preprocess function.

That's actually the purpose of the preprocess function: to transform raw data into 
variables needed for a theme hook's template or theme function. (Also, recall that 
preprocess functions should never query for raw data; the raw data should be  
passed as variables.)

Since we own this theme hook, we'll need to define our preprocess function with  
a template_ prefix.

/**
 * Preprocesses single blog block item variables.
 */
function template_preprocess_single_blog_block_item(&$variables) {
  $node = $variables['node'];

To make it easier to access all the object properties of our node variable, we're going 
to first create a $node local variable which we'll use inside the preprocess function:

  // Create a renderable array for the title.
  $variables['title'] = array(
    '#type'  => 'link',
    '#title' => $node->title,
    '#href'  => 'node/' . $node->nid,
  );

Next we'll create the $title variable as a render element; it is identical to what we 
saw in the second version of our module:

  // Format the creation date of the node.
  $variables['created'] = $node->created;
  $variables['date'] = format_date($node->created, 'custom', 
                                   'F d, Y');

Date timestamps don't make very good render elements, so we'll just create two 
variables, one with the raw, unformatted date value and one with formatted date:

  // Load the account object with the node's creator and store 
  // in a variable for themer convenience.
  $variables['user'] = user_load($node->uid);



Theming a Module

[ 110 ]

  // Theme the username.
  $variables['name'] = theme('username', array(
                        'account' => $variables['user']));
}

And finally, we'll pass the $user object of the author and theme the username.

All that's left is to order the variables the way we desire in our template file!  
However, since we've made the last change to our .module file, let's look at the  
finished product:

<?php
// $Id$

/**
 * @file
 * Enables a single blog for an individual or multiple users.
 */

// After you learn Form API in Chapter 5, you'll be able to
// make these settings configurable.
define('SINGLE_BLOG_NODE_TYPE', 'article');
define('SINGLE_BLOG_LIST_COUNT', 5);
define('SINGLE_BLOG_DATE_FORMAT', 'F d, Y');

/**
 * Returns a list of blog entries.
 *
 * @param $number
 *   The number of blog entries to return.
 * @return
 *   A result set object containing the list of blog entries.
 */
function single_blog_list($number) {
  // Use the Database API to retrieve our data.
  // @see http://drupal.org/node/310069
  $query = db_select('node', 'n')
    ->fields('n', array('nid', 'title', 'created', 'uid'))
    ->condition('type', SINGLE_BLOG_NODE_TYPE)
    ->condition('status', 1)
    ->orderBy('created', 'DESC')
    ->range(0, $number)
    ->addTag('node_access')
    ->execute();



Chapter 4

[ 111 ]

  return $query;
}

/**
 * Implements hook_block_info().
 */
function single_blog_block_info() {
  $blocks = array();

  // The array key defines the $delta parameter used in all
  // other block hooks.
  $blocks['recent'] = array(
    // The name of the block on the blocks administration page.
    'info' => t('Recent blog posts'),
  );

  return $blocks;
}

/**
 * Implements hook_block_view().
 *
 * Third draft!
 *
 * @pararm $delta
 *   The name of the requested block.
 */
function single_blog_block_view($delta = '') {
  // Create an empty block.
  $block = array(
    'subject' => '',
    'content' => '',
  );

  // Check which block is being requested.
  if ($delta == 'recent') {
    // Set the block title.
    $block['subject'] = t('Recent blog posts');

    // Check if the user can access content.
    if (user_access('access content')) {
      // Retrieve the most recent nodes.
      $result = single_blog_list(SINGLE_BLOG_LIST_COUNT);



Theming a Module

[ 112 ]

      // Create links for each blog entry.
      $items = array();
      foreach ($result as $node) {
        $items[] = array(
          'data' => array(
            '#theme' => 'single_blog_block_item',
            '#node' => $node,
          ),
          'class' => array('node-' . $node->nid),
        );
      }

      if (!empty($items)) {
        // Theme the list of blog entries.
        $block['content']['list'] = array(
          '#theme' => 'item_list__single_blog',
          '#items' => $items,
          '#pre_render' => 
                   array('single_blog_item_list_child_render'),
        );
        // Add a link to the full list of blog entries.
        $block['content']['more'] = array(
          '#theme' => 'more_link',
          '#url' => 'blog',
          '#title' => t('Read the latest blog entries.'),
        );
        // Add a CSS file to style the block.
        $block['content']['#attached']['css'][] = 
      drupal_get_path('module', 'single_blog') . '/single-blog.css';
      }
    }
  }

  return $block;
}

/**
 * Render the child elements of theme_item_list() before its data is 
themed.
 */
function single_blog_item_list_child_render($elements) {
  foreach (array_keys($elements['#items']) AS $key) {
    // Take the renderable array that we set in 



Chapter 4

[ 113 ]

    // single_blog_block_view() and render it into the string
    // that theme_item_list() expects.
    if (is_array($elements['#items'][$key]['data'])) {
      $elements['#items'][$key]['data'] = 
            drupal_render($elements['#items'][$key]['data']);
    }
  }
  return $elements;
}

/**
 * Implements hook_theme().
 */
function single_blog_theme($existing, $type, $theme, $path) {
  return array(
    'single_blog_block_item' => array(
      'variables' => array(
        'node' => NULL,
      ),
      'template' => 'single-blog-block-item',
    ),
  );
}

/**
 * Preprocesses single blog block item variables.
 */
function template_preprocess_single_blog_block_item(&$variables) {
  $node = $variables['node'];

  // Create a renderable array for the title.
  $variables['title'] = array(
    '#type'  => 'link',
    '#title' => $node->title,
    '#href'  => 'node/' . $node->nid,
  );

  // Format the creation date of the node.
  $variables['created'] = $node->created;
  $variables['date'] = format_date($node->created, 'custom',
                                   SINGLE_BLOG_DATE_FORMAT);



Theming a Module

[ 114 ]

  // Load the account object with the node's creator and store 
  // in a variable for themer convenience.
  $variables['user'] = user_load($node->uid);
  // Theme the username.
  $variables['name'] = theme('username', array(
                        'account' => $variables['user']));
}

Template files
In order to make template files as easy to understand by non-programmers, the 
template should be limited to the following PHP statements:

<?php print $variable; ?>
<?php if ([condition]): ?>
<?php elseif ([condition]): ?>
<?php else: ?>
<?php endif; ?>
<?php print t('string'); ?>
<?php hide($element['piece']); ?>
<?php show($element['piece']); ?>
<?php print render($element['piece']); ?>
<?php print render($element); ?>

The print and if/elseif/else PHP snippets should be self-explanatory. However,  
it's important to reiterate that, in order to make Drupal multi-lingual, we should 
never include a bare English word in our templates; instead we should use t() in a 
<?php print t('string'); ?> snippet.

Lastly, the show(), hide(), and render() functions are special themer-convenience 
functions that should only be used in template files; they should never be used in 
preprocess functions, theme functions or anywhere else. render() is basically the 
same thing as the drupal_render() function we've already learned about. The 
hide() function can be used on a render array's child element earlier in the template 
before the render array calls render(); this will prevent the child element from 
being included with the rest of the render array when it is rendered. For example 
(from Bartik's node.tpl.php):

<?php
  // We hide the links now so that we can render them later.
  hide($content['links']);
  print render($content);

•

•

•

•

•

•

•

•

•

•



Chapter 4

[ 115 ]

  // Only display the wrapper div if there are links.
  $links = render($content['links']);
  if ($links):
?>

<div class="link-wrapper">
  <?php print $links; ?>
</div>

As you can see, these convenience functions make it easier to tear apart, wrap, or 
remove pieces of render arrays.

So, let's create our single-blog-block-item.tpl.php template:

<?php
// $Id$

/**
 * @file
 * HTML for an item in the single blog's block listing.
 *
 * Available variables:
 * - $classes: String of classes that can be used to 
 *   style contextually through CSS. It can be manipulated 
 *   through the variable $classes_array from preprocess functions.
 *   The default values can be one or more of the following:
 *   - single-blog-block-item: The current template type,
 *                             i.e., "theming hook".
 *   - $date: Formatted creation date. Preprocess functions can
 *            reformat it by calling format_date() with the desired
 *            parameters on the $created variable.
 *   - $title: A renderable array that that provides a title and 
               link to the node.
 *   - $name: Themed username of node author output from 
 *            theme_username().
 *
 * - $classes_array: Array of html class attribute values. 
 *                   It is flattened into a string within the
 *                   variable $classes.
 *
 * Other variables:
 * The following variables are provided for contextual information.
 * - $node: Partial node object. Contains data that may not be safe.
 * - $created: Time the node was published formatted in Unix
 *             timestamp.



Theming a Module

[ 116 ]

 * - $user: The user object of the node author.
 *
 * @see template_preprocess_single_blog_block_item()
 */
?>
<div class="<?php print $classes; ?>">

  <div class="date"><?php print $date; ?>:</div>

  <h4<?php print $title_attributes; ?>>
    <?php print render($title); ?></h4>

  <div class="name">
    <?php print t('by !username', array('!username' => $name)); ?>
  </div>

</div>

The first part of any template file should be a large docblock explaining all the 
variables available to themers, including convenience variables, not just the ones 
printed inside our template.

The only variable that we didn't explicitly create in our preprocess function was 
the $classes variable. This is a string that contains useful CSS classes that should 
be placed in the outer-most wrapping HTML element in our template file. The 
$classes variable is created by template_processs() and its corresponding 
$classes_array variable is created by template_preprocess(). If we want to add 
additional classes to the $classes string, we should append an array element to the 
$classes_array variable during our preprocess function and it will automatically 
be added to the $classes string before reaching the template file.

The string passed to the t() function, by !username includes the !username 
token to give context to translators when trying to translate "by"; see the t() API 
documentation for more information.

The last thing we should do, since we've updated the HTML markup returned by 
our block, is to also update the stylesheet:

/* $Id$ */

.block-single-blog .content ul {
  padding-left: 0; /* LTR */
}



Chapter 4

[ 117 ]

.block-single-blog .content ul li {
  margin-bottom: 10px;
  list-style-type: none;
}

.block-single-blog .date {
  font-weight: bold;
}

.block-single-blog h4 {
  margin: 0;
}

.block-single-blog .name {
  font-style: italic;
}

Congratulations! We're done!

Take a look at our accomplishment shown in the following screenshot:



Theming a Module

[ 118 ]

Summary
In this chapter we used our previous concepts and built an example theme 
implementation using real-world situations. In addition to the review of the theming 
concepts, you should have picked up on some of the strategies commonly used by 
Drupal developers and learned a little bit about contributing your experiences and 
knowledge back to the Drupal community.

In the next chapter, you'll learn about building admin interfaces for your module. 
So while the Single Blog module used slightly-funky constants that defined some 
hard-coded settings, the module in the next chapter will have a rich administrative 
interface to allow site admins to configure its settings.



Building an Admin Interface
In this chapter we will create a module with an administrative interface. This module 
will build upon many of the module creation concepts that were introduced in 
Chapter 2. Some of the concepts we will cover in this chapter are:

Mapping Drupal functions to menu items using hook_menu()
Creating basic forms with the Form API
Managing Drupal settings using variable_set() and variable_get()
Sending mail using drupal_mail() and hook_mail()
Using Drupal 7's new token system

After this chapter is finished you should have a good handle on many concepts that 
are at the core of almost every module you will write in the future.

The User Warn module
In this chapter we will be creating the User Warn module. This module allows 
administrators to send users a warning via e-mail when that user violates a site's 
terms of service or otherwise behaves in a way that is inappropriate. The User  
Warn module will implement the following features:

The module will expose configuration settings to site administrators, 
including default mail text
This e-mail will include Drupal tokens, which allow the admin to replace 
and/or add site-specific variables to the e-mail
Site administrators will be able to send a user mail via a new tab on their user 
profile page
Warning e-mails will be sent using Drupal's default mail implementation

•

•

•

•

•

•

•

•

•



Building an Admin Interface

[ 120 ]

Starting our module
We will begin as we did in Chapter 2, by creating a new folder for our module called 
user_warn in the sites/default/modules directory in our Drupal installation. We 
can then create a user_warn.info file as shown in the following:

;$Id$
name = User Warn
description = Exposes an admin interface to send behavior warning  
e-mails to users.
core = 7.x
package = Drupal 7 Development
files[] = user_warn.module

You should be pretty familiar with this now. We will also create our user_warn.
module file and add an implementation of hook_help() to let site administrators 
know what our module does.

<?php
// $Id$

/**
 * @file
 * User Warn module file
 *
 * This module allows site administrators to send a stock warning  
 * e-mail to a specified user or users through the admin interface.  
 * Administrators
 * can configure the default e-mail including token replacement.
 */

/**
 * Implement hook_help().
 */
function user_warn_help($path, $arg) {
  if ($path == 'admin/help#user_warn') {
    return t('User Warn allows site adminitrators to send a standard 
e-mail to site users to notify them of improper behavior.');
  }
}

This is also nothing new so lets move on to the good stuff.



Chapter 5

[ 121 ]

The Drupal menu system
Drupal's menu system is deceptively named. The name implies that it is responsible 
for the navigation of your site, and while this is true it does a great deal more. At its 
core, the menu system is responsible for mapping Drupal paths to the functions that 
generate the contents of the requested page. The menu system is also responsible  
for controlling access to Drupal pages, acting as one of the central gatekeepers of 
Drupal security.

Drupal module developers can map paths to Drupal functions by implementing 
hook_menu(), which adds paths to the menu system, assigns them access rules,  
and optionally creates navigational elements for them.

Defining a page callback with hook_menu
For our module we will need to implement two new pages—a configuration page 
for the User Warn module, and a tab in the user profile area where administrators 
can go to send the actual e-mails to a specific user. These will each require their own 
hook_menu() implementation as defined in the following example.

This example only scratches the surface of the options available in the 
menu system. For more details, developers should check out the API 
documentation at:
 http://api.drupal.org/api/function/hook_menu/7

The example is as follows:

/**
 * Implement hook_menu().
 */
function user_warn_menu() {
  $items = array();

  $items['admin/config/people/user_warn'] = array(
    'title' => 'User Warn',
    'description' => 'Configuration for the User Warn module.',
    'page callback' => 'drupal_get_form',
    'page arguments' => array('user_warn_form'),
    'access arguments' => array('administer users'),
    'type' => MENU_NORMAL_ITEM,
  );



Building an Admin Interface

[ 122 ]

  $items['user/%/warn'] = array(
    'title' => 'Warn',
    'description' => 
          'Send e-mail to a user about improper site behavior.',
    'page callback' => 'drupal_get_form',
    'page arguments' => array('user_warn_confirm_form', 1),
    'access arguments' => array('administer users'),
    'type' => MENU_LOCAL_TASK,
  );

  return $items;
}

Like many Drupal hook implementations, hook_menu() returns a structured 
associative array with information about the menu items being defined. The first 
item in our example defines the module configuration page, and the second one 
defines the user tab where administrators can go to send the actual e-mail. Let's  
look at the first item in more detail.

Menu items are keyed off their path. This is an internal Drupal path with no leading 
or trailing slashes. This path not only defines the location of a page, but also its place 
in the menu hierarchy, with each part of the URL being a child of the last. In this 
example, people is a child of config which is itself a child of admin.

If a requested path does not exist, Drupal will work its way up the hierarchy  
until it encounters a page that does exist. You can see this in action by requesting 
admin/config/people/xyzzy which displays the page at admin/config/people.

If you are creating a menu item for site administration it must begin with admin. This 
places it into Drupal's administrative interface and applies the admin theme defined 
by the site settings.

Module-specific settings should always be present under admin/config. 
Drupal 7 offers several categories which module developers should use to 
better organize their settings according to Drupal functional groups like 
People and Permissions or Content Authoring.

The value associated with this key is itself an associative array with several keys that 
define what action should be taken when this URL is requested. We can now look at 
those in detail. The first item defines your page title:

'title' => 'User Warn',



Chapter 5

[ 123 ]

This is used in a variety of display contexts—as your page's heading, in the HTML 
<title> tag and as a subheading in the administration interface in combination  
with the description (if you are defining an administrative menu item).

'description' => 'Configuration for the User Warn module.',

The description is just that—a longer text description of the page that this menu 
item defines. This should provide the user with more detailed information about the 
actions they can take on this page. This description is also used as the title tag when 
you hover over a link.

Menu item titles and descriptions are passed through t() internally 
by Drupal, so this is one case where we don't need to worry about 
doing that ourselves.

For an administration page, these two items define how your page is listed in 
Drupal's admin area as shown in the following:

The next two items define what will happen when your page is requested:

'page callback' => 'drupal_get_form',
'page arguments' => array('user_warn_form'),

'page callback' defines the function that will get called (without the parentheses) 
and 'page arguments' contains an array of arguments that get passed to  
this function. 

Often you will create a custom function that processes, formats, and returns  
specific data. However, in our case we are calling the internal Drupal function 
drupal_get_form() that returns an array as defined by Drupal's Form API. As an 
argument we are passing the form ID of the form we want to display. We will dive 
into drupal_get_form() and the Form API in more detail later in the chapter.

The fifth item controls who can access your page.

'access arguments' => array('administer users'),



Building an Admin Interface

[ 124 ]

'access arguments' takes an array containing a permissions strings. Any user who 
has been assigned one of these permissions will be able to access this page. Anyone 
else will be given an Access denied page. Permissions are defined by modules using 
hook_permission(). You can see a full list of the currently defined permissions at 
admin/people/permissions as shown:

You can see the 'administer users' permission at the bottom of this list. In the 
preceding example, only the Administrator role has this permission, and as a result 
only those users assigned this role will be able to access our page.

Note that the titles of the permissions here do not necessarily match what you will 
need to enter in the access arguments array. Unfortunately, the only good way to 
find this information is by checking the hook_perm() implementation of the module 
in question.

Access rights, permissions, and security will be covered in greater 
detail in Chapter 8, Drupal Permissions and Security.

The final item defines what type of menu item we are creating:

'type' => MENU_NORMAL_ITEM,

The 'type' is a bitmask of flags that describe what features we want our menu item 
to have (for instance, whether it is visible in the breadcrumb trail). Drupal defines 
over 20 constants for menu items that should cover any situation developers will find 
themselves in. The default type is MENU_NORMAL_ITEM, which indicates that this item 
will be visible in the menu tree as well as the breadcrumb trail.



Chapter 5

[ 125 ]

This is all the information that is needed to register our path. Now when  
Drupal receives a request for this URL, it will return the results of  
drupal_get_form(user_warn_form).

Drupal caches the entire menu, so new/updated menu items will 
not be reflected immediately. To manually clear the cache, visit 
Admin | Configuration | Development | Performance and click 
on Clear all caches.

Using wildcards in menu paths
We have created a simple menu item, but sometimes simple won't do the job. In 
the User Warn module we want to have a menu item that is tied to each individual 
user's profile page. Profile pages in Drupal live at the path user/<user_id>, so how 
do we create a distinct menu item for each user? Fortunately the menu system allows 
us to use wildcards when we define our menu paths.

If you look at the second menu item defined in the preceding example, you will see 
that its definition differs a bit from our first example.

$items['user/%/warn'] = array(
    'title' => 'Warn',
    'description' => 'Send e-mail to a user about improper site 
behavior.',
    'page callback' => 'drupal_get_form',
    'page arguments' => array('user_warn_confirm_form', 1),
    'access arguments' => array('administer users'),
    'type' => MENU_LOCAL_TASK,
  );

The first difference is that the path is defined with % as one of the path entries. This 
indicates a wildcard; anything can be entered here and the menu item's hierarchy 
will be maintained. In Drupal, that will always be a user's ID. However, there is 
nothing stopping any user from entering a URL like user/xyzzy/warn or something 
else potentially more malicious. Your code should always be written in such a way 
as to handle these eventualities, for instance by verifying that the argument actually 
maps to a Drupal user. This would be a good improvement.

The other difference in this example is that we have added 1 as an additional 
argument to be passed to our page callback.



Building an Admin Interface

[ 126 ]

Each argument in a menu item's path can be accessed as an argument that is 
available to be passed to our page callback, starting with 0 for the root argument. 
So here the string user is item 0, and the user's ID is item 1. To use the user's ID as a 
page callback argument, we reference it by its number. The result in this case is that 
the user's ID will be passed as an additional argument to drupal_get_form().

We have one other difference in this second menu item:

'type' => MENU_LOCAL_TASK,

We have defined our type as MENU_LOCAL_TASK. This tells Drupal that our menu 
item describes actions that can be performed on the parent item. In this example, 
Warn is an action that can be performed on a user. These are usually rendered as an 
additional tab on the page in question, as you can see in the following example user 
profile screen:

Having defined the paths for our pages through hook_menu(), we now need to build 
our forms.

Form API
In standard web development, one of the most tedious and unrewarding tasks is 
defining HTML forms and handling their submissions. Lay out the form, create 
labels, write the submission function, figure out error handling, and the worst part 
is that from site to site much of this code is boilerplate—it's fundamentally the 
same, differing only in presentation. Drupal's Form API is a powerful tool allowing 
developers to create forms and handle form submissions quickly and easily. This 
is done by defining arrays of form elements and creating validation and submit 
callbacks for the form.



Chapter 5

[ 127 ]

In past versions of Drupal, Form API was commonly referred to as 
FAPI. However, Drupal 7 now has three APIs which could fit this 
acronym—Form API, Field API (which you'll see in Chapter 6 and 
Chapter 7) and File API (which you'll learn about in Chapter 11). We 
will avoid using the acronym FAPI completely, to prevent confusion, 
but you will still encounter it widely in online references.

Form API is also a crucial element in Drupal's security. It provides unique form 
tokens that are verified on form submission, preventing Cross-site Request Forgery 
attacks, and automatically validating required fields, field lengths, and a variety of 
other form element properties.

While Form API is one of the most useful and powerful tools in the module 
developer's toolbox, it can also be one of the most complicated. More detailed 
information beyond this simple example can be found at the following URLs:

Form API Quickstart guide:
http://api.drupal.org/api/drupal/developer--topics--forms_api.
html/7

Form API Full Reference:
http://api.drupal.org/api/drupal/developer--topics--forms_api_
reference.html/7

Using drupal_get_form()
In our first menu implementation seen earlier, we defined the page callback as 
drupal_get_form(). This Form API function returns a structured array that 
represents an HTML form. This gets rendered by Drupal and presented as an HTML 
form for the user. drupal_get_form() takes a form ID as a parameter. This form ID 
can be whatever you want, but it must be unique within Drupal. Typically it will be 
<module_name>_<description>_form.

The form ID is also the name of the callback function drupal_get_form() will call 
to build your form. The specified function should return a properly formatted array 
containing all the elements your form needs.

Since the form ID also serves as the form's callback function, it must be 
a valid PHP variable name. Spaces and hyphens are not allowed. All 
form IDs should be prefaced by the name of your module followed by 
an underscore, in order to prevent name collision.

•

•



Building an Admin Interface

[ 128 ]

Other parameters can be passed into drupal_get_form() in addition to the form  
ID. These extra parameters simply get passed through to the callback function for  
its own use. We will see how this works later in the chapter. 

In Drupal 6, drupal_get_form() returned a fully rendered HTML 
form. This has been changed in Drupal 7 in order to allow more flexibility 
in theming and easier form manipulation. drupal_get_form() now 
returns an unrendered form array which must be passed to drupal_
render() for final output. In the preceding example the menu system 
handles the change transparently, but other code converted from Drupal 6 
may need to be changed.

Building a form callback function
For the User Warn module we need a form that allows the site administrator to enter 
the following items:

A subject line for our outgoing e-mail
The text of our outgoing e-mail
A checkbox indicating whether or not the administrator should be sent a  
Bcc on outgoing e-mails
A submit button

Our menu definition specified user_warn_form as the page arguments, so we need 
to create that function and define our form within it. 

This function takes two parameters—$form and $form_state. We will 
not be using these parameters in the context of just displaying a form. But, 
for more information on their usage see the Form API Quickstart Guide.

/**
 * Form builder; Create and display the User Warn configuration  
 * settings form.
*/
function user_warn_form($form, &$form_state) {
  // Text field for the e-mail subject.
  $form['user_warn_e-mail_subject'] = array(
    '#type' => 'textfield',
    '#title' => t('Warning e-mail subject'),
    '#description' => t('The subject of the e-mail which will be sent 
to users.'),

•

•

•

•



Chapter 5

[ 129 ]

    '#size' => 40,
    '#maxlength' => 120,
    '#required' => TRUE,
  );
  
  // Textarea for the body of the e-mail.  
  $form['user_warn_e-mail_text'] = array(
    '#type' => 'textarea',
    '#rows' => 10,
    '#columns' => 40,
    '#title' => t('Warning e-mail text'),
    '#required' => TRUE,
    '#description' => t('The text of the e-mail which will be sent to 
users.'),
  );
  
  // Checkbox to indicate if admin should be sent a Bcc on e-mails.
  $form['user_warn_bcc'] = array(
    '#type' => 'checkbox',
    '#title' => t('BCC admin on all e-mails'),
    '#description' => t("Indicates whether the admin user (as set in 
site configuration) should be sent on all warning e-mails."),
  );
    
  // Submit button
  $form['submit'] = array(
    '#type' => 'submit',
    '#value' => t('Save settings'),
  );

  return $form;
}

The properties of a form element always begin with a # sign in order to  
distinguish them from nested form fields. For more information visit the  
Form API Quickstart Guide.

This is very similar to what we did earlier while implementing hook_menu(). We 
create a specially formatted associative array and return it to the calling function.  
In this case, each element in the array corresponds to an element in our form. 

Lets look at the subject field first as an example.

$form['user_warn_e-mail_subject'] = array(



Building an Admin Interface

[ 130 ]

Each element is keyed by a unique string, which will become the element's name 
attribute when the form is rendered. This element is then assigned an array  
of attributes.

For a complete matrix of all the form elements defined by Drupal as well 
as the properties each one implements, visit:
http://api.drupal.org/api/drupal/developer--topics--
forms_api_reference.html/7

'#type' => 'textfield',

The first attribute is '#type' which defines what form element will be rendered. 
All the standard HTML form elements have types, as well as some Drupal-specific 
elements defined. In this case we are creating a basic textfield. 

'#title' => t('Warning e-mail subject'),
'#description' => t(
          'The subject of the e-mail which will be sent to users.'),

The next two attributes, '#title' and '#description' define the element's label 
and an optional description.

Any attribute that a standard HTML element has are available as Form API 
properties or attributes as well. For instance, see the following two lines of code.

'#size' => 40,
'#maxlength' => 120,

As you would expect, these define the size and maxlength attributes of our text field. 
One of the nice things about Form API is that it will automatically validate many of 
the element's attributes when the form is submitted. In this case Drupal will throw 
an error if any text is submitted with a length greater than the element's maxlength. 
All this happens transparently with no extra code from the developer.

 Form API also adds some convenience properties for validation purposes,  
like '#required'.

'#required' => TRUE,

When '#required' is set to TRUE, Drupal will throw an error if the form is submitted 
without a value in that element. Required fields are also marked with an asterisk in 
their labels. Again, this happens transparently without any extra code. Drupal will 
even highlight the field when an error applies to it! This on-the-fly error handling and 
form validation is one of the reasons Form API is such a boon to developers. It really 
reduces the amount of drudgery involved in creating and handling HTML forms.



Chapter 5

[ 131 ]

The following is how this text field will appear when rendered by Drupal in the 
default admin theme:

Moving on to the following elements, you can see this pattern repeat itself. For 
instance, the e-mail body field of type '#textarea' implements the '#rows' and 
'#columns' properties, just like the matching HTML attributes for a textarea. The 
checkbox element (indicating whether the admin should be sent a BCC on outgoing 
e-mails) and submit button are equally straightforward to operate.

When we visit the URL that we registered earlier (admin/config/people/user_warn), 
we get the form rendered as seen in the following screenshot:



Building an Admin Interface

[ 132 ]

Drupal also offers several custom form elements in addition to the standard HTML 
fields. You can see an example of one of these in the drupal_get_form() callback  
for our second menu item:

/**
 * Form builder; display the e-mail confirmation form.
 */
function user_warn_confirm_form($form, &$form_state, $uid) {
  $form['account'] = array(
    '#type' => 'value',
    '#value' => user_load($uid),
  );
  
  return confirm_form(
    $form, 
    t('Are you sure you want to send a warning e-mail to this			 
	 user?'),
    'user/' . $uid, 
    t('This action can not be undone.'), 
    t('Send e-mail'), 
    t('Cancel')
  );
}

We will revisit this function in more detail later in the chapter, but for now we will 
focus on the highlighted area. As you'll remember from earlier in this chapter, we 
used a wildcard in the menu item path to grab the user's ID and pass it into the page 
callback. As you can see now, this is being passed as the third parameter into our 
callback function (after the required $form and $form_state parameters). We can 
now use this ID to retrieve data about the user for future use.

Also, you can see that we are defining a new form element of type 'value'. The 
value element is similar to the HTML hidden fields with two distinct advantages. 
First, value elements can contain any data you want as opposed to just strings. 
Arrays, objects, or any other complex data structure can be stored and passed in a 
value element.

The second advantage is that value elements are not printed back to the browser in 
the HTML source. This can improve the security of your data by preventing users 
from viewing and/or modifying it on a local instance.

In this code sample we are assigning the value element 'account' with the value of 
a Drupal user object. This object will be passed on when the form is submitted, and 
the receiving function will be able to use it as needed. Value elements are extremely 
useful and developers should always consider using them in places where they 
would otherwise use hidden fields.



Chapter 5

[ 133 ]

Drupal also offers a Form API element of type 'hidden', should 
developers prefer to use it.

Form API makes form building incredibly simple, but right now this form has two 
problems. First, the module should provide some reasonable default settings for 
system administrators. Second, when you submit the form, none of the submitted 
data is actually handled in any way. Let's take a brief detour from form handling  
and look at how Drupal manages persistent system data.

Managing persistent data
Drupal provides a mechanism by which data, which needs to persist semi-
permanently (like system settings), can be saved and retrieved. These items are 
somewhat confusingly referred to as 'variables' (we will refer to them specifically 
as persistent variables from here on to avoid confusion). Persistent variables are 
stored in a database table, keyed by a unique name provided by the module that 
implements them.

Persistent variables are saved using variable_set(), and retrieved using 
variable_get(). These variables can be any type of data that a developer needs, be 
it a simple string, an associative array, or a PHP object. The Drupal API for setting/
getting them takes care of all the serialization/unserialization that is necessary 
behind the scenes.

variable_get() can also provide a default value, which is useful for situations 
where you need a variable which has not already been set, for instance, after a 
module is installed for the first time. We can use this to our advantage in our 
configuration form as shown in the following snippet:

  $form['user_warn_e-mail_subject'] = array(
    '#type' => 'textfield',
    '#default_value' => variable_get('user_warn_e-mail_subject',
                                     'Administrative Warning'),
    '#title' => t('Warning e-mail subject'),
    '#size' => 40,
    '#maxlength' => 120,
    '#required' => TRUE,
    '#description' => t(
       'The subject of the e-mail which will be sent to users.'),
  );



Building an Admin Interface

[ 134 ]

This is the same Form API element we created above, but with a new line added. 
This line adds the '#default_value' property of the form element. This property 
tells the form what data the element should contain when the form is first loaded.

We are assigning this property the results of a call to variable_get() using two 
parameters. The first parameter is the unique key associated with this data. It is 
common practice to give a persistent variable the same name as the form element  
it is associated with, and we have done so here.

Like menu items, persistent variables are cached by Drupal, so you 
will often need to clear your caches after modifying them.

The second parameter specifies the data that should be returned if this variable 
has never been explicitly set. In this example we have set that to be the string 
'Administrative Warning'. If this variable had been explicitly set sometime 
previously, then that data will be returned by variable_get() instead. Otherwise, 
the default value will be returned.

Now the first time the form loads, whatever data is in the persistent variable  
'user_warn_e-mail_subject' will be set as the value of the e-mail subject form 
element. We can also do this to our other form elements as desired. In the end our 
function will be as follows. Note that we have also added a constant containing the 
default text of our e-mail. Removing this large block of text from our array definition 
makes our code more readable and maintainable down the road.

Drupal constants are typically defined at the top of a .module file, but for the sake  
of clarity this example includes the constant definition with the function:

define('USER_WARN_MAIL_TEXT',
'Hello,

We have been notified that you have posted comments on our site that 
are in violation of our terms of service.  If this behavior continues 
your account will be suspended. 

Sincerely,
The administrative staff');

function user_warn_form($form, &$form_state) {
  $form = array();

 // Text field for the e-mail subject.
 $form['user_warn_e-mail_subject'] = array(
    '#type' => 'textfield',



Chapter 5

[ 135 ]

    '#default_value' => variable_get('user_warn_e-mail_subject',
                                     'Administrative Warning'),
    '#title' => t('Warning e-mail subject'),
    '#size' => 40,
    '#maxlength' => 120,
    '#required' => TRUE,
    '#description' => t(
           'The subject of the e-mail which will be sent to users.'),
  );

  // Textarea for the body of the e-mail.
  $form['user_warn_e-mail_text'] = array(
    '#type' => 'textarea',
    '#rows' => 10,
    '#columns' => 40,
    '#default_value' => variable_get('user_warn_e-mail_text', 
                                      USER_WARN_MAIL_TEXT),
    '#title' => t('Warning e-mail text'),
    '#required' => TRUE,
    '#description' => t(
           'The text of the e-mail which will be sent to users. '),
  );

  // Checkbox to indicate whether admin should be sent a Bcc 
  // on e-mails.
  $form['user_warn_bcc'] = array(
    '#type' => 'checkbox',
    '#default_value' => variable_get('user_warn_bcc', FALSE),
    '#title' => t('BCC admin on all e-mails'),
    '#description' => t('Indicates whether the admin user (as set in 
site configuration) should be BCC\'d on all warning e-mails.'),
  );

  // Submit button
  $form['submit'] = array(
    '#type' => 'submit',
    '#value' => t('Save settings'),
  );

  return $form;
}

Persistent variables are an excellent way to store module settings and other  
user-configurable information. However, having given our configuration settings 
reasonable defaults, we are still left with the issue of how to save changes to  
these defaults.



Building an Admin Interface

[ 136 ]

Form submission process
When an HTML form built with Form API is submitted, Drupal looks for two 
specifically named functions—a validate function and a submit function. These 
functions are named by taking the form ID and appending either _validate()  
or _submit() depending on which function you are writing.

The validate function does additional validation beyond what Drupal provides. For 
instance if you wanted to check to see if a zip code is valid. Even if validation fails 
on one element, all validation functions are still called, so Drupal can return multiple 
errors in a single form. However, if any validation function fails, execution never 
proceeds to the submit function.

Validate functions are optional. If you don't need any additional 
validation, then you don't have to write one. In this case, Drupal 
will just do its default validation. For more information on how to 
write validate functions, see the Form API documentation at the links 
referenced earlier in the chapter.

Once the form passes validation, the submit function is called. This is where the real 
work is done—saving settings, sending e-mail, and creating content among other 
things. The form submit function is one of the main workhorses of Drupal modules.

As a module writer you will spend an inordinate amount of time writing submit 
functions and support code for submit functions. This is good, because it means you 
are spending time on the code that is unique to your project, and not recreating the 
wheel every time you want to turn a field red because a required field is missing.

So let's apply this to the User Warn configuration form. The form ID for our 
configuration form is user_warn_form, so our submit function will be named  
user_warn_form_submit().

Form submit functions take two arguments. $form is the original Form API array  
for the submitted form, and $form_state is an associative array containing 
information specific to this submission. In particular, $form_state['values'] 
contains all the submitted form values keyed on their name properties. In general, 
$form_state['values'] is the only thing you will need to worry about in validate 
and submit functions.

/**
 * Save configuration settings for User Warn module.
 */
function user_warn_form_submit($form, &$form_state) {



Chapter 5

[ 137 ]

  variable_set('user_warn_e-mail_subject',
               $form_state['values']['user_warn_e-mail_subject']);
  variable_set('user_warn_e-mail_text',
               $form_state['values']['user_warn_e-mail_text']);
  variable_set('user_warn_bcc',
               $form_state['values']['user_warn_bcc']);
  
  drupal_set_message(t('The settings have been saved'));
}

After all that, our submit function is pretty simple. We are saving our submitted data 
using variable_set(), then setting a simple message indicating that the values 
have been saved successfully. Our needs for validation are handled by Drupal's 
built-in form validation, so we don't even need a validate function for this data. 

The function drupal_set_message() sets a simple message that 
is displayed in a specific area at the top of a Drupal page. For more 
details see http://api.drupal.org/api/function/drupal_
set_message/7.

After a form is submitted, it will reload the form submission page. Since we have 
saved new data in our persistent variables through the submit function, and since the 
form is pre-loaded with default data based on the data in those variables, we should 
now be able to submit new data for these items and see them reflected after the form 
has been submitted.

If you want Drupal to redirect to a different page after form 
submission, you can set $form_state['redirect'] to the desired 
path in your submit function. If this isn't working, check whether you 
have specified for $form_state to be passed by reference by adding 
an ampersand to it in your function signature.

Form API provides us with a great deal of power with a pretty small amount of 
work, but Drupal offers some shortcuts which make common forms even easier.



Building an Admin Interface

[ 138 ]

A shortcut for system settings
The need to save configuration settings into persistent variables through a standard 
form is pretty common. Thankfully, once again Drupal has provided us with some 
magic to simplify this task. That magic is the system_settings_form() function. 
When you pass a standard Form API form array through this function and return  
the results, you get several benefits. Take a look at the following modified version  
of user_warn_form():

/**
 * Form builder; Build the User Warn settings form.
 */
function user_warn_form($form, &$form_state) {

  // Text field for the e-mail subject.
  $form['user_warn_e-mail_subject'] = array(
    '#type' => 'textfield',
    '#default_value' => 'Administrative Warning',
    '#title' => t('Warning e-mail subject'),
    '#size' => 40,
    '#maxlength' => 120,
    '#required' => TRUE,
    '#description' => t(
        'The subject of the e-mail which will be sent to users.'),
  );
  
  // Textarea for the body of the e-mail.
  $form['user_warn_e-mail_text'] = array(
    '#type' => 'textarea',
    '#rows' => 10,
    '#columns' => 40,
    '#default_value' => USER_WARN_MAIL_TEXT,
    '#title' => t('Warning e-mail text'),
    '#required' => TRUE,
    '#description' => t(
         'The text of the e-mail which will be sent to users.'),
  );
  
  // Checkbox to indicate whether admin should be sent a Bcc
  // on e-mails.
  $form['user_warn_bcc'] = array(
    '#type' => 'checkbox',
    '#default_value' => FALSE,
    '#title' => t('BCC admin on all e-mails'),



Chapter 5

[ 139 ]

    '#description' => t('Indicates whether the admin user (as set in 
site configuration) should be BCC\'d on all warning e-mails.'),
  );
    
  return system_settings_form($form);
}

The first thing you'll notice is that we no longer have a submit button element. That 
is because system_settings_form() adds one in for us automatically. It gets the 
label 'Save settings'.

Additionally, system_settings_form() uses its own custom submit handler 
system_settings_form_submit(), which automatically saves all form elements 
into persistent variables of the same name. You don't have to write a submit  
function at all, Drupal takes care of everything behind the scenes.

It might seem silly to use an API function for something as simple as adding a 
submit button and automating the handling of persistent variables. However, the 
less code you have to write the less bugs you introduce. With just around 30 lines of 
code, we now have a fully functional form with extensive validation, customizable 
default settings, and the ability for users to change the default settings as they wish.

Having set up our module's configuration form, we now need to add a function that 
enables administrators to actually send this e-mail to users.

A shortcut for confirmation forms
Earlier in the chapter, we added a 'Warn' tab to user profile pages. System 
administrators should be able to click this tab to send the warning e-mail to users. 
However, it would be nice if we could add a confirmation step here, to prevent  
e-mails from being sent inadvertently.

This is another situation where Drupal offers a convenient shortcut function.  
Let's revisit the callback function we looked at earlier while discussing 'value'  
form elements.

/**
 * Form builder; display the e-mail confirmation form.
 */
function user_warn_confirm_form($form, &$form_state, $uid) 
{
  $form['account'] = array(
    '#type' => 'value',
    '#value' => user_load($uid),
  );
  



Building an Admin Interface

[ 140 ]

  return confirm_form(
    $form,
    t(
     'Are you sure you want to send a warning e-mail to this user?'), 
    'user/' . $uid, 
    t('This action can not be undone.'), 
    t('Send e-mail'), 
    t('Cancel')
  );
}

The confirm_form() function allows developers to easily create confirmation forms 
associated with specific actions. It takes seven arguments, which seems intimidating 
but they are actually pretty intuitive.

The first argument contains additional form elements that we want merged into the 
resulting confirmation form. As we saw earlier, we have created a value element 
containing a user account object. We need this to be passed on to the form's submit 
function, so we set it to be added with all the other elements that confirm_form() 
creates on its own.

The second argument specifies the question you want to ask when the user is 
presented with the confirmation option. This is pretty straightforward and we  
have an appropriate message there.

The third argument indicates what URL the user should be sent to if the user cancels 
the form. Usually this will be an internal Drupal path without leading or trailing 
slashes. Typically site administrators will get to this page from a user profile page,  
so it is appropriate that when this form is canceled the administrators are returned  
to this profile page.

The final three arguments specify various captions used in the form. They are the 
additional description text to be displayed above the confirm button, the text of 
confirm button, and the text of the cancel link. All of these messages are optional, 
and Drupal will use sensible defaults if you don't change them here explicitly.

The code above displays the following:



Chapter 5

[ 141 ]

Forms generated by confirm_form() only call their submit functions if the form  
is actually confirmed, so developers don't need to check for this themselves. If the 
form is canceled, then the user is simply redirected to the URL specified in the 
function call.

We have now gotten a pretty thorough introduction to Drupal's Form API. We  
can create forms from scratch, write, validate, and submit handlers, and use some  
of Drupal's internal functions to create common form types. We're two-thirds of  
the way into this chapter and we still haven't touched on the module's central 
purpose—sending an e-mail to a user!

Sending mail with drupal_mail() and 
hook_mail()
Drupal implements a custom e-mail templating system. Initially it may appear that 
this system is overly complicated, but it allows an enormous amount of flexibility  
for module developers.

Sending e-mail in Drupal is a multi-step process:

1.	 drupal_mail() is called, specifying what mail is being sent and what 
options are unique to this specific message (the recipient's e-mail address, the 
language the mail should be sent in, and so on).

2.	 Drupal then builds an e-mail message with standard headers combined with 
the information submitted to drupal_mail().

3.	 The hook_mail() implementation specified in drupal_mail() is called. This 
is where the subject and body of the mail are added.

4.	 The fully composed mail array is then passed to hook_mail_alter(), 
allowing other modules to modify it (for instance, to add a common 
signature to all outgoing e-mails.).

5.	 The mail is passed to drupal_send_mail() for delivery.

That is a pretty long process just for sending a simple e-mail! However, in most  
cases developers will only have to worry about two of the above steps—calling 
drupal_mail() and implementing hook_mail().



Building an Admin Interface

[ 142 ]

PHP mail configuration
In order for Drupal to send an e-mail, your server must be configured so 
that PHP's mail() function will work. Typically this involves installing 
and configuring a local mail server. Most shared hosting providers are 
already properly configured to do this, but if you are on a VPS or other 
custom-built server you may have to handle it yourself. This process 
varies wildly depending on your operating system and a variety of other 
factors. Searching for php mail setup on Google will most likely start you 
in the right direction.

Calling drupal_mail()
The following is the function that gets called when our confirmation form is 
submitted (indicating that we should in fact send an e-mail warning to the  
user in question).

/**
 * Send a warning e-mail to the specified user.
 */
function user_warn_confirm_form_submit($form, &$form_state) {
  $account = $form_state['values']['account'];

  drupal_mail(
    'user_warn',
    'warn',
    $account->mail,
    user_preferred_language($account),
    $form_state['values'],
    variable_get('site_mail', NULL),
    TRUE
  );
}

As you can see, drupal_mail() requires that we pass it quite a bit of information. 
Let's look at each of these arguments in detail:

The first argument indicates what module should invoke hook_mail() to 
send this message. We are setting this to 'user_warn' since we are doing 
our own hook_mail() implementation. However, you can send a mail 
implemented by another module if you need to. We will look at the  
user_warn_mail() implementation in a bit.

•



Chapter 5

[ 143 ]

The second argument, warn, is a key which is passed to hook_mail(). Any 
hook_mail() implementation can define several e-mails, uniquely identified 
by a text key. (Drupal's user module implements eighteen (!) for things like 
account confirmation and forgotten passwords). We specify which specific 
mail we want to send with this parameter.
The third argument contains the recipient's address. We pull this out of 
the user object for the user whose profile we visited, as passed by the 
confirmation form above.
The fourth argument specifies what language the mail should be sent in. This 
is important because individual users can specify a language preference that 
is different from the site's default language. We should honor this choice 
if possible when sending our e-mail to this user. The user_preferred_
language() function makes this task easy by taking a user object and 
returning the user's language choice.
The fifth argument is an associative array of parameters to be passed to 
hook_mail(). Any custom information needed to build the e-mail should be 
put here. In our case, any custom information we need to build the e-mail is 
already in the data submitted from the confirmation form, so we will just use 
$form_state['values'] here.
The sixth argument contains the e-mail address from whom this mail should 
be sent. When you first installed Drupal you had to specify an administrative 
e-mail address. This address is already being used as the source for other 
system e-mails (like account verification) so it makes sense to use it as our 
sender e-mail as well. The e-mail is stored as a persistent variable with 
the key 'site_mail', so we can easily grab it using variable_get() as 
discussed earlier in the chapter.
Finally, the last variable indicates whether or not the mail should actually be 
sent. It will come as no surprise to learn that a mail message in Drupal is built 
in a specially structured associative array. At the end of the mail building 
process, this array is typically passed to the function drupal_mail_send() 
which handles the actual delivery of the mail. However, by setting this 
parameter to FALSE, drupal_mail() will bypass the delivery step, allowing 
you to take the structured array it returns and handle delivery yourself.

•

•

•

•

•

•



Building an Admin Interface

[ 144 ]

Implementing hook_mail()
In the last section, when we called drupal_mail(), we indicated that it should 
invoke hook_mail() in the user_warn module. This means that Drupal will be 
looking for a function named user_warn_mail(). This function is as follows:

/**
 * Implement hook_mail().
 */
function user_warn_mail($key, &$message, $params) {
  switch ($key) {
    case 'warn':
      $account = $params['account'];
      $subject = variable_get('user_warn_e-mail_subject',
                              'Administrative Warning');
      $body = variable_get('user_warn_e-mail_text', 
                           'You\'ve been warned!');

      if (variable_get('user_warn_bcc', FALSE)) {
        $admin_mail = variable_get('site_mail', NULL);
        $message['headers']['bcc'] = $admin_mail;
      }

      $message['to'] = $account->mail;
      $message['subject'] = $subject;
      $message['body'][] = $body;
      break;
  }
}

As you can see the preceding function receives three arguments:

The key we passed in parameter two of our call to drupal_mail(), 
indicating what message should be sent.
The structured array that Drupal creates to represent an e-mail message. 
At this point this array has already been populated with the mail's default 
header information. 
The data we passed from drupal_mail() in the $params argument (in this 
case, a user's account object.)

•

•

•



Chapter 5

[ 145 ]

As discussed earlier, it is possible for hook_mail() to handle multiple different 
e-mails as indicated by the key passed in from drupal_mail(). Even though we 
are only sending one e-mail with a key of 'warn', we still put it into a switch/case 
structure to make it easier to manage more mails later on if needed.

Now we can get on with the real purpose of our hook implementation—adding 
details to the $message array that are unique to our mail. Typically this is the subject, 
body, and any additional headers that we might need.

Our e-mail's subject and text have been set via the module's configuration page, so 
we retrieve them via variable_get() and set them to the $message['subject'] 
and $message['body] properties here.

Note that we do not pass the subject and body strings through t() as 
we have done in other contexts. These strings are supplied by the site 
administrator through the User Warn module's configuration form, and 
as such are not translatable. Only hardcoded system strings need to be 
passed through t().

The other thing we need to do is to Bcc the site admin if that configuration setting 
has been set.

if (variable_get('user_warn_bcc', FALSE)) {
  $admin_mail = variable_get('site_mail', NULL);
  $message['headers']['bcc'] = $admin_mail;
}

As with the other configuration settings, we retrieve it using variable_get(). If it is 
TRUE, then we need to set the site admin to be Bcc'd. Unlike the e-mail recipient, Cc 
and Bcc are set by adding headers to the $message array. The headers are themselves 
an associative array held under the 'headers' key, and we need to add a new 
header with the key 'Bcc'. We assign this to the site admin's e-mail in the same 
manner as we did in drupal_mail() while setting the mail's sender.

This is all we need to do! $message is passed by reference, so we don't even need to 
return it. Drupal will just proceed on from here. After other modules get a chance 
to alter the mail through hook_mail_alter(), the $message array will be passed 
to drupal_mail_system() where the final mail message will be formatted and 
delivered (if you specified this option when you called drupal_mail()).



Building an Admin Interface

[ 146 ]

Debugging mail problems
There are a variety of reasons why an e-mail might not be delivered. 
If the the recipient's address does not exist or there is another problem 
on the receiving end, the mail will be bounced back to the e-mail 
address specified in the sixth argument of drupal_mail() (the site 
administrator in this example.). In the case of a misconfigured local 
system, you may be able to find more information in PHP's error logs. The 
Reroute Mail module can be helpful if you are having problems sending 
mail on your development server:  
http://drupal.org/project/reroute_e-mail

This is all good, and we actually have a fully functional module now. However, there 
is one more issue we should look at addressing.

The token system
It would be nice if we could include some personalized information in the mail text 
without having to hardcode it in the module configuration form. For instance, we 
should be able to include the login of the user being warned, or the name of the site 
admin. This leads us into our final topic, using Drupal's token system.

What are tokens?
A token is a small piece of text that can be placed into a piece of text via the use of a 
placeholder. When the text is passed through the function token_replace(), then 
the tokens are replaced with the appropriate information. Tokens allow users to 
include data that could change in text blocks, without having to go back and change 
it everywhere they're referenced.

In previous versions of Drupal, tokens were implemented using the 
contributed module named, not surprisingly, Token. This functionality 
proved to be so popular and widely used that it was included in core 
for Drupal 7.

A sample token is [site:name]. When text containing this token is passed through 
token_replace(), it is replaced with your site's name as defined in Home | 
Administer | Configuration | Site information. If you change your site's name, 
then in the future all text containing this token will reflect this change. Drupal 
exposes a variety of tokens containing information on users, nodes, site-wide 
configuration, and more. 



Chapter 5

[ 147 ]

Tokens can also be 'chained'—a token can refer to another token which can refer 
to yet another one. As an example, the token [node:author] contains the name 
of a node's author, and the token [user:e-mail] contains the e-mail address of a 
given user. To retrieve the e-mail address of a node's author, you can chain the two 
together with the token [node:author:e-mail].

Module developers can also expose their own tokens for other module 
developers to take advantage of. For more information on how to expose 
tokens in your module, see the following sites:
http://api.drupal.org/api/function/hook_token_info/7 
http://api.drupal.org/api/function/hook_tokens/7

Drupal's token system is extremely flexible and prevents site builders and developers 
from having to replace information in site text every time it changes. So let's see how 
we can use tokens in our module.

How do we know what tokens are available?
Drupal 7 does not include a user interface for browsing available 
tokens, however the contributed Token module implements a very nice 
JavaScript tree-like browser for them. You can download and install it 
from the following site:
http://drupal.org/project/token 
Additionally module developers can use the function token_info() to 
get a structured array containing all the tokens in the system. This can be 
parsed and/or displayed as desired.

Implementing tokens in your text
The obvious place where User Warn could use tokens is in the text of the outgoing 
e-mails. Let's expand the very simple default text we included above, and also put it 
into a constant, for easier module readability and maintainability. This will require 
updating some of the previous code, but in the future we will only need to change 
this information in one place.

define('USER_WARN_MAIL_TEXT',
'Hello [user:name],

We have been notified that you have posted comments on [site:name] 
that are in violation of our terms of service.  If this behavior 
continues your account will be suspended. 

Sincerely,
[site:name]');



Building an Admin Interface

[ 148 ]

This text contains three tokens:

[site:name]: the site's name as described earlier
[site:mail]: the administrative e-mail address (this is the same e-mail 
address returned by variable_get('site-mail')
[user:name]: the login name of a specified user

In order to make this work, we have to implement token_replace() in our  
hook_mail() implementation as highlighted below:

/**
 * Implement hook_mail().
 */
function user_warn_mail($key, &$message, $params) {
  switch ($key) {
    case 'warn':
      $account = $params['account'];
      $subject = variable_get('user_warn_e-mail_
subject','Administrative Warning');
      $body = variable_get('user_warn_e-mail_text', 
                           USER_WARN_MAIL_TEXT);

      if (variable_get('user_warn_bcc', FALSE)) {
        $admin_mail = variable_get('site_mail', NULL);
        $message['headers']['bcc'] = $admin_mail;
      }

      $message['to'] = $account->mail;
      $message['subject'] = $subject;
     $message['body'][] = token_replace($body, 
                                        array('user' => $account));
      break;
  }

}

As you can see, we're now setting the e-mail body to the return value from  
token_replace(). This function is pretty simple, it only takes two arguments:

The text with tokens in place.
An array of keyed objects to be used in the token replacement process. In this 
case, the user object for the recipient of this e-mail as passed in the $params 
argument from drupal_mail(). If you need other replacements (like for a 
node) you would add additional objects into this array.

•

•

•

•

•



Chapter 5

[ 149 ]

That's it! The text returned from token_replace() will now look something  
like this:

Hello eshqi,

We have been notified that you have posted comments on The Coolest 
Site In The World that are in violation of our terms of service.  If 
this behavior continues your account will be suspended.

Sincerely,
The Coolest Site In The World

This e-mail is much better and personalized for both the sender and the recipient.

Summary
In reality the User Warn module is probably of limited utility, but it does help to 
introduce many of the core concepts that Drupal developers will use on a day-to-day 
basis. You are now able to create pages at a specific URL using hook_menu(), and 
implement forms on those pages using the Form API. The values submitted from this 
form can be saved using functions like system_settings_form(), confirm_form(),  
or your own custom submit handler. You can also send the results of a form 
submission as a custom email using dynamic tokens for text replacement.

In Chapter 7, Creating New Fields, we will begin examining Drupal 7's new Field API, 
the core implementation of what was formerly the CCK module.





Working with Content
Drupal 7 introduces major changes to the way Drupal handles content. In earlier 
versions, nearly all content was considered a "node". By making content a standard 
object with a common API, any module could add data to and manipulate that object 
to create complex data models and workflows.

That worked extremely well, with the exception that Drupal had several other types 
of objects, such as users or comments, that were not really "content" per se but could 
still have benefited from the same rich API. For Drupal 7, therefore, most of those 
separate object types were merged into a single super-system known as "entities". 
Nodes, users, comments, and several other types of data objects are now particular 
instances of the generic Entity data object concept. That allows all types of data to 
have the same, or at least very similar, API and workflow, avoiding duplicate code 
and reducing the number of moving parts developers need to keep track of. Most 
importantly, it allows us to attach Fields, discrete structured pieces of information,  
to any type of entity rather than just to nodes.

In this chapter, we'll look at how to define new entity types. There are a lot of 
moving parts, and while the entity system automates much of the process for us it 
does not automate everything. Along the way we'll touch on several new pieces of 
Drupal and reiterate what we've covered in previous chapters about page callbacks 
and form handling.

Why create your own entities
It's generally not necessary to create a new entity type. Nodes are still extremely 
flexible, and more often than not can handle whatever use case we need. However, 
there are cases where it is necessary to create separate entities rather than separate 
node types, like for instance:

We may need entities that have entirely different permission handling or 
workflow than nodes, such as products in an e-commerce system.

•



Working with Content

[ 152 ]

We may be accessing entities that are not stored in Drupal's local database, 
such as a legacy data store.
We may need to have internal variants, like node types, but nodes don't 
support "sub-type types".

For simplicity we'll not do anything too exotic for now. Instead, we'll look at a 
relatively simple use case and mirror node handling fairly closely.

The goal
For our example, we'll create a new entity called "artwork". This entity will represent 
a work of art held by a museum and managed through Drupal. Like nodes, artworks 
will have sub-types like "painting" and "sculpture". We will want to allow users to 
create, edit, and delete artworks, as well as configure what fields are available on 
each artwork type.

In practice most real museums would have their collection stored in a dedicated 
collection management system and we would need to just provide a wrapper that 
reads data from it in a Drupal-friendly way. For our purposes though we will 
assume a very small museum that wants to use Drupal itself as a simple collection 
management system, which implies full create, read, update, and delete capabilities.

Bundles
In earlier versions of Drupal only nodes had the ability to have sub-types. In Drupal 
7, all entities have the ability to support sub-types. In Drupal parlance, these sub-
types are called "bundles".

A bundle is a sub-type of an entity that can be configured separately. 
Node types are an example of a bundle. Not all entity types have bundles. 
Users, for instance, do not have separate bundles.

For now, we'll hard-code two bundles, painting and sculpture. In a real use case we'd 
be likely to also include an administration system to create and manage bundles.

The Schema API
We will need a place to store our artwork data, so we need to create some new 
database tables. Rather than create them directly, though, we'll let Drupal do  
that for us using a part of the database layer called the Schema API.

•

•



Chapter 6

[ 153 ]

The Schema API allows database-agnostic definition and manipulation of 
the tables in Drupal's SQL database.

First, let's create a new module called "artwork". Start with the artwork.info and 
artwork.module files, as we've seen in previous chapters. However, we will also 
add another file, artwork.install. This file contains hooks that Drupal only ever 
uses when the module is being installed, removed, or updated so it only gets loaded 
at those times, saving considerable code on most page loads.

The most important hook in the artwork.install file is hook_schema(), which 
defines the database tables this module provides. We'll start with the following  
table definition, closely based on the node table:

function artwork_schema() {
  $schema['artwork'] = array(
    'description' => 'The base table for artworks.',
    'fields' => array(
      'aid' => array(
        'description' => 'The primary identifier for an artwork.',
        'type' => 'serial',
        'unsigned' => TRUE,
        'not null' => TRUE,
      ),
      'vid' => array(
        'description' => 
            'The current {artwork_revision}.vid version identifier.',
        'type' => 'int',
        'unsigned' => TRUE,
        'not null' => TRUE,
        'default' => 0,
      ),
      'type' => array(
        'description' => 'The {artwork_type} of this artwork.',
        'type' => 'varchar',
        'length' => 32,
        'not null' => TRUE,
        'default' => '',
      ),
      'title' => array(
        'description' => 'The title of this artwork.',
        'type' => 'varchar',
        'length' => 255,
        'not null' => TRUE,



Working with Content

[ 154 ]

        'default' => '',
      ),
      'created' => array(
        'description' => 
              'The Unix timestamp when the artwork was created.',
        'type' => 'int',
        'not null' => TRUE,
        'default' => 0,
      ),
      'changed' => array(
        'description' => 
      'The Unix timestamp when the artwork was most recently saved.',
        'type' => 'int',
        'not null' => TRUE,
        'default' => 0,
      ),

    ),
    'unique keys' => array(
      'aid_vid' => array('aid', 'vid'),
      'aid'     => array('aid')
      ),
    'primary key' => array('aid'),
  );

  return $schema;
}

That looks like a lot of code, but it's really just another big Drupal array. The keys of 
the $schema array are the names of tables to be created. Each table is then defined as 
another nested array that defines the fields, indices, and other data about the table. 
Most are self-explanatory.

See http://drupal.org/node/146843 for more information 
on the Schema API.

Note that we're using an integer field called aid for our primary key. We also store 
the bundle that an artwork belongs to in a column called type (just like nodes), 
and we have a "version ID" field called vid. All entities can support versioning in a 
similar fashion to nodes, so let's build that in from the start.

To store old revisions, we'll need another table as well. We'll call that table  
artwork_revision:

$schema['artwork_revision'] = array(
  'description' => 
     'Stores information about each saved version of an {artwork}.',



Chapter 6

[ 155 ]

  'fields' => array(
    'aid' => array(
      'description' => 'The {artwork} this version belongs to.',
      'type' => 'int',
      'unsigned' => TRUE,
      'not null' => TRUE,
      'default' => 0,
    ),
    'vid' => array(
      'description' => 'The primary identifier for this version.',
      'type' => 'serial',
      'unsigned' => TRUE,
      'not null' => TRUE,
    ),
    'title' => array(
      'description' => 'The title of this version.',
      'type' => 'varchar',
      'length' => 255,
      'not null' => TRUE,
      'default' => '',
    ),
    'created' => array(
      'description' => 
            'The Unix timestamp when the artwork was created.',
      'type' => 'int',
      'not null' => TRUE,
      'default' => 0,
    ),
  ),
  'indexes' => array(
    'aid' => array('aid'),
  ),
  'primary key' => array('vid'),
  'foreign keys' => array(
    'artwork' => array(
      'table' => 'artwork',
      'columns' => array(
        'aid' => 'aid',
      ),
    ),
  ),
);



Working with Content

[ 156 ]

Note here as well that we're explicitly declaring the aid field of the revision table 
to be a foreign key to the aid field of the artwork table. Although Drupal does not 
leverage foreign key information itself, other modules may do so. By convention, 
tables in Drupal should be singular nouns.

With these two tables defined in artwork_schema(), Drupal will automatically 
create the corresponding tables for us in the database when the module is first 
enabled. If our module is uninstalled completely, it will also take care of removing 
them for us.

Declaring our entity
There are two parts to telling Drupal about our new entity. The first is another 
definition hook called hook_entity_info(). This hook tells Drupal about the 
entity or entities we're providing, and also provides the Field UI system with the 
information it needs to allow us to attach fields to entities—more on that later. The 
second part is a "controller class", which is a PHP class that will be responsible for 
loading and, in our case, creating, saving, and deleting our artwork.

Drupal includes a controller class called DrupalDefaultEntityController that 
handles the most common case, which we will be emulating. It is extremely basic, 
however, and only handles loading of objects. Fortunately it is very easy to subclass 
the default controller and add our own functionality so that is precisely what we  
will do.

A controller is a loader object for an entity. All entity types must have 
a controller, but many can use the default. Different controllers may 
require additional keys on an entity definition.

The entity declaration
First let's tell Drupal about our entity type using hook_entity_info():

/**
 * Implements hook_entity_info().
 */
function artwork_entity_info() {
  $return['artwork'] = array(
    'label' => t('Artwork'),
    'controller class' => 'ArtworkController',
    'base table' => 'artwork',
    'revision table' => 'artwork_revision',
    'uri callback' => 'artwork_uri',



Chapter 6

[ 157 ]

    'fieldable' => TRUE,
    'entity keys' => array(
      'id' => 'aid',
      'revision' => 'vid',
      'bundle' => 'type',
      'label' => 'title',
     ),
    'bundle keys' => array(
      'bundle' => 'type',
    ),
    'static cache' => TRUE,
    'bundles' => array(),
    'view modes' => array(
      'full' => array(
        'label' => t('Full content'),
        'custom settings' => FALSE,
      ),
      'teaser' => array(
        'label' => t('Teaser'),
        'custom settings' => FALSE,
      ),
    ),
  );

  foreach (artwork_types() as $type => $info) {
    $return['artwork']['bundles'][$type] = array(
      'label' => $info->name,
      'admin' => array(
        'path' => 'admin/structure/artworks/manage/%artwork_type',
        'real path' => 'admin/structure/artworks/manage/' . 
                       str_replace('_', '-', $type),
        'bundle argument' => 4,
        'access arguments' => array('administer artworks'),
      ),
    );
  }

  return $return;
}



Working with Content

[ 158 ]

Once again, our primary means of communicating with Drupal is through large 
structured arrays that define all the information we need. In this case, our $return 
array has a single entry, artwork. The string artwork, as the top-most key, will serve 
as the "machine name" of this entity, which is how it will be referred to in code. The 
label key specifies what name should be shown to the user. The base table, revision 
table, and object keys entries tell the entity system about how our artwork is going to 
be stored, and are used by the default controller:

The main table where artworks are stored is called artwork, which has a 
primary key field (the "id" field) of aid.
Revisions will be stored in a table called artwork_revision, and the revision's 
unique ID is called vid.
Since we're supporting multiple bundles, we also tell the system what field 
will indicate to which bundle a given artwork belongs. In this case, we use 
the type field.
The human-readable name of a given artwork is stored in the title field.

The view modes key defines the different ways that our entity can be viewed. In this 
case we are defining a "full" version and a "teaser" version, just as nodes use, but 
we could define whatever view modes we wanted. Other modules are free to inject 
additional view modes via hook_entity_info_alter() as well. As usual, the key of 
the view modes array is the machine name of the view mode and the label property 
is the human-friendly name. The custom settings flag indicates whether or not the 
Field UI should allow field formatters to be configured separately for that view mode 
by default. It is easily changed via the UI.

We also define a uri_callback function, namely artwork_uri(). That allows us 
to abstract out the definition of the path within Drupal where this artwork will be 
accessed. Instead of hard coding a path, such as artwork/$aid, we call a callback 
function to generate it for us. That is most important when listing entities of different 
types, as we can simply call a single function, entity_uri($type, $entity), and 
get back the correct information to pass to the url() or l() functions. Our simple 
callback looks like this:

function artwork_uri($artwork) {
  return array(
    'path' => 'artwork/' . $artwork->aid,
  );
}

•

•

•

•



Chapter 6

[ 159 ]

The return value from the callback is an array with two keys: path, which is the 
Drupal path where the entity lives, and options, which defines other parameters to 
the url() and l() functions for things such as page anchors or GET query values. It 
is safe to omit the options key if it's not needed. Although our implementation is 
trivial, alternative implementations could, for instance, put all entities of a given  
type on a single page and have an anchor for each one.

When creating a link to an entity, always use entity_uri($type, 
$entity) to generate the parameters to pass to either the url() or 
l() functions.

Note that these array keys assume we are using the default controller for our entity. 
A "controller" is an object that handles the loading of the entity object for us. The 
controller is defined as a PHP class, and can be written to load our entity from 
anywhere, not just the local database. In our case, we are defining a custom controller 
called ArtworkController that will extend from DrupalDefaultEntityController, 
so it uses the same keys. DrupalDefaultEntityController is a generic controller 
for entities that are stored in the local database and behave, more or less, like nodes. If 
we were pulling data from an entirely different system we would implement our own 
controller from scratch that implements the DrupalEntityControllerInterface 
interface, and we might then need different keys defined in the entity hook.

Two other important keys are the cacheable and fieldable flags:

static cache indicates that the controller should keep a copy of an entity in 
memory after it's been requested so that if we try to load it a second time in 
the same page request we can just use that cached copy.
fieldable indicates to the Field API that we can attach fields to this entity, 
in the same fashion as nodes. That's very important, as it is one of the main 
reasons to define a new entity type in the first place.

The second part of the hook is a little more involved. It is primarily there to support 
the Field API, which will be covered in the next chapter. Since we have multiple 
bundles, we need to tell the Field API what bundles we have and at what paths to 
put the extra field management interfaces for our entity. To do that, we define, for 
each of our bundles, a label that is shown to the user and the menu information that 
the Field API will need to add itself into the menu. The keys here, under admin, are 
fairly self explanatory. path defines the path that should be used in hook_menu() 
for the Field UI's pages, while real path is the exact path that should be used when 
generating links within the admin interface.

•

•



Working with Content

[ 160 ]

Because our path contains a menu placeholder, we also need to specify which index 
it is in the bundle argument. Remember that menu arguments are 0-based, so index 
4 is the fifth part of the path, which here is %artwork_type. We also can control the 
permissions a user needs in order to access the field settings pages for this entity 
with the access callback and access arguments keys, which work the exact  
same way as in a normal menu item. If no access callback is specified then the  
user_access callback, which checks against user permissions, is the default.

Of course, since we've defined a new menu placeholder we need a callback for it. 
There is also the artwork_types() function, which doesn't exist yet. Let's create 
those now. They're really quite simple, but are a standard part of any entity.

function artwork_types() {
  $types = &drupal_static(__FUNCTION__);

  if (empty($types)) {
    $types['painting'] = (object)array(
      'type' => 'painting',
      'name' => t('Painting'),
      'description' => t('A picture made with paint.')
    );
    $types['sculpture'] = (object)array(
      'type' => 'sculpture',
      'name' => t('Sculpture'),
      'description' => t('A carving made out of stone or wood.')
    );
  }
  return $types;
}

function artwork_type_load($type) {
  $types = artwork_types();
  $type = str_replace('-', '_', $type);
  return isset($types[$type]) ? $types[$type] : FALSE;
}

The artwork_types() function returns a list of artwork type objects. Each artwork 
type object is simply a stdClass PHP object that contains whatever pertinent 
information there is about each bundle. There are two important attributes  
to the artwork type object:

It must be an object
There must be a property of that object that matches the bundle keys 
definition in hook_entity_info()

•

•



Chapter 6

[ 161 ]

In our case, we defined the bundle to use the type property so our artwork types 
have a property called type that contains the machine name of the bundle. A 
property called name for the human-friendly name of the bundle is a standard 
convention but not strictly required, as is a human-readable description property.

The artwork_type_load() function is necessary for the menu placeholder to work, 
but is also a very nice convenience function to have available as well. Generally it 
is good practice to provide clean, flexible APIs to any system we develop, even if 
we don't expect to use them. Odds are that we'll either find a use for them later or 
someone else will think of a use we never expected.

Note that we are replacing dashes in a type name with underscores. That's because, 
by convention, all Drupal paths use dashes in place of underscores but bundle names 
need to use underscores, not dashes. When we use a type name in a URL we will 
always use a dash, and so here we first fold the dash back to an underscore to make 
sure we find the correct artwork type.

There is one other important detail here, and that is the drupal_static() function. 
That function acts as a central collector for static PHP variables, that is, those that are 
not technically global but should persist between calls to a function. They are quite 
commonly used as a lightweight cache to avoid re-processing or refetching the same 
data within the same page request, but that can in some cases lead to weird side 
effects when the data being cached changes mid-request, such as when writing  
unit tests.

The drupal_static() function acts as a central collector for such static variables. 
By putting all such static variables in one place and giving the variable a name that 
matches our function (that's what the __FUNCTION__ PHP constant means), we allow 
systems that need to forcibly reset static caches without having a separate $reset 
parameter for every part of the system.

Use the drupal_static() function to cheaply cache data 
structures for one page request. Don't cache data that is too large 
and too cheap to regenerate, though, as it does use up memory.

The entity controller
In the entity info hook we declared that we were going to use our own controller 
class. That means we need to provide one. However, a controller class may not 
always be small, and if it's only rarely used we don't want to parse that code on all 
pages. Fortunately PHP provides a way to load class definitions on demand, and 
Drupal makes it very easy to expose classes to PHP's autoloader.



Working with Content

[ 162 ]

As a general rule, large, rarely used classes should be placed into a 
separate file while smaller or very frequently used classes should be 
left in the .module file to avoid the overhead of finding the class when 
needed. Additionally, classes that are typically used together can be 
placed into a single file so that we'll need to load only a single file.

Let's create a new file in our module called artwork.controller.inc. Next, add that 
file to the files[] array in the artwork.info file. In artwork.controller.inc, let's 
start with just the following code:

class ArtworkController extends DrupalDefaultEntityController {
}

Now when our module is enabled, Drupal will scan all files in the files[] array  
in artwork.info, find the ArtworkController class, and cache its location. Later 
on, when some code tries to create a new instance of ArtworkController it will 
lazy-load the artwork.controller.inc file, making the class available to be used.

Naturally the ArtworkController class needs to actually do something. We will add 
additional methods to it as we go. There is already a load() method, inherited from 
DrupalDefaultEntityController, as well as several others.

Most Drupal code prefers to work procedurally, however, even if the engine under 
the hood is object-oriented. Therefore, like the node module we will provide a set  
of utility API functions for us and other module developers to use.

function artwork_load($aid = NULL, $vid = NULL, $reset = FALSE) {
  $aids = (isset($aid) ? array($aid) : array());
  $conditions = (isset($vid) ? array('vid' => $vid) : array());
  $artwork = artwork_load_multiple($aids, $conditions, $reset);
  return $artwork ? reset($artwork) : FALSE;
}

function artwork_load_multiple($aids = array(), $conditions = array(), 
$reset = FALSE) {
  return entity_load('artwork', $aids, $conditions, $reset);
}

Note that we're actually passing all of the loading logic back to the entity_load() 
function, which in turn will create a new instance of the ArtworkController as 
needed and call the load() method on it. The load() method assumes that all 
operations are multi-load. In fact, the entity system assumes multi-object operations 
wherever possible. That makes loading multiple objects at the same time much 
cheaper as we can load them all at once, while loading a single object is the exact 
same operation. "One" is a special case of "many". We can now load one or a dozen 
artwork objects with equal ease.



Chapter 6

[ 163 ]

Most entity operations in Drupal assume multiple objects.

Now that we have defined our entity and can load it, what can we do with it? Right 
now not much, since we have no way to create or edit entities. We still need to define 
the rest of the entity life cycle and expose a UI for it.

Entity management
In practice, different entity types will frequently need a different workflow for 
creating, editing, and deleting entities. Some may not even be editable through 
the UI. To keep things simple for now, though, we'll stick with the familiar node 
workflow and replicate that, more or less.

Because there are several parts, we'll tackle them one at a time:

1.	 Create an administrative workflow for managing artwork types.
2.	 Create pages to add and edit artworks.
3.	 Create a page to view artworks.
4.	 Create a form for deleting artworks.

Managing artwork types
We'll start with a stub of an admin section for managing artwork types. Although 
we will not allow users to create new artwork types we still need to have at least a 
very minimal administrative section on which the Field system can hang its interface. 
We'll start with a fairly simple artwork_menu() hook:

function artwork_menu() {
  $items['admin/structure/artworks'] = array(
    'title' => 'Manage artworks',
    'description' => 'Manage artworks.',
    'page callback' => 'artwork_overview_types',
    'access arguments' => array('administer artworks'),
  );
  $items['admin/structure/artworks/manage/%artwork_type'] = array(
    'title' => 'View artwork type',
    'title callback' => 'artwork_type_page_title',
    'title arguments' => array(4),
    'page callback' => 'artwork_information',
    'page arguments' => array(4),



Working with Content

[ 164 ]

    'access arguments' => array('administer artworks'),
  );
  $items['admin/structure/artworks/manage/%artwork_type/view'] = 
array(
    'title' => 'View',
    'type' => MENU_DEFAULT_LOCAL_TASK,
  );

  return $items;
}

Once again, while Drupal's big arrays look like a lot of code it is all fairly 
straightforward. The first item sets up our artwork type landing page at admin/
structure/artworks (which deliberately parallels the admin/structure/content 
path for managing nodes). The second sets up a callback for viewing and editing 
each artwork type (bundle), although we won't do anything with it except show 
some static information. The third menu item creates a menu tab (or in Drupal 
parlance, "local task") called View, that is the default and will pass-through to the 
parent artwork-type-manage page.

The tab definition is important. Recall from the last section that our  
artwork_entity_info() function told the Field UI system that it should add its 
own administrative pages at admin/structure/artworks/manage/%artwork_type. 
When the Field UI module is enabled, therefore, it will add additional pages as 
tabs next to our View tab. If we don't declare our page as a tab, it will get lost when 
someone views the Field UI pages.

There are a few new functions we need here to support these pages, all of them  
very short.

function artwork_overview_types() {
  foreach (artwork_types() as $type => $info) {
    $type_url_str = str_replace('_', '-', $type);
    $label = t('View @type', array('@type' => $info->name));
    $items[] = l($label, 'admin/structure/artworks/manage/' .  
                 $type_url_str);
  }

  return theme('item_list', array('items' => $items));
}



Chapter 6

[ 165 ]

This callback simply gives us an unordered list of all of the artwork types we have 
available. Each one is presented as a link to the manage page for that type. Note that 
we are converting the artwork type to use dashes instead of underscores in the path. 
That is a Drupal standard that we will use as well.

function artwork_type_page_title($type) {
  return t('Manage @type', array('@type' => $type->name));
}

We want the title of each page to be a string based on the type that is passed in, so 
we need to specify a title callback. The title callback couldn't be simpler:

function artwork_information($artwork_type) {
  return $artwork_type->name . ': ' . $artwork_type->description;
}

The summary page for each artwork type is trivial as well, at least in our case.  
A more complex entity type would have various configuration options here in a 
form, much the way nodes do. In our case, however, we will just show the title  
and description of the artwork type.

Believe it or not, that's it. Because we're not allowing any other user configuration 
of artwork types ourselves, setting up that minimal skeleton is all we need to do. 
However, if the Field UI module is enabled we should see Manage fields and 
Manage display tabs when viewing each of those artwork types.

Go to the Painting page, then select Manage fields. Add a new single-line text field 
called Artist, just as you would for a node. Now go to Sculpture and add the now 
existing Artist field to that artwork type.

That's the biggest advantage of making a new data object an entity. All of the power 
of Fields we get for free that way. Take note that even fields that normally attach to 
node types are available to us. We can now build up the entire data model of our 
artworks without writing any additional code, using all of the Field types available 
to us either in core or in contributed modules.

Adding artworks
Now that we have our artwork types hooked up, we need to be able to create  
them. Again modeling on the way nodes work let's add the following new entries  
to our menu hook:

function artwork_menu() {
  $items['artwork/add'] = array(
    'title' => 'Add new artwork',
    'page callback' => 'artwork_add_page',



Working with Content

[ 166 ]

    'access arguments' => array('create artworks'),
    'weight' => 1,
    'menu_name' => 'management',
    'file' => 'artwork.pages.inc',
  );
  foreach (artwork_types() as $type) {
    $type_url_str = str_replace('_', '-', $type->type);
    $items['artwork/add/' . $type_url_str] = array(
      'title' => $type->name,
      'title callback' => 'check_plain',
      'page callback' => 'artwork_add',
      'page arguments' => array(2),
      'access arguments' => array('create artwork'),
      'description' => $type->description,
    );
  }
 // ...
  return $items;
}

The first menu item creates an index page of artwork types for us to be able to create 
artwork types. We then loop over all available artwork types and create a menu  
item for each, converting underscores in each artwork type into dashes. Each menu 
item's title is the name of the artwork type, but to be safe we run it through the 
check_plain() function. check_plain() will take whatever is specified in the title 
and escape any and all HTML in it, making it safe to use as the page title. That's 
always necessary when displaying a user-generated string as a page title to avoid 
both security risks and potentially broken pages.

The listing page is fairly simple, but does show a nice feature of the menu system. 
The following is an example:

function artwork_add_page() {
  $item = menu_get_item();
  $links = system_admin_menu_block($item);

  foreach ($links as $link) {
    $items[] = l($link['title'], $link['href'],  
                 $item['localized_options'])
                 . ': ' . filter_xss_admin($link['description']);
  }

  return theme('item_list', array('items' => $items));
}



Chapter 6

[ 167 ]

This page will simply generate a bulleted list of menu items that are immediate 
children of the current page being viewed. menu_get_item() returns the current 
menu item while system_admin_menu_block(), despite its name, is a useful general 
purpose function for getting the children of an arbitrary menu item.

There are two other points to note here:

First, the link takes the localized_options key of the menu item as its own 
options array. That way we allow the menu system to handle what attributes 
the link should have, any interaction with the translation system, and so on. 
Second, we run the description through filter_xss_admin(). The function 
will simply strip out HTML tags that are unsafe. The filter_xss() function 
lets us define an arbitrary list of allowed tags, while filter_xss_admin() is 
simply a wrapper that includes a fairly permissive set of allowed tags.

Adding new artwork
Now we need to provide a form to add our new artworks. We defined a menu 
callback named artwork_add earlier, so let's define that callback.

function artwork_add($type) {
  global $user;

  $types = artwork_types();
  $type = isset($type) ? str_replace('-', '_', $type) : NULL;
  if (empty($types[$type])) {
    return MENU_NOT_FOUND;
  }

  $artwork = entity_get_controller('artwork')->create($type);

  drupal_set_title(t('Create @name', array('@name' =>  
                      $types[$type]->name)), PASS_THROUGH);
  return drupal_get_form($type . '_artwork_form', $artwork);
}

As before, we clean up the artwork type (bundle) name and then if there is no such 
artwork type we return a 404 not found error page. Next we create a new, empty 
artwork object, set a page title, and then display a form.

•

•



Working with Content

[ 168 ]

There are a couple of moving parts here. First is the create method of the controller. 
The entity_get_controller() function creates a new instance of the controller 
class for artwork entities, which is the ArtworkController class we defined earlier. 
The create method is not part of the normal controller interface but is a really nice 
addition. It's quite simple:

  public function create($type = '') {
    return (object) array(
      'aid' => '',
      'type' => $type,
      'title' => '',
    );
  }

It's easier to define large data structures in PHP as arrays, so we'll do that and  
cast it back to an object to return it. We can now create a new artwork object  
from anywhere.

Next is the PASS_THROUGH constant we're passing as the second parameter to 
drupal_set_title(). Normally drupal_set_title will strip out HTML from the 
title to avoid security issues. Passing PASS_THROUGH as the second parameter tells the 
function to allow HTML in the string we're giving it because we've already checked 
to make sure it's safe.

Use the PASS_THROUGH flag with drupal_set_title() to allow 
HTML in the page title. Remember that means it's up to us to sanity 
check and filter the title to avoid cross-site-scripting attacks.

Finally there's the form. We're giving the form a dynamic name so that form_alter 
implementations may uniquely target a specific artwork type. How then do we 
match that form name with the form builder function that defines it? Drupal 
provides another optional hook for us called hook_forms() that lets us  
dynamically define forms and how they should behave.

function artwork_forms() {
  $forms = array();
  if ($types = artwork_types()) {
    foreach (array_keys($types) as $type) {
      $forms[$type . '_artwork_form']['callback'] = 'artwork_form';
    }
  }
  return $forms;
}



Chapter 6

[ 169 ]

This hook defines a new form on the fly for every artwork type we have, and 
declares that all of them should use the same callback function, artwork_form(). 
Now all we need is the artwork_form() function and all artwork forms will have 
the same processing.

function artwork_form($form, &$form_state, $artwork) {
  // Set the id to identify this as an artwork edit form.
  $form['#id'] = 'artwork-form';

  // Save the artwork for later, in case we need it.
  $form['#artwork'] = $artwork;
  $form_state['artwork'] = $artwork;

  // Common fields. We don't have many.
  $form['title'] = array(
    '#type' => 'textfield',
    '#title' => t('Title'),
    '#default_value' => $artwork->title,
    '#weight' => -5,
    '#required' => TRUE,
  );

  $form['revision'] = array(
    '#access' => user_access('administer artworks'),
    '#type' => 'checkbox',
    '#title' => t('Create new revision'),
    '#default_value' => 0,
  );

  // Add the buttons.
  $form['buttons'] = array();
  $form['buttons']['#weight'] = 100;
  $form['buttons']['submit'] = array(
    '#type' => 'submit',
    '#value' => t('Save'),
    '#weight' => 5,
    '#submit' => array('artwork_form_submit'),
  );
  if (!empty($artwork->aid)) {
    $form['buttons']['delete'] = array(
      '#access' => user_access('delete artworks'),
      '#type' => 'submit',
      '#value' => t('Delete'),
      '#weight' => 15,



Working with Content

[ 170 ]

      '#submit' => array('artwork_form_delete_submit'),
    );
  }

  $form['#validate'][] = 'artwork_form_validate';

  field_attach_form('artwork', $artwork, $form, $form_state);

  return $form;
}

Once again, a fair number of lines but all fairly simple. First we set a fake property 
on the form so that form_alter implementations may detect all artwork forms of 
any type and stick the artwork object itself into the form in case we need it later in 
validate or submit routines. We then add a form field for the title and a checkbox  
to indicate whether we should save a new revision or overwrite the existing revision. 
We then add not one but two buttons, one that is always available for the save 
operation and another for deleting an artwork if we're editing an existing artwork. 
More on that later.

The last line is very important. The field_attach_form() call is what passes our 
form off to the Field system so that any fields we've added to this artwork type can 
be added to the form. Think of it as a Field-specific form_alter operation. The form 
properties that the Field system adds are quite complex, but we don't have to worry 
about them. They just work.

Validation callback
Similar to the form, the validation callback passes most of its logic off to the  
Field system.

function artwork_form_validate($form, &$form_state) {
  $artwork = $form_state['artwork'];

  // Field validation.
  field_attach_form_validate('artwork', $artwork, $form, $form_state);
}

If we had any validation of our own we would include it here, but in this case any 
validation we'd do (checking for required fields) the Form API already does for us. 
All we need do is tell the Field system to do its own validation.



Chapter 6

[ 171 ]

Submit callback
The submit callback is a little more interesting but not by much:

function artwork_form_submit($form, &$form_state) {
  global $user;

  $artwork = &$form_state['artwork'];

  // Set the artwork's uid if it's being created at this time.
  if (empty($artwork->uid)) {
    $artwork->uid = $user->uid;
  }

  $artwork->title = $form_state['values']['title'];
  $artwork->revision = $form_state['values']['revision'];

  // Notify field widgets.
  field_attach_submit('artwork', $artwork, $form, $form_state);

  // Save the artwork.
  artwork_save($artwork);

  // Notify the user.
  drupal_set_message(t('Artwork saved.'));

  $form_state['redirect'] = 'artwork/' . $artwork->aid;
}

First we pull the old artwork object out of the $form_state variable. Next we set 
its user, if it's a new artwork, and populate it with the few values we have from the 
form. We've already confirmed that those values are valid in the validation hook. 
field_attach_submit(), much like its sibling functions, lets the Field system 
respond to the fact that a form was just submitted and do whatever it wants to  
do. Then we simply save the artwork.

It is important to note here that the submit callback is doing extremely little. It's just 
glue code between the form and the artwork_save() function, really. That's a good 
thing. It means that artwork operations, such as saving, are not dependent on the 
form system.

Never do serious processing in a form submit callback. The 
actual work of saving an entity and its data should happen in the 
entity's save routines. The form submit callback is just glue code.



Working with Content

[ 172 ]

Saving your artwork
What does artwork_save() look like, though? Like artwork_load() it's really just a 
thin wrapper:

function artwork_save($artwork) {
  return entity_get_controller('artwork')->save($artwork);
}

Once again, we let the controller class do the hard work. The save() method itself is 
actually broken into two parts, one for normal saving and one for revisions.

  public function save($artwork) {
    $transaction = db_transaction();

    try {
      global $user;

      // Determine if we will be inserting a new artwork.
      $artwork->is_new = empty($artwork->aid);

      // Set the timestamp fields.
      if (empty($artwork->created)) {
        $artwork->created = REQUEST_TIME;
      }
      $artwork->changed = REQUEST_TIME;

      $artwork->revision_timestamp = REQUEST_TIME;
      $update_artwork = TRUE;

      // Give modules the opportunity to prepare field data for  
      // saving.
      field_attach_presave('artwork', $artwork);

      if (!$artwork->is_new && !empty($artwork->revision) &&  
           $artwork->vid) {
        $artwork->old_vid = $artwork->vid;
        unset($artwork->vid);
      }

      // If this is a new artwork...
      if ($artwork->is_new) {
        // Save the new artwork.
        drupal_write_record('artwork', $artwork);



Chapter 6

[ 173 ]

        // Save the initial revision.
        $this->saveRevision($artwork, $user->uid);

        $op = 'insert';
      }
      else {
        // Save the updated artwork.
        drupal_write_record('artwork', $artwork, 'aid');

        if (!empty($artwork->revision)) {
          $this->saveRevision($artwork, $user->uid);
        }
        else {
          $this->saveRevision($artwork, $user->uid, TRUE);
          $update_artwork = FALSE;
        }

        $op = 'update';
      }

      // If the revision ID is new or updated, save it to the artwork.
      if ($update_artwork) {
        db_update('artwork')
          ->fields(array('vid' => $artwork->vid))
          ->condition('aid', $artwork->aid)
          ->execute();
      }

      // Save fields.
      $function = 'field_attach_' . $op;
      $function('artwork', $artwork);

      module_invoke_all('entity_' . $op, $artwork, 'artwork');

      // Clear internal properties.
      unset($artwork->is_new);

      // Ignore slave server temporarily to give time for the saved  
      // order to be propagated to the slave.
      db_ignore_slave();

      return $artwork;
    }



Working with Content

[ 174 ]

    catch (Exception $e) {
      $transaction->rollback();
      watchdog_exception('artwork', $e, NULL, WATCHDOG_ERROR);
      return FALSE;
    }
  }

Most of the save routine is self-explanatory, and much of it is specific to the properties 
we've declared on our entity. A few parts bear further discussion, however.

We're wrapping the entire process in a PHP try-catch block. That's because the 
save process could be arbitrarily complex, involving a number of queries, any of 
which could, potentially, break. We therefore start a database transaction with the 
db_transaction() function. Transactions allow multiple database queries to either 
all succeed or all fail together. Any queries that run, from anywhere, between the 
db_transaction() call and when the $transaction variable goes out of scope at 
the end of the function will be part of that transaction.

If any queries, anywhere, fail, the database will throw an Exception. (There are 
other reasons an Exception could be thrown, too, but that is the most common.) 
In that case, we roll back the entire transaction with the rollback() method. Any 
queries that had already run get undone, and the entire save process effectively does 
not happen. That keeps us from ending up with a half-saved artwork, which requires 
manually editing the database to clean up. We also log the exception using a special 
utility function that decodes useful information from the exception for us.

Note that transactions are not available if using MySQL's 
MyISAM database tables. In that case code will still function but 
any attempt to roll back a transaction will be ignored and the 
database will still be left in a potentially unstable state. For that 
reason, when running on MySQL Drupal defaults to InnoDB 
tables, which support transactions.

Once we're done saving the artwork, we also call db_ignore_slave(). If we're 
running a high-traffic site then we may have both a master database and one or more 
slave databases configured, something Drupal supports natively. However, there 
may be a latency before our artwork gets propagated from the master server to the 
slave server. We therefore tell Drupal that, for the current user only, it should skip 
the slave server for a few minutes so that the user that submitted the artwork will  
see it immediately, even if there is a brief delay for other users.



Chapter 6

[ 175 ]

Master/slave database configurations are an advanced topic that we 
won't cover in detail. However, Drupal transparently falls back to 
single-database behavior if no slave is defined so it's always good to 
plan ahead for supporting a master/slave configuration.

Once again there are multiple points where we call the Fields system to let it  
do its part with our entity, which again should be self-explanatory. We also call 
module_invoke_all() in order to allow other modules to interact with any entity 
when they are created or updated.

Handling revisions
The only other complex part of the process involves revision handling, which can be a 
bit hard to wrap our head around. Looking at the saveRevision() method may help:

  function saveRevision($artwork, $uid, $update = FALSE) {
    // Hold on to the artwork's original creator_uid but swap
    // in the revision's creator_uid for the momentary write.
    $temp_uid = $artwork->uid;
    $artwork->uid = $uid;

    if ($update) {
      drupal_write_record('artwork_revision', $artwork, 'vid');
    }
    else {
      drupal_write_record('artwork_revision', $artwork);
    }

    // Reset the order's creator_uid to the original value.
    $artwork->uid = $temp_uid;
  }

After we've saved the artwork to the artwork table, we also save it to the  
artwork_revision table. If we're creating a new revision, we'll save a new record to 
the table and drupal_write_record() will populate the vid property for us with 
the new version ID. Then, back in save(), we update the record in the artwork table 
to point to the new revision record. If we just overwrote the old revision record then 
that step is not necessary.

That's it! We can now create new artwork objects straight from the UI with a simple 
form, including whatever Fields we've decided to attach to our artworks. Not only 
that, but since we put the saving logic in the controller rather than in the form submit 
callback we can easily create new artworks programmatically; we need only create a 
new artwork object with the properties we want and call artwork_save().



Working with Content

[ 176 ]

Viewing artworks
The last line of our form submit handler redirected the user to the artwork/$aid 
page, presumably to view the artwork we just created. That would be great if there 
was a page there to display the artwork. Let's add that now.

First we need an appropriate menu item:

function artwork_menu() {
  $items['artwork/%artwork'] = array(
    'title callback' => 'artwork_page_title',
    'title arguments' => array(1),
    'page callback' => 'artwork_page_view',
    'page arguments' => array(1),
    'access arguments' => array('view artworks'),
    'type' => MENU_CALLBACK,
  );
  $items['artwork/%artwork/view'] = array(
    'title' => 'View',
    'type' => MENU_DEFAULT_LOCAL_TASK,
    'weight' => -10,
  );
  // ...
}

We are planning ahead for adding more tabs ("local tasks") later, but we definitely 
want the View tab to be the default. The menu item defines a title callback and 
page callback, both of which are reasonably straightforward.

function artwork_page_title($artwork) {
  return $artwork->title;
}
function artwork_page_view($artwork, $view_mode = 'full') {
  // Remove previously built content, if exists.
  $artwork->content = array();

  if ($view_mode == 'teaser') {
    $artwork->content['title'] = array(
      '#markup' => filter_xss($artwork->title),
      '#weight' => -5,
    );
  }

  // Build fields content.
  field_attach_prepare_view('artwork', 



Chapter 6

[ 177 ]

                            array($artwork->aid => $artwork),
                            $view_mode);
  entity_prepare_view('artwork', array($artwork->aid => $artwork));
  $artwork->content += field_attach_view('artwork', $artwork,
                                         $view_mode);

  return $artwork->content;
}

The title callback needs no explanation. The artwork_page_view() function 
again doesn't do much beyond shepherd data off to the Field API. In particular, note 
that it does take a $view_mode parameter, which should be one of the view modes 
we defined back in the artwork_entity_info(). Even if we don't want to leverage 
it ourselves the Field system will require it.

If we're in "teaser" mode, we want to inject the title of the artwork into the viewable 
result. If not, we have no data to display other than the attached fields as the title is 
already being displayed as the page title. The field code is a fairly boilerplate three 
lines of code that produce a renderable array, which we simply return.

That wasn't so hard, was it?

Editing an artwork
Now that we have artworks we can see, we want to be able to go back and edit them. 
Fortunately most of the work we already did as part of the creation process. In fact, 
we're going to reuse the same form and same save() method of the controller. All 
we really need to add is the page callback to use it.

function artwork_menu() {
  $items['artwork/%artwork/edit'] = array(
    'title' => 'Edit',
    'page callback' => 'artwork_page_edit',
    'page arguments' => array(1),
    'access arguments' => array('update artworks'),
    'weight' => 0,
    'type' => MENU_LOCAL_TASK,
    'context' => MENU_CONTEXT_PAGE | MENU_CONTEXT_INLINE,
  );

  // ...
}
function artwork_page_edit($artwork) {
  $types = artwork_types();



Working with Content

[ 178 ]

  drupal_set_title(t('<em>Edit @type</em> @title', array('@type' =>  
  $types[$artwork->type]->name, '@title' => $artwork->title)),  
  PASS_THROUGH);

  return drupal_get_form($artwork->type . '_artwork_form', $artwork);
}

The edit page callback is simple enough that we could almost get away with not 
having it at all and just calling the form directly from the menu system. However, 
since the form name is dynamic based on the artwork type we have to have a  
small function here. Note too that we're setting a dynamic title and again allowing 
HTML through.

That's it! The form we built earlier handles both new and existing artworks just the 
same, so editing an artwork, including saving new revisions, is done.

Deleting an artwork
The final missing piece is the ability to delete an artwork. Naturally we don't want to 
let users do so on a whim, so we'll give them a confirmation form.

Recall earlier that in our artwork edit form we had a Delete button with its own 
submit handler. First we need to define that submit handler:

function artwork_form_delete_submit($form, &$form_state) {
  $destination = array();
  if (isset($_GET['destination'])) {
    $destination = drupal_get_destination();
    unset($_GET['destination']);
  }
  $artwork = $form['#artwork'];
  $form_state['redirect'] = array('artwork/' . $artwork->aid . '/
delete', array('query' => $destination));
}

All this submit handler does is redirect the user to artwork/$aid/delete. The rest 
of the code there is simply to handle Drupal's page redirect system, which we can 
largely copy and paste. At that path we'll put a confirmation form so that users have 
to confirm they really mean to delete an artwork:

function artwork_menu() {
  $items['artwork/%artwork/delete'] = array(
    'title' => 'Delete',
    'page callback' => 'drupal_get_form',
    'page arguments' => array('artwork_delete_confirm', 1),



Chapter 6

[ 179 ]

    'access arguments' => array('delete artworks'),
    'weight' => 1,
    'type' => MENU_LOCAL_TASK,
    'context' => MENU_CONTEXT_INLINE,
  );

  // ...
}

This menu item calls drupal_get_form directly, specifically loading the artwork_
delete_confirm form created by the function of the same name:

function artwork_delete_confirm($form, &$form_state, $artwork) {
  $form['#artwork'] = $artwork;
  // Always provide entity id in the same form key as in the entity 
edit form.
  $form['aid'] = array('#type' => 'value', '#value' => $artwork->aid);
  return confirm_form($form,
    t('Are you sure you want to delete %title?', array('%title' => 
$artwork->title)),
    'artwork/' . $artwork->aid,
    t('This action cannot be undone.'),
    t('Delete'),
    t('Cancel')
  );
}

Rather than build a complete form, we will simply pass data on to a utility function 
of the Form API called confirm_form(). confirm_form() takes a number of 
parameters: a form array, a question to ask, a path to redirect to if the user changes 
his mind, a label for the Yes I mean it button, and a label for the No, I changed my 
mind link.

The only form information we need is the artwork to be deleted. Neither will be 
displayed but we need to pass them along to the submit callback. The rest of the 
parameters are simply text to display to the user.

If the user submits the confirmation form, then we know he really means it. The 
submit callback handles deleting the artwork:

function artwork_delete_confirm_submit($form, &$form_state) {
  if ($form_state['values']['confirm']) {
    $artwork = artwork_load($form_state['values']['aid']);
    artwork_delete($form_state['values']['aid']);



Working with Content

[ 180 ]

    watchdog('artwork', '@type: deleted %title.', array('@type' => 
$artwork->type, '%title' => $artwork->title));

    $types = artwork_types();
    drupal_set_message(t('@type %title has been deleted.', array( 
                         '@type' => $types[$artwork->type]->name,  
                         '%title' => $artwork->title)));
  }

  $form_state['redirect'] = '<front>';
}

Just to be certain, we first confirm that the $form_state['values']['confirm'] 
property is set to TRUE. If so, the first thing we need to do is load the artwork. That's 
not really necessary for the deletion operation but we need the artwork object for 
displaying messages to the user and recording log messages. Then all we do is call 
artwork_delete().

It should be no surprise that artwork_delete() is another simple wrapper:

function artwork_delete($aid) {
  return artwork_delete_multiple(array($aid));
}
function artwork_delete_multiple($aids) {
  return entity_get_controller('artwork')->delete($aids);
}

Like loading, deletion is a multi-value operation. We can delete an arbitrary number 
of artworks in one operation, and one is just a special case of many. The heavy lifting 
is again handed off to the controller:

  public function delete($aids) {
    if (!empty($aids)) {
      $artworks = $this->load($aids, array());
      $transaction = db_transaction();

      try {
        db_delete('artwork')
          ->condition('aid', $aids, 'IN')
          ->execute();

        db_delete('artwork_revision')
          ->condition('aid', $aids, 'IN')
          ->execute();



Chapter 6

[ 181 ]

        foreach ($artworks as $artwork_id => $artwork) {
          field_attach_delete('artwork', $artwork);
        }

        db_ignore_slave();
      }
      catch (Exception $e) {
        $transaction->rollback();
        watchdog_exception('artwork', $e, NULL, WATCHDOG_ERROR);
        return FALSE;
      }

      module_invoke_all('entity_delete', $artwork, 'artwork');

      // Clear the page and block and artwork caches.
      cache_clear_all();
      $this->resetCache();
    }

    return TRUE;
  }

Once again we use a transaction to ensure that the entire deletion process either 
succeeds or fails. We first load the artwork objects that we are about to delete, 
as other operations will require them. We then handle our own deletion logic: 
Removing the appropriate records from the artwork and artwork_revision tables. We 
then call field_attach_delete() to let the Field system remove any field data that 
was associated with those artworks, and finally disable the slave server as before.

There's one other task to take care of; we need to flush the cache. By default Drupal 
caches most page requests for performance. If we've deleted an artwork, however, 
we need to remove that page from the cache. There may be many other pages 
affected by that deletion, however, so we simply clear the entire page cache with 
cache_clear_all(). It will get rebuilt as needed. We also clear the static cache 
of loaded artwork objects that the controller maintains so that if later in this same 
request someone tries to load the artwork we just deleted they get an error rather 
than a ghost object.

And we're done!



Working with Content

[ 182 ]

Summary
This has been quite a chapter. Not only have we learned how to create our own 
entities in Drupal, we have expanded our knowledge of many of Drupal's  
key systems.

We've seen how to define new entities and encapsulate their loading and 
saving routines into a controller class.
We've seen how to integrate our entity with the Field API, providing  
site administrators with enormous flexibility and power to build custom  
data models.
We've learned how to define new tables in Drupal's database in a  
database-agnostic fashion.
We've learned about database transactions, a simple way to ensure that  
a complex database operation succeeds completely or fails completely  
to avoid data corruption.
We've learned about how to avoid stale data issues when using  
master/slave replication.
We've seen how to display confirmation forms to users to ensure they didn't 
click a button by accident.
We've learned how to have dynamically named forms which are built using 
the same process.
We've seen how to leverage Drupal's autoloading capability for classes  
to help keep code size down.

As noted at the start of the chapter, in many cases a custom entity will not need the 
full life cycle of creation, editing, and deletion.  Some may not even interact with 
Drupal's local database at all, relying on a load() method that calls out to a ReST 
service or SOAP server. We may need to define a complex set of permission controls 
for our custom entity, or in some cases there may not even be a way for users to view 
an entity directly.

By looking at a complete example, however, we have got a feel for most of the pieces 
we could implement if we needed to. Since our artwork example closely parallels the 
node entity type, although in a simplified form, it helps to provide a context for how 
the all-important node system works in Drupal.

•

•

•

•

•

•

•

•



Creating New Fields
In the last chapter we saw how to define new entities. The main advantage of 
defining our content as an entity, of course, was to make it accessible to the Field 
API. In this chapter, we will look at how fields work and how to define new fields  
to attach to either our own entities or to those already defined, such as nodes.

Along the way we'll cover:

What Field API is and what it does
How to use magic callbacks
Using fields to store data
Using widgets to hook fields into the Form API
Using formatters to control the display of fields

When we're done, you should have an understanding of how all the key pieces of 
Drupal's main data handling system fit together and how to leverage them best.

Our goal: a "dimensions" field
In the last chapter, we created a new type of entity called Artwork. As a fieldable 
entity, we can attach any field we want to it. Sometimes though, we'll still need to 
create our own field types. That may happen if we want to treat a given piece of 
information atomically rather than building it up out of smaller parts. There are 
many reasons why that could be the case. They are as follows:

1.	 We want to conceptually treat that piece of data as a single chunk with  
its own meaning rather than as a series of chunks that together we know  
has meaning.

2.	 We have complex data but want to have multiple instances of that data on a 
single entity.

•

•

•

•

•



Creating New Fields

[ 184 ]

3.	 We want to present a unified custom interface to users while editing that 
data, especially if it is multi-value.

4.	 We want to display the data to the user in a custom format.

All of these are reasons why we may want to write our own field code.

In our case, we are dealing with artworks. Artworks have dimensions, either height 
and width, or height, width, and depth. Although we certainly could just add three 
numeric fields to our artwork bundles and call it a day, that is not very attractive 
either for the content editor or for site viewers. It gets even uglier if we want to allow 
multi-value fields; say if a given artwork is a collection of small statues or a series of 
similar paintings.

We will therefore define a new type of field to store dimensions, either height and 
width, or height, width, and depth. Although in our case we are talking about works 
of art, the field itself would apply just as well to cars, buildings, animals, or any other 
content that represents an object that takes up space. A good field type is generic 
enough to fit many different situations.

How Field API works
As hinted above, there are several different complementary parts to defining a field:

Field type: this is strictly speaking, just the content definition. It defines the 
name of the field and what its inner data structure is, but not how to save it 
or how to display it.
Field: this is a particular configuration of a field type.
Field instance: this is the combination of a particular field with a bundle or 
subclass of an entity type
Widget: this is a form element that exposes the field to a content editor. It 
could use simple text fields or be something as complex as an interactive 
Flash-based tool.
Formatter: this is a piece of code that formats a field for display on screen. 
Typically it just wraps Drupal's theme system to do so.

Note that nowhere in any of the parts mentioned do we define how or where the 
data gets stored. That is handled by a field storage engine, which can be configured 
separately per field. By default all fields use a common storage engine that saves 
fields to Drupal's database. That's good enough for our needs, so we won't go into 
field storage engines in depth.

•

•

•

•

•



Chapter 7

[ 185 ]

Although an advanced topic, pluggable field storage is one of 
the major new features of the Field API and is another option for 
handling remote data sources in Drupal.

Creating our new field type
Field types are defined by modules, so let's start by creating a new module called 
dimfield.module. Its info file is as follows:

name = Dimensions field
description = A Field offering height, width, and depth
package = Drupal 7 Development
core = 7.x
files[] = dimfield.module

Declaring the field
Now in dimfield.module, we need to implement hook_field_info(), which is 
how we tell Drupal about our new field type.

function dimfield_field_info() {
  return array(
    'dimensions' => array(
      'label' => t('Dimensions'),
      'description' => t(
                 'This field stores a height and width, and depth.'),
      'settings' => array('num_dimensions' => 2),
      'instance_settings' => array(
        'max_height' => 0,
        'max_width' => 0,
        'max_depth' => 0,
      ),
      'default_widget' => 'dimfield_combined',
      'default_formatter' => 'dimfield_default',
    ),
  );
}



Creating New Fields

[ 186 ]

Like most "info hooks", this function returns a large definition array, defining one or 
more fields. Also as we would expect, there is a corresponding hook_field_info_
alter() hook. In our case, we just have the one called dimensions. Let's look at each 
property in turn:

label and description specify the human-readable name and explanation 
of this field.
settings defines an array of configuration options for the field and their 
default values. These settings are fixed and after we create an instance of a 
field cannot be changed, so use with caution. Generally you only want field 
settings if changing the setting would affect how data gets saved.
instance_settings is the same as the settings array, except that it can be 
changed after a field has been created. That makes it generally preferred over 
field-level settings.
default_widget and default_formatter specify what widget and 
formatter Drupal should use for a given field before the user specifies one. 
Like fields, widgets and formatters have unique string names. We'll talk 
about how to write those later in this chapter.

The above code tells Drupal that there is a new field type called dimensions defined 
by our dimfield module, and gives a little metadata about it. However, Drupal still 
needs to know how that field is put together. For that, we implement a couple of 
other hooks.

Defining the field structure
Actually, no, we don't. Although called hooks in the Drupal documentation, these 
functions are pseudo-hooks: magically named module callbacks that are called 
individually by Drupal rather than together with that hook as used by all modules. 
Since our module is named dimfield, the supporting code for all of the field types 
we define in the dimfield module will live together in the same magic callback. For 
that reason, it's generally a good idea to not define too many field types in a single 
module as the code may get unwieldy. We also use a different name for the module 
and for the field type to help keep track of when we need to use which.

A magic module callback, or pseudo-hook, looks like a hook, but 
is called individually rather than alongside implementations from 
all other active modules.

•

•

•

•



Chapter 7

[ 187 ]

The most important magic callback for a field type is the schema callback, its 
definition can be seen in the following example:

function dimfield_field_schema($field) {
  if ($field['type'] == 'dimensions') {
    $schema['columns']['height'] = array(
      'type' => 'int',
      'not null' => FALSE,
    );
    $schema['columns']['width'] = array(
      'type' => 'int',
      'not null' => FALSE,
    );

    $schema['indexes'] = array(
      'height' => array('height'),
      'width' => array('width'),
    );

    if ($field['settings']['num_dimensions'] == 3) {
        $schema['columns']['depth'] = array(
          'type' => 'int',
          'not null' => FALSE,
        );
        $schema['indexes']['depth'] = array('depth');
    }

    $schema['columns']['units'] = array(
      'type' => 'varchar',
      'length' => 10,
      'not null' => FALSE,
    );

    return $schema;
  }
}

As we would expect from a name like hook_field_schema(), its return value is a 
Drupal schema array. Although fields will not always be saved in an SQL database, 
they usually are, and it's a convenient syntax to reuse. Note that in this case, we 
define two database columns, for height and width, and possibly a third for depth  
if our field is configured to have three dimensions. (We will skip over supporting 
four or five dimensions for now as it is an edge case.) The difference in the data 
structure is the reason the number of dimensions are a field setting rather than a  
field instance setting.



Creating New Fields

[ 188 ]

Since measurements of length do not really make sense without a unit, we will also 
record what unit the dimensions are in, such as inches or meters. To keep things 
simple we will only save integers, although in practice we would want to support 
float values. Also note that the whole function is wrapped in an if() statement to 
check for the field type. If we were defining multiple field types in this module, they 
would define their schema using the same function and we'd have to differentiate 
between them based on the value of $field['type'].

Defining empty
The second magic callback we need is to determine if a given field has an empty 
value. While that may seem like a simple question, it is actually dependent on our 
particular application.

Consider this: Is a dimension field empty if it has no height but only has a width, or 
only if both values are empty? Drupal doesn't know which we mean, so we need to 
tell it.

function dimfield_field_is_empty($item, $field) {
  if ($field['type'] == 'dimensions') {
    if (empty($item['height']) && empty($item['width']) &&  
       ($field['settings']['num_dimensions'] == 2 ||  
        empty($item['depth']))) 
    {
      return TRUE;
    }
  }
  return FALSE;
}

In the preceding snippet, we define empty to mean that all dimensions in use are an 
empty value, which PHP defines to include an empty string or 0. Again note that we 
are checking against the specific field type since we could add another field type to 
this module later.

Field settings
Although not absolutely required, we also need a configuration form for the field 
settings. Most fields will be configured through Drupal's web interface, so we need a 
form to allow users to set the available options. That's another magic callback. Let's 
look at an example:

function dimfield_field_settings_form($field, $instance, $has_data) {
  if ($field['type'] == 'dimensions') {
    $settings = $field['settings'];
    $form['num_dimensions'] = array(



Chapter 7

[ 189 ]

      '#type' => 'select',
      '#title' => t('How many dimensions'),
      '#options' => array(
        2 => t('Height and width'),
        3 => t('Height, width, and depth'),
      ),
      '#default_value' => $settings['num_dimensions'],
      '#required' => FALSE,
      '#description' => t(
           'Is this for a 2-dimensional or 3-dimensional object?'),
    );
    return $form;
  }
}

We only have a single form element here, that is, a select box that lets the user select 
whether we're dealing with a 2-dimensional or 3-dimensional object. It is this value 
that will determine the structure of the field itself, as defined in the schema callback.

Field validation
Although there are a couple of other callbacks we could implement, there's only one 
that we will cover for now, as it is rather important, namely, validation.

function dimfield_field_validate($obj_type, $object, $field,
                                 $instance, $langcode, &$items,
                                 &$errors) {
  if ($field['type'] == 'dimensions')'' {
    $columns = array(
     'height' => 'max_height',
     'width' => 'max_width',
    );
    if ($field['settings']['num_dimensions'] == 3) {
      $columns['depth'] = 'max_depth';
    }
    foreach ($items as $delta => $item) {
      foreach ($columns as $column => $max_key) {
        if ($instance['settings'][$max_key] &&
            !empty($item[$column]) &&
            $item[$column] > $instance['settings'][$max_key]) {
          $errors[$field['field_name']][$delta][] = array(
            'error' => 'dimfield_' . $max_key,
            'message' => t(
                 '%name: The %column may not be larger than %max.',
                       array('%column' => $column,
                          '%name' => $instance['label'],



Creating New Fields

[ 190 ]

                          '%max' => $instance['settings'][$max_key],
                          ''x)
                  ),
          );
        }
      }
    }
  }
}

Just as all fields can be validated individually, so can all form elements. However, 
recall that fields can be saved from anywhere in code. We may not be using a 
form at all. We therefore must validate the field data itself, before we save it to the 
database. In this case, we're checking to make sure that if the dimension has a value, 
and if a maximum was set for it, it is within that maximum limit. If it's not, then 
we set an error in the $errors array, which is passed in by reference. That error 
consists of, naturally, an array of possible errors. It is up to the calling code to decide 
how to handle that error condition. It could show a message on screen if the error 
happens from a user form, or could send an invalid message object back over an 
SOAP connection if the field (and the entity it's attached to) is being saved by code 
triggered by a remote server.

For more extensive information on each of the parameters to the 
Field API callback functions, see the examples in the field.api.
php file in the field module.

Another important point to note here is that field is passed an array of items, not an 
individual item. From a code perspective, fields in Drupal are always multi-value. 
Even if there is only one value, even if the field is configured to only allow one value, 
it is still multi-value as far as our code is concerned. "One" is simply a special case of 
"many". That actually greatly simplifies most of our logic, as we don't need to handle 
two different possible cases. We can simply iterate with a foreach() loop over our 
data, and we will handle one or a hundred values equally well.

Remember that fields in Drupal are always a multi-value array 
in code. That array may have only one entry, but it can still be 
treated as an arbitrarily large number of values.

Again, notice that nowhere in the field type definition or supporting code do we 
actually save data. In fact, there's not a single SQL query. We are simply describing 
the data. Saving the data itself, and deciding where to save it, is the responsibility 
of the core system. That allows a great deal of flexibility, as our dimension field can 
now be used to store data in a local SQL database or a remote SOAP server without 
any code changes on our part.



Chapter 7

[ 191 ]

Exposing fields to the Form API with 
widgets
Although fields can be stored anywhere (or at least anywhere for which we write 
a storage engine) and accessed in a variety of ways, by far the most common user 
workflow is to create and edit an entity containing fields using a form embedded in 
a web page. In Drupal, all forms shown to the user are controlled by the Form API, 
introduced in Chapter 5. The way the field system exposes itself to the Form API is 
through widgets.

Widgets are simply Form API fragments that can get built into a larger form by 
Drupal. They can be very simple or very complex, depending on how we want 
to present information to the user. In fact, some of the greatest powers of widgets 
comes from the fact that the form elements the widget exposes do not have to map 
to the storage of the field type itself at all. Imagine, for example, a field that stored 
geographic points. While we could simply offer the user a series of text fields to enter 
X and Y values, it would be much nicer if we could offer them an interactive map 
to click on. The coordinate data would then get mapped back into X and Y values 
before it's stored, without the field itself being any the wiser. With widgets, we can 
do exactly that.

Declaring a widget
As with field types, widgets start with an info hook:

function dimfield_field_widget_info() {
  return array(
    'dimfield_simple' => array(
      'label' => t('Separate text fields'),
      'description' => t(
               'Allow the user to enter each dimension separately.'),
      'field types' => array('dimensions'),
      'behaviors' => array(
        'multiple values' => FIELD_BEHAVIOR_DEFAULT,
        'default value' => FIELD_BEHAVIOR_DEFAULT,
      ),
    ),
    'dimfield_combined' => array(
      'label' => t('Combined text field'),
      'description' => t(
                'Allow the user to enter all dimensions together.'),
      'field types' => array('dimensions'),
      'settings' => array('size' => 10),



Creating New Fields

[ 192 ]

      'behaviors' => array(
        'multiple values' => FIELD_BEHAVIOR_DEFAULT,
        'default value' => FIELD_BEHAVIOR_DEFAULT,
      ),
    ),
  );
}

In the preceding snippet, we are defining two widgets rather than just one. The first 
is a simple widget, consisting of simple text fields, one for each dimension. In the 
second, we offer only a single text field into which the user will enter all two or  
three dimensions in H×W×D format.

Both widgets explicitly specify the field types that they will work on. Although 
we are defining these widgets in the same module as the field type, that doesn't 
necessarily imply a relationship between them. In fact, any module may define 
widgets that work with any field type. The widget just needs to know how that field 
type wants its data. The second widget also includes a settings array, which allows 
us to configure the widget per-instance.

Also note the behaviors property. By default, widgets will handle only a single  
field value and Drupal itself will offer a dynamic way to add additional values  
from within the form. However, we can also tell Drupal to let our widget handle 
multi-value fields in case, for example, we want to offer a clickable map for  
multi-value coordinates we discussed earlier.

Simple widget forms
Let's look at the simple widget first, and then come back and look at the more 
complex one. The only callback we must define for a widget is its form callback, 
which defines the form fields that make up the widget. Let's look at an example:

function dimfield_field_widget_form(&$form, &$form_state, $field,
                                    $instance, $langcode, $items,
                                    $delta, $element) {
  $base = $element;

  if ($instance['widget']['type'] == 'dimfield_simple') {
    $element['height'] = array(
      '#type' => 'textfield',
      '#title' => t('Height'),
      '#default_value' => isset($items[$delta]['height']) ?
                          $items[$delta]['height'] : NULL,
       ) + $base;



Chapter 7

[ 193 ]

    $element['width'] = array(
      '#type' => 'textfield',
      '#title' => t('Width'),
      '#default_value' => isset($items[$delta]['width']) ?
                          $items[$delta]['width'] : NULL,
      ) + $base;

    if ($field['settings']['num_dimensions'] == 3) {
      $element['depth'] = array(
        '#type' => 'textfield',
        '#title' => t('Depth'),
        '#default_value' => isset($items[$delta]['depth']) ?
                            $items[$delta]['depth'] : NULL,
        ) + $base;
    }

    $element['units'] = array(
      '#type' => 'select',
      '#title' => t('Units'),
      '#default_value' => isset($items[$delta]['units']) ?
                          $items[$delta]['units'] : NULL,
      '#options' => dimfield_units(),
      );
  }

  return $element;
}

Once again, notice that we're checking for which widget we are using in this 
callback, since both widgets will use the same callback. Our parameters include 
the form that this widget will be added to and its $form_state. Although they are 
passed by reference, we will not actually be modifying them directly (most of the 
time). Instead, we will return an $element Form API fragment that Drupal will 
insert into the form in the correct place. The $element that is passed in contains basic 
information about the widget itself, which we will store in our own variable to pass 
forward. The Form API will ignore properties it doesn't recognize, but that data will 
be available to us later.



Creating New Fields

[ 194 ]

In this simple case, all we're doing is creating two or three form elements for the 
dimensions, one for each dimension, and a select box to set the units. The available 
units are provided by a simple utility function that we also write:

function dimfield_units($unit = NULL) {
  static $units;

  if (empty($units)) {
    $units = array(
      'inches' => t('Inches'),
      'feet' => t('Feet'),
      'meters' => t('Meters'),
    );
  }

  if ($unit) {
    return isset($units[$unit]) ? $units[$unit] : '';
  }

  return $units;
}

That little utility function lets us get a consistent list of units we support anywhere 
we need it, plus it provides an easy mapping from the "internal name" of a unit to a 
translated human-friendly name.

It is important to note that the form elements we're creating are named exactly the 
same as the columns of the dimensions field. Drupal needs the "processed form" value 
to have the exact same "form element" names as the field columns so that it can save 
them properly. What makes this a simple widget is that the form maps one-to-one to 
the field definition, so we don't need to do any extra processing. At this point, we are 
in essence done. Users will be able to select our widget, Drupal will handle the multi-
value logic for us, and save the data to the field, all without further interaction from us.

Complex widgets
Let's now look at the more complex widget. In this case, we will show all dimensions 
together in a single text field so that the user need only fill in a single field.

First off, because our more complex widget has settings that we need to implement, 
we use the widget_settings_form callback, given as follows:

function dimfield_field_widget_settings_form($field, $instance) {
  $form = array();

  $widget = $instance['widget'];
  $settings = $widget['settings'];



Chapter 7

[ 195 ]

  if ($widget['type'] == 'dimfield_combined') {
    $form['size'] = array(
      '#type' => 'textfield',
      '#title' => t('Size of textfield'),
      '#default_value' => $settings['size'],
      '#required' => TRUE,
      '#element_validate' =>
                  array('_element_validate_integer_positive'),
    );
  }

  return $form;
}

As with all of our other callbacks, we check the widget type and then return a form 
fragment for the field we want. Note that the textfield is named the same as the 
setting property we defined in dimfield_field_widget_info(), which is how 
Drupal knows which setting is which. We also are leveraging the Form API's ability 
to provide element-specific validators. In this case, we are using a validation callback 
that Drupal provides. It will throw a validation error if the user specifies anything 
other than a positive integer. (A widget size of -7.4 would not make much sense, 
would it?)

Now, we can expand our field_widget_form callback to include our new widget.

function dimfield_field_widget_form(&$form, &$form_state, $field,
                                    $instance, $langcode, $items,
                                    $delta, $element) {
  $base = $element;

  if ($instance['widget']['type'] == 'dimfield_simple') {
    // ...
  }
  elseif ($instance['widget']['type'] == 'dimfield_combined') {
    $element['#element_validate'] = array(
                                    '_dimfield_combined_validate');

    $default = NULL;
    if (isset($items[$delta])) {
      $item = $items[$delta];
      if (isset($item['height'], $item['width'])) {
        $default = $item['height'] . 'x' . $item['width'];
        if ($field['settings']['num_dimensions'] == 3) {
          $default .= 'x' . $item['depth'];
        }



Creating New Fields

[ 196 ]

      }
    }

    $element['dimfield_combined_wrapper']['#theme'] =
                                      'dimfield_combined_wrapper';

    $element['dimfield_combined_wrapper']['height_width_depth'] =
      array('#type' => 'textfield',
            '#default_value' => $default,
            '#size' => $instance['widget']['settings']['size'],
            ) + $base;

    $element['dimfield_combined_wrapper']['units'] = array(
      '#type' => 'select',
      '#title' => t('Units'),
      '#default_value' => isset($items[$delta]['units']) ?
                          $items[$delta]['units'] : NULL,
      '#options' => dimfield_units(),
    );
  }

  return $element;
}

In the first block of code, we assemble our default value for the form element out of 
the values available in the field. Since our widget is only handling a single instance, 
we have to check for just this one delta to see if we have a value defined. If so, we 
concatenate the height, width, and potential depth together with an × between them.

Then we set up our two form elements. One is our combined height, width, and 
depth text field and the other is the units, as we've seen before. The most important 
part, however, is that very first line:

$element['#element_validate'] = array('_dimfield_combined_validate');

Just as we specified an existing validation callback for a text field a moment ago, this 
time we will specify a custom validation callback. However, we won't be using it just 
for validation. Rather, we will be using it to modify the submitted form values. Let's 
have a look at that function given here:

function _dimfield_combined_validate($element, &$form_state) {
  // This function is also called when submitting the field
  // configuration form. If so, skip validation as it
  // won't work anyway.
  if ($form_state['complete form']['#form_id'] ==



Chapter 7

[ 197 ]

                             'field_ui_field_edit_form') {
    return;
  }

  $values = $form_state['values'];
  $language = $values['language'];
  $field_name = $element['#field_name'];

  $num_dimensions = 2;
  if (array_search('depth', $element['#columns'])) {
    $num_dimensions = 3;
  }

  foreach ($values[$field_name][$language] as $delta => $item) {
    if (substr_count($item['dimfield_combined_wrapper']['height_width_
depth'], 'x') == $num_dimensions - 1) {
      if ($num_dimensions == 2) {
        list($height, $width) = explode('x', $item['dimfield_combined_
wrapper']['height_width_depth']);
        $new_values = array(
          'height' => trim($height),
          'width' => trim($width),
          'units' => $item['dimfield_combined_wrapper']['units'],
        );
      }
      elseif ($num_dimensions == 3) {
        list($height, $width, $depth) = explode('x',
        $item['dimfield_combined_wrapper']['height_width_depth']);
        $new_values = array(
          'height' => trim($height),
          'width' => trim($width),
          'depth' => trim($depth),
          'units' => $item['dimfield_combined_wrapper']['units'],
        );
      }

      form_set_value($element, $new_values, $form_state);
    }
    else {
      form_set_error($field_name, t('You must specify all dimensions, 
separated by an \'x\'.'));
    }
  }
}



Creating New Fields

[ 198 ]

During the validation phase of the form submission, this function will be called  
with the element it is attached to (the height_width_depth element) and the  
$form_state variable, which is passed by reference so that we can modify it. The 
first thing we check is that we're not displaying this widget on the field configuration 
page. If so, we don't bother validating it because nothing will be saved anyway.

Then, we check to see how many dimensions we're dealing with since the logic will 
be slightly different. We then iterate over each submitted value and, assuming that 
it has the requisite × character in it, break up the submitted string into three integers. 
The explode() function in PHP will take a string and split it into an array using  
the first parameter as a delimiter, while the list() operator will assign that array  
to two or three separate variables for us. We then take those values and actively 
set the height, width, units, and potential depth values within the form state using 
form_set_value().

While it seems odd to use the validation step to manipulate the form data, it is the 
only place that the form API allows us to do so. The net result is that we create new 
values in the $form_state collection that match up with the columns in our field. 
When Drupal submits the widget, it will look through the $form_state for variables 
that match the names of the columns in the field. It doesn't care that we put those 
values there ourselves, just that they exist is what matters. The original string still 
exists in the height_width_depth variable, but Drupal will just ignore it.

We are also going to do a little custom theming to our combined widget. Note the 
following lines:

$element['dimfield_combined_wrapper']['#theme'] = 'dimfield_combined_
wrapper';

$element['dimfield_combined_wrapper']['#attached']['css'][] = drupal_
get_path('module', 'dimfield') . '/dimfield-admin.css';

The first line tells the rendering system to use a theme hook named dimfield_
combined_wrapper to render everything that appears under $element['dimfield_
combined_wrapper']. The second tells the system to also load a particular CSS file 
whenever this form element is displayed. In our case we'll do something simple and 
just stick the two form elements—height_width_depth and units —into a wrapped 
set of divs:

function dimfield_theme() {
  return array(
    'dimfield_combined_wrapper' => array(
      'render element' => 'element',
    ),
  );



Chapter 7

[ 199 ]

}
function theme_dimfield_combined_wrapper($variables) {
	 $element = $variables['element'];

	 $hwd = drupal_render($element['height_width_depth']);
	 $units = drupal_render($element['units']);

	 return <<<END
	 <div class="clearfix">
	 <div class="dimfield-combined">{$hwd}</div>
	 <div class="dimfield-units">{$units}</div>
	 </div>
END;
}

All form element arrays look the same to a theme function: they are passed in as a 
single array called $element. We then take the two components that we know make 
up the entire array, render them separately, and stick them into a set of divs. The CSS 
file we attached earlier will make the divs appear side by side, creating a much more 
attractive UI. The CSS file is quite simple:

.dimfield-combined {
  float: left;
  margin: 0 30px 0 0;
}

By taking advantage of the way Drupal looks for and saves form data, we are able 
to develop any arbitrarily complex widget we want. We could even have a widget 
that displays nothing to the screen at all, but assigns a value during its validate phase 
based on some third party data, some other field in the same form, information from 
the URL, or even the time of day. Drupal will dutifully save that data, not caring 
how it got there as long as our widget gave it the name Drupal was expecting.

Using formatters to display our field
Now that we've defined our field type, and we've created a widget to make it 
editable from a form, the only piece left is to decide how to display it in user output. 
(User output usually means the computer screen, but it could also mean an RSS feed, 
printed page, or various other types of output). Drupal lets us control that display 
using formatters.



Creating New Fields

[ 200 ]

Formatters follow a very similar pattern to field types and widgets. There is an  
info hook to define what formatters are available, and then there's a series of 
callbacks for all of the formatters our module defines. In most cases though,  
there's only one callback we need worry about.

Declaring a formatter
First, let's look at the info hook given here:

function dimfield_field_formatter_info() {
  return array(
    'dimfield_default' => array(
      'label' => t('Default'),
      'field types' => array('dimensions'),
    ),
    'dimfield_table' => array(
      'label' => t('Show as table'),
      'field types' => array('dimensions'),
      'settings’ => array('units_as' => 'column'),
    ),
  );
}

In the preceding snippet we define two formatters, and there's not much to define. 
Each formatter has an internal name defined by the array key, a human-readable 
label, and a list of the field types that it applies to. Just as with widgets, we can define 
a formatter in any module that works with any field type we want, as long as we 
know how to handle the data it gives us.

Single-value formatters
Formatters only have two callbacks, and most formatters will only use one. Again, 
let's look at the simple implementation first.

function dimfield_field_formatter_view($obj_type, $object, $field,
                                       $instance, $langcode, $items,
                                       $display) {
  $element = array();
  $settings = $display['settings'];

  switch ($display['type']) {
    case 'dimfield_default':
      foreach ($items as $delta => $item) {
        if ($field['settings']['num_dimensions'] == 2) {
          $output = t('@height @unit by @width @unit', array(



Chapter 7

[ 201 ]

            '@height' => $item['height'],
            '@width' => $item['width'],
            '@unit' => dimfield_units($item['units']),
          ));
        }
        elseif ($field['settings']['num_dimensions'] == 3) {
          $output = t(
           '@height @unit by @width @unit by @depth @unit', array(
             '@height' => $item['height'],
             '@width' => $item['width'],
             '@depth' => $item['depth'],
             '@unit' => dimfield_units($item['units']),
           ));
        }
        $element[$delta] = array('#markup' => $output);
      }
      break;
  }

  return $element;
}

The formatter_view callback is expected to return a renderable array that the 
theme system can understand. In this case, we simply want a formatted string that 
describes the data stored in the field. As before, we get multiple field values passed 
to the callback at once in an array. So we simply iterate over them one by one and 
assign them to the $element variable. The #markup element type tells Drupal "Here's 
some HTML. I've already formatted it, just use it". When that element gets rendered 
later, in the page, the strings we generated using the t() function will simply get 
displayed with all of the appropriate data in them.

Complex formatters
There is, of course, nothing preventing us from rendering all of the values together if 
we want. In fact, our second formatter will do just that. Rather than a series of values 
one after another, we'll render all of the available values in a single table.

Then the question arises, how do we display units? As their own column? Inline on 
each cell? Just in the header of each dimension column? In cases like this, the best 
option is to let the user decide using the configuration capabilities of formatters.



Creating New Fields

[ 202 ]

Recall from a moment ago that the dimfield_table formatter declared a settings 
key, which was an array. That array defines all of the possible settings parameters 
for that formatter and their default values. In order to make use of formatter settings 
there are also two other hooks we need to implement: hook_field_formatter_
settings_summary() and hook_field_formatter_settings_form().

function dimfield_field_formatter_settings_form($field, $instance, 
$view_mode, $form, &$form_state) {
  $display = $instance['display'][$view_mode];
  $settings = $display['settings'];

  $form = array();

  if ($display['type'] == 'dimfield_table') {
    $form['units_as'] = array(
      '#title' => t('Show units'),
      '#type' => 'select',
      '#options' => array(
        'column' => t('As their own column'),
        'cell' => t('In each cell'),
        'none' => t('Do not show units'),
      ),
      '#default_value' => $settings['units_as'],
      '#required' => TRUE,
    );
  }

  return $form;
}
function dimfield_field_formatter_settings_summary($field, $instance, 
$view_mode) {
  $display = $instance['display'][$view_mode];
  $settings = $display['settings'];

  $summary = '';

  if ($display['type'] == 'dimfield_table') {
    if ($settings['units_as'] == 'column') {
      $summary = t('Show units as their own column');
    }
    else if ($settings['units_as'] == 'cell') {
      $summary = t('Show units in each cell');
    }



Chapter 7

[ 203 ]

    else if ($settings['units_as'] == 'none') {
      $summary = t('Do not show units');
    }
  }
    
  return $summary;
}

The form hook is a very simple form offering the user a select box to pick what the 
units_as setting should be: column, cell, or none. As with other settings forms, the 
name of the form element matches the name of the settings variable so it gets saved 
automatically. The summary hook, then, simply takes that setting and returns a 
string that Drupal can display to the user so that he knows what the current  
setting is.

Now let's have a look at the view hook code for the table formatter:

function dimfield_field_formatter_view($obj_type, $object, $field, 
$instance, $langcode, $items, $display) {
  $element = array();
  $settings = $display['settings'];

  switch ($display['type']) {
    // ...
    case 'dimfield_table':
      $rows = array();
      foreach ($items as $delta => $item) {
        $row = array();
        if ($settings['units_as'] == 'cell') {
          $row[] = t('@value (%units)', array(
            '@value' => $item['height'],
            '%units' => dimfield_units($item['units']),
          ));
          $row[] = t('@value (%units)', array(
            '@value' => $item['width'],
            '%units' => dimfield_units($item['units']),
          ));
        }
        else {
          $row[] = $item['height'];
          $row[] = $item['width'];
        }
        if ($field['settings']['num_dimensions'] == 3) {
          if ($settings['units_as'] == 'cell') {



Creating New Fields

[ 204 ]

            $row[] = t('@value (%units)', array(
              '@value' => $item['depth'],
              '%units' => dimfield_units($item['units']),
            ));
          }
          else {
            $row[] = $item['depth'];
          }
        }
        if ($settings['units_as'] == 'column') {
          $row[] = dimfield_units($item['units']);
        }
        $rows[] = $row;
      }

      $header = array(t('Height'), t('Width'));
      if ($field['settings']['num_dimensions'] == 3) {
        $header[] = t('Depth');
      }
      if ($settings['units_as'] == 'column') {
        $header[] = t('Units');
      }

      $element = array(
        '#theme' => 'table',
        '#rows' => $rows,
        '#header' => $header,
      );
      break;
  }

  return $element;
}

In this formatter, we build up a series of rows of data consisting of height, width, 
and depth if applicable. Each row is an array, and then we have an array of arrays to 
give us a table structure. That array we assign to an element that will get rendered 
as a table, as defined by the #theme key. Because Drupal defines a theme_table() 
function, that data will get passed to that function when the element is rendered and 
returned as an HTML table.

Note also that we're changing how the table gets built based on the settings we 
configured a moment ago. There may or may not be a column dedicated to units, 
and we may or may not display the units as part of each cell. Due to the fact that a 
settings value is exclusive, we don't need to worry about those two colliding as 
both can never be true.



Chapter 7

[ 205 ]

We can, of course, have much more complex formatters. To use our map example we 
have seen previously, a formatter could take a series of coordinate data and output 
them on a map using a mapping service. As long as we return a renderable array  
to Drupal, we can do whatever we want.

Managing non-Field fields
One of the advantages of using the Field system is that it gives us a consistent, 
powerful UI for all Field data that we add to an entity. However, an entity may have 
non-Field data on it as well. A node or artwork title, for instance, is not a Field.  The 
poll module in core doesn't use Fields for the poll configuration. An entity that is 
being pulled from a third party system may have all sorts of data associated with it 
that does not live in a Field module.

Fortunately, Drupal offers a way for us to integrate that data into the Field UI. Let's 
go back to the artwork module from Chapter 6, Working with Content and integrate  
the title into the Field system. It takes but a single hook:

function artwork_field_extra_fields() {
  $extra = array();

  foreach (artwork_types() as $type) {
    $extra['artwork'][$type->type] = array(
      'form' => array(
        'title' => array(
          'label' => t('Title'),
          'description' => t('The name of the artwork'),
          'weight' => -5,
        ),
      ),
      'display' => array(
        'title' => array(
          'label' => t('Title'),
          'description' => t('The name of the artwork'),
          'weight' => -5,
        ),
      ),
    );
  }

  return $extra;
}



Creating New Fields

[ 206 ]

hook_field_extra_fields() lets us define, per entity type and per bundle,  
what "extra fields" the Field system should be aware of. In our case, we loop  
over all artwork types and declare that all of them have a title pseudo-field. That 
pseudo-field is present both when displaying the edit form for artwork entities  
(the first key) and when displaying them (the second key). In both cases the 
definition is the same but we could easily make them different if we want.

There are only three keys to each definition. label and description should be  
self-explanatory. The weight key defines what the default "weight" of the title 
pseudo-field is in relation to other Fields (or pseudo-fields) on an entity. By setting 
the weight to -5, we ensure that by default the title will be shown first.

There is no requirement that they stay there, however. Now that the Field system 
knows about the title field, the user can easily drag-and-drop the title to appear in 
between two different Fields, at the bottom of the page, or even not at all.

Finding entities and fields
Creating, editing, and deleting data is all well and good, and is a key part of any 
content management system. However, there is also another important feature that 
makes a CMS worthwhile–Searching.

In a very simple case, searching for data is easy. We have a database, we know 
SQL, so let's rock and roll. However, Drupal doesn't restrict data to living in an 
SQL database. In fact, with field storage engines a single entity could conceivably 
live in a variety of different places. Consider the case of an artwork that has 
pictures associated with it via a field that pulls images from Flickr, and additional 
background information from a third party collection management system. Simply 
resorting to SQL to find artworks matching some given criteria is not feasible, since 
two of those three data stores is not an SQL database. Moreover, we may not  
be able to predict the table structure of the one that is since Drupal creates its 
database dynamically.

Fortunately, Drupal provides a unified query system for searching entities and fields. 
Although it does not allow for searching across different data stores, it does provide 
a data store agnostic way of searching for entities. (Searching across different data 
stores is an incredibly complex problem, usually best solved by indexing all data 
from various data stores into a single search index such as Apache Solr.)



Chapter 7

[ 207 ]

To demonstrate how entity and field queries work, let's start by creating a new menu 
item to list recently created artworks. We'll put it in the artwork module for now.

function artwork_menu() {
  // ...
  $items['artwork/recent'] = array(
    'title' => 'Recently added artworks',
    'page callback' => 'artwork_page_list_recent',
    'access arguments' => array('view artworks'),
    'file' => 'artwork.pages.inc',
  );

  return $items;
}

Just as Drupal provides a query builder for SQL databases that abstracts  
database-specific logic, it also provides a query builder for Entities and Fields.  
The API for it is a single class named, boringly enough, EntityFieldQuery.

Before we have a look at EntityFieldQuery directly, let's take a step back and 
consider what sorts of things we can search on. At the conceptual level, there  
are three "levels" of data by which we can filter:

Entity level data: It is data that is common to all entities of all types. This 
includes the entity type itself, the bundle name, the entity ID, and the 
revision ID (if applicable). All entities of any type will have these items.
Properties: They are those data elements that are common to all objects of 
a given entity type, but not to all entities. That is, they are pieces of data 
common to all nodes, or to all users, or to all artworks. Examples include the 
'node title' and 'creator uid' for nodes, user 'login name' for user entities, and 
the 'artwork title' and 'creation date' for artworks. 
Fields: They are, of course, specific to a given bundle definition (painting or 
sculpture). However, they may also be shared by entities of different types.

When searching for entities, we can filter by or order by data at each of those levels. 
Not all combinations make sense, however, and the query will reject nonsensical 
combinations by throwing an exception. 

Since we cannot know what the storage engine or engines are that an entity uses, that 
too limits the complexity of the searches we can do. For instance, we are only able to 
do "AND" searches, not complex conditions with OR. We also cannot search across 
different data stores. Nonetheless, that still leaves a huge range of use cases that can 
be solved very easily.

•

•

•



Creating New Fields

[ 208 ]

Always use EntityFieldQuery when selectively searching for entities. 
Never try to query the database directly, as there is no guarantee that 
there is a relational database involved.

Let's start with simply showing the five most recently created artworks:

function artwork_page_list_recent() {
  $content = array();

  $query = new EntityFieldQuery();
  $query
    ->entityCondition('entity_type', 'artwork')
    ->propertyOrderBy('created', 'DESC')
    ->range(0, 5);
  $result = $query->execute();

  $artworks = artwork_load_multiple(array_keys($result['artwork']));
  foreach ($artworks as $artwork) {
    $content[] = artwork_page_view($artwork, 'teaser');
  }

  return $content;
}

We start by creating a new query object. We then call methods on it, to filter by 
"entity type is 'artwork'", and then "order by the 'created' property, newest first"  
(that is, descending order). The range() method, just like DB queries, takes the  
start position as its first parameter and the count as its second.

If we assume an SQL database, the resulting SQL will look something like  
the following:

SELECT artwork.aid AS entity_id, artwork.vid AS revision_id, artwork.
type AS bundle, 'artwork' AS entity_type
FROM
artwork artwork
ORDER BY artwork.created DESC
LIMIT 5 OFFSET 0

The advantage here is that, should the author of the artwork module change the 
table structure on us, or if artworks were stored in a non-SQL data store, the SQL 
query above would break horribly but the EntityFieldQuery would continue to work 
because Drupal builds it dynamically based on what we're searching for.



Chapter 7

[ 209 ]

Now look at that query again. It's returning three properties, the entity id, revision 
id, and bundle name. All entity queries return that same data: the entity type, entity 
id, revision id, and bundle. Each record is keyed by its entity id, which in turn is 
keyed by the entity type (since it is possible to get back multiple types of entities  
in a single query).

Because we know exactly what that structure is, we can leverage it easily. In this 
case we want to fully load all artworks that we found, so we run array_keys() on 
the $result['artwork'] array, to get an array of just those ids and then load them. 
Note that we're using artwork_load_multiple(). Rather than loading each artwork 
separately, and running whatever queries are needed to do so, we load them all at 
once. That means one or five (or fifty if we were allowing that many) results all take 
about the same amount of time to load.

Once we have our artwork objects, we simply get the render array representing each 
one using the functionality we build in Chapter 6 and merge them together, then 
return the resulting array. When it gets rendered we will see all of our artworks,  
one after another.

Now let's make one small change to our field query:

$query = new EntityFieldQuery();
$query
  ->entityCondition('entity_type', 'artwork')
  ->propertyOrderBy('created', 'DESC')
  ->fieldCondition('field_artist', 'value', 'Da Vinci')
  ->range(0, 5);
$result = $query->execute();

Here, we also filter for just those artworks that have a field named field_artist, 
the value column of which is exactly equal to the string Da Vinci. The rest of the 
code is the same, but we will now get fewer results. If we assume that everything is 
stored in the local SQL database then the query could be something like this:

SELECT field_data_field_artist0.entity_id AS entity_id, field_data_
field_artist0.revision_id AS revision_id, field_data_field_artist0.
bundle AS bundle, fcet.type AS entity_type
FROM
field_data_field_artist field_data_field_artist0
INNER JOIN field_config_entity_type fcet ON fcet.etid = field_data_
field_artist0.etid
INNER JOIN artwork artwork ON artwork.aid = field_data_field_artist0.
entity_id
WHERE  (field_data_field_artist0.field_artist_value = 'Da Vinci') AND 
(field_data_field_artist0.deleted = 0) AND (fcet.type = 'artwork')
ORDER BY artwork.created DESC
LIMIT 5 OFFSET 0



Creating New Fields

[ 210 ]

Again, there's no guarantee that we're even dealing with an SQL database. Aren't 
you glad we're letting Drupal figure all of that out for us?

It is also possible to do more complex queries on fields, for instance, the  
following one:

  $query = new EntityFieldQuery();
  $query
    ->entityCondition('entity_type', 'artwork')
    ->propertyOrderBy('created', 'DESC')
    ->fieldCondition('field_artist', 'value', 'Da Vinci', 'CONTAINS', 
0)
    ->range(0, 5);

  $result = $query->execute();

In this case, instead of using a simple "is exactly equal to" comparison, we are  
asking for any entity whose field_artist field has the string "Da Vinci" in it 
anywhere. That allows us to match both "Da Vinci" and "Leonardo Da Vinci". The 
fifth parameter lets us restrict results to just those fields that have "Da Vinci" as  
their first instance (remember, 0-based) if they are multi-value.

There are of course corresponding entityOrderBy(), propertyCondition(), and 
fieldOrderBy() methods for building up more interesting field queries. See the 
inline documentation in includes/entity.inc for the full range of options.

Summary
We have now completed a module that touches on the three most important parts of 
the Field API. We've created a new field type to store data, corresponding widgets  
to allow users to edit it, and formatters to control how that data is displayed when 
the entity the field is attached to is viewed.

Although our use cases were reasonably simple, Drupal allows arbitrarily complex 
Widgets and Formatters. Some Widgets can interact with the URL or third party 
data sources to handle default values, or perhaps show a completely different set of 
form fields under certain conditions. Formatters can use the theme system to display 
data themselves or leverage JavaScript libraries to create interactive visualizations of 
the data stored in a field. With swappable storage engines, advanced use cases can 
even load data from another database or server entirely, including one that does not 
involve SQL.



Drupal Permissions  
and Security

Permissions lie at the center of Drupal's security paradigm. Simply put, permissions 
determine who can perform what action on a website. Most commonly, permissions 
allow users to gain access (or be denied access) to specific features, such as access to 
the site-wide contact form or the ability to change the author of a piece of content.

These permissions are not assigned to individual users, but instead to classes of users, 
defined as roles. A role is a collection of permissions. Individual users may then be 
assigned to one or more roles, as is appropriate to your project's business rules.

Note: When assigning permissions to roles, the default "authenticated 
user" role is a special case. Any permission granted to this role will also be 
granted to any other role except "anonymous user". Why? This is because 
the act of logging in to a user account defines a user as "authenticated". 
Custom roles created for a site inherit the base permissions assigned to 
the "authenticated user" role users.
Understanding this behavior is critical to site builders, making it crucial 
for module developers. You may need to create very specific permissions 
in order to satisfy the business logic that your module requires. In our 
discussion, we will explore common problems that can occur when 
permissions are too broad or too narrow.

Any module may establish new permissions. In this chapter, we will discuss best 
practices for security and usability when defining your module's permission options.



Drupal Permissions and Security

[ 212 ]

In this chapter, we will cover the following:

Drupal's roles and permissions concepts
Using user_access() to assert permissions
Using hook_permission()
Access control with hook_menu()
Common errors in defining permissions
Declaring your own access functions
Securing sensitive actions with permissions
Responding when access is denied
Enabling permissions programmatically
Permissions, security, and Drupal forms
Security considerations for AJAX processing

Using user_access() to assert 
permissions
The user_access() function is the primary security element in the Drupal API. 
Most page requests pass through the function, as do many administrative functions 
and the display of certain page elements. Pages, blocks, fields, and form elements  
are some of the items that can be shown or hidden by wrapping their display in a 
user_access() call.

The function is quite elementary, taking only two arguments:

user_access($string, $account = NULL)

Here, $string is the machine readable name of the permission, and $account is an 
optional copy of a $user object, as returned by the function user_load().

The following is a typical access check, taken from the Menu module:

$form['menu'] = array(
  '#type' => 'fieldset',
  '#title' => t('Menu settings'),
  '#access' => user_access('administer menu'),
  '#collapsible' => TRUE,
  '#collapsed' => !$link['link_title'],
);

•

•

•

•

•

•

•

•

•

•

•



Chapter 8

[ 213 ]

The preceding code checks if the user editing a page may add a link to that page in 
the site's navigation menu. The permission administer menu indicates that the user's 
role is trusted enough to make structural changes to the site (for instance, like adding 
a link to this content on the Main menu, which appears on every page). The  
user_access() function returns a Boolean value, namely, if TRUE, the user may 
perform the requested action; if FALSE, the user may not. In the case of this form 
code, the form element will only be displayed if the access check returns TRUE. 
Otherwise, the form's default value will be retained.

Note that the preceding example does not pass an $account object. As a result, the 
user_access() function defaults to using the current $user object, that is, the user 
currently making the page request. The $user object is stored in a global variable, 
and so it can be accessed any time a specific $account is not specified.

You are not required to specify an $account when calling user_access(), and in 
most cases this is fine, but there are use cases where you might want to check the 
permission against a user other than the current logged-in $user.

Checking the proper user account
In most cases, permission checks are made against the current user, defined in the 
$user object. Module authors must pay careful attention to the context of their 
permission checks, especially when displaying information about specific users.

For example, you may wish to add a section to the user account page where a site 
administrator can check the roles that an individual user has. To do this we would 
implement hook_user_view() and test the global $user object to ensure that this is 
a trusted administrator, who can view this information.

First, we set up a simple check for the current user: Does he/she have the permission 
to view this information?

function example_user_view($account, $view_mode) {
  if (!user_access('view user roles')) {
    return;
  }
}

You will see this pattern frequently in Drupal code. Failing the access check leads 
to a return out of the function and makes the code easier to follow. Since we are 
only adding information to an existing page, returning no data is fine. (Later in the 
chapter, we will look at other ways to deal with denied permissions.)



Drupal Permissions and Security

[ 214 ]

If the current user passes this access check, we must then fetch the information we 
want. This information is not about the $user but about the $account being viewed. 
So we add the logic:

/**
 * Implement hook_user_view().
 */
function example_user_view($account, $build_mode) {
  if (!user_access('view user roles')) {
    return;
  }
  // Get the user's roles.
  $list = $account->roles;
  if (!empty($list)) {
    // Prepare the information for theming.
    $variables = array(
      'items' => $list,
    );
    $content = theme('item_list', $variables);
    // Attach the content to the user page according to the API.
    $account->content['summary']['output'] =  array(
      '#type' => 'user_profile_item',
      '#title' => t('User roles'),
      '#markup' => $content,
      '#attributes' => array('class' => array('content-creation')),
    );  
  }
}

When implemented, our code produces the following result on a user page:



Chapter 8

[ 215 ]

If we had accidentally run the permission check on the $account object, then we 
might return the wrong permissions. For clarity, let's take a look at a more complex 
example. In the following snippet, we want to show a list of all content types that a 
user can create. Our function will begin much like the last implementation, and then 
get more complex.

/**
 * Implement hook_user_view().
 */
function example_user_view($account, $build_mode) {
  if (!user_access('view content creation permissions')) {
    return;
  }
  // Get the defined node types.
  $node_types = node_permissions_get_configured_types();
  if (empty($node_types)) {
    return;
  }
  // Make an array for the list output.
  $list = array();
  foreach ($node_types as $type) {
    if (user_access('create ' . $type . ' content', $account)) {
      // Get the human-readable name of the content type. 
      $list[] = check_plain(node_type_get_name($type));
    }
  }

The preceding code snippet defines a function that pulls the permissions for  
the account being viewed by the current user. Our two sets of permission checks 
operate on different user accounts.

The important piece here is the user_access() check that we run for each node 
type. If we were to leave off the $account, then this check would assume that we 
wanted to know what content types the current user could create. Doing so would 
mean the same results would appear no matter which user account page we viewed.

Note: The use of the $account object instead of the $user object is 
a standard practice of Drupal, and a good coding practice. In Drupal, 
the $user object is a global value, and it would be a mistake to pass it 
(sometimes by reference!) when we only mean to extract information 
from it. Instead, lookup functions like hook_user_view() always act on 
a copy called $account. This pattern occurs frequently in Drupal core, 
and you should follow this best practice.



Drupal Permissions and Security

[ 216 ]

To finish this example, let's add our theme function to produce the proper output.

if (!empty($list)) {
    // Prepare the information for theming.
    $variables = array(
      'items' => $list,
    );
    $content = theme('item_list', $variables);
    // Attach the content to the user page according to the API.
    if (!isset($account->content['example'])) {
      $account->content['example'] = array();
    }
    $account->content['example'] += array(
      '#type' => 'user_profile_category',
      '#attributes' => array('class' => array('user-member')),
      '#weight' => 5,
      '#title' => t('Content'),
    );
    $account->content['example']['output'] =  array(
      '#type' => 'user_profile_item',
      '#title' => t('Content creation permissions'),
      '#markup' => $content,
      '#attributes' => array('class' => array('content-creation')),
    );  
  }
}

With this theme function in place, we can display the following output:



Chapter 8

[ 217 ]

The user_access() function is very effective, and it can be used in almost all cases. 
Since it only takes two parameters, it may not be appropriate for all access checks, 
and it can never check multiple permissions at once. Later, we will look at use cases 
where a more complex function is needed to check permissions.

Using hook_permission()
Now that you understand the basics of Drupal's user access system, we can explore 
how modules can extend that system. First, a little history lesson.

Until Drupal 7, hook_permission() was known as hook_perm(). The change was 
made for clarity in the code, as part of a general semantic cleanup of Drupal core.  
(I wrote the patch, in fact.) hook_permission() also includes a number of usability 
improvements, which altered the format of the function's return value. These 
changes are substantial enough for even experienced Drupal developers to explore 
each element of the new hook.

The purpose of hook_permission() is to define and return an array that contains all 
the necessary information about your module's permissions. This includes the simple 
strings that can be passed to user_access(), plus a human-readable name for the 
permission and an optional description. Prior to Drupal 7, only the simple string  
was returned.

The following is an example, taken from the core Search module:

function search_permission() {
  return array(
    'administer search' => array(
      'title' => t('Administer search'),
    ),
    'search content' => array(
      'title' => t('Use search'),
    ),
    'use advanced search' => array(
      'title' => t('Use advanced search'),
    ),
  );
}

The module declares three separate permissions in a manner typical to Drupal 
modules. The first permission is for administrative configuration of the module. 
These sorts of permissions are rarely given to the "authenticated user" role and 
should never be given to anonymous users.



Drupal Permissions and Security

[ 218 ]

The second permission grants the ability to search site content using the default 
search form. The third permission extends the second to include an additional  
form for advanced searches.

The presence of these very specific permissions may seem odd, given that 
there is an access content permission in the node module that grants 
users the ability to view site content. However, search may be considered 
a special case by some sites. Separating the search content permission 
from the access content permission adds a layer of flexibility that 
enables project customization.

People who complain that Drupal is too complex should consider this case for a 
moment. From a site builder perspective, having three extra permissions means more 
configuration work. However, imagine how frustrating it would be if you needed to 
disable search for some users but could not (or could only do so programmatically).

In cases like these, Drupal almost always embraces flexibility. The presence of 
multiple permissions in a core module means that someone has needed that 
separation for a good reason. (In the next chapter, in fact, we will discuss the reason 
for the bypass node access permission, which is a new feature in Drupal 7.)

Defining your module's permissions
Before writing any code for hook_permission(), it is the best practice to take out a 
pen and paper (or a good diagramming program), and make a chart of the actions 
you expect users to take. In fact, many experienced developers write this hook at the 
end of development, after puzzling through all the use cases in the code.

Let's consider the preceding example module. It is very direct. We want to show 
some information about users to trusted site administrators. Our use case looks 
something like the following:



Chapter 8

[ 219 ]

In the first case, Are we looking at a user page? is a question our module does 
not need to ask. We know through the API that using hook_user_view() only 
fires when someone is looking at a user's information. So we don't need our own 
permission check for that action.

What matters to us is the question Are we a trusted user? Here we may have  
to create a permission check.

We could simply use the existing administer users permission provided by core, 
but is that the best solution? In many use cases, it is likely to be. However, suppose 
you are building a newspaper website. In this scenario, we have "site editors" whose 
job is to supervise the work of others. To do so, these editors need to be able to check 
the content types that a user can create. However, administer users is a much more 
powerful permission, which allows the editing of user accounts and the assigning of 
user roles. We may not want to give that much authority and responsibility to our 
site editors.

In this case—in fact, in most cases—the creation of a discrete permission for each 
action is the best choice. Since you cannot reliably predict all the usage scenarios for 
your code, piling too many actions onto a single permission can limit how people can 
use your module. Any time you see yourself writing an administer X permission in 
the code, you should ask yourself if that permission can be made more granular.

Writing hook_permission()
For our example module, then, we need to define a permission that grants the ability 
to view this information about users. Our permission array is quite direct, and has 
three possible parts:

1.	 The machine-readable name of the permission. This element will be used 
by the module code to check user_access(). For our example, we use the 
string "view content creation permissions". By convention, this string must  
be in English and all lower case. It need not be a complete sentence.

2.	 The human-readable label for the permission. This may be the same as the 
machine-readable string, but should be formatted with an initial capital. 
You may capitalize words as needed. Unlike the machine-readable name, 
this string must be wrapped in t() so that the output may be translated. 
We will use "View the content creation options for registered users" because 
anonymous users do not have an account page to view.



Drupal Permissions and Security

[ 220 ]

3.	 An optional description of the permission. This string should be a complete 
sentence, and wrapped in t(). Drupal's user interface guidelines encourage 
you to use this element if the permission needs special clarification, 
especially if permission is being given to untrustworthy users who could 
pose a security risk. For our example, we will clearly state: "Displays the 
content types that a user may create on the user's profile page."

When we put these three parts together, our hook looks like the following code:

/**
 * Implement hook_permission().
 */
function example_permission() {
  return array(
    'view content creation permissions' => array(
      'title' => t('View the content creation options for registered 
users'),
      'description' => t('Displays the content types that a user may 
create on the user\'s profile page.'),
    ),
  );
}

Using the description element is tempting, for completeness, but 
Drupal's UI testing discovered that it serves mostly a visual clutter for the 
end user.

The following screenshot shows examples of the types of permissions that  
benefit from a full description. This page can be found at the following path: 
admin/people/permissions



Chapter 8

[ 221 ]

Declaring your own access functions
The user_access() function is a great utility function, but it cannot cover all logical 
use cases. It cannot, for instance, check two access permissions at the same time. You 
can, of course, write a statement such as:

if (user_access('permission one') && user_access('permission two')) {
  // perform some action…
}

When securing actions within your code, this approach is perfectly fine. However, 
menu-based access checks cannot be subject to such rules. In these cases, we need to 
declare our own access callback within the menu item.

For instance, let's take our last module example. Suppose that instead of displaying 
this information on the user profile page, we wanted to make a stand-alone page for 
this information. We might make a tab on the user page, using a menu callback like 
the following one:

/**
 * Implement hook_menu().
 */
function example_menu() {
  $items['user/%user/content'] = array(
    'title' => 'Content creation',
    'page callback' => 'example_user_page',
    'page arguments' => array(1),
    'access arguments' => array('view content creation permissions'),
    'type' => MENU_LOCAL_TASK,
  );
  return $items;
}

This would work just fine, unless we needed to check an additional permission or 
condition during the access check. Suppose our business rules say that only editors 
who may also administer users may view this page.

In that case, we have a problem, because the user_access() function cannot accept 
multiple permissions during a single call. In this case, we have to use the access 
callback parameters of the menu $item:

/**
 * Implement hook_menu().
 */
function example_menu() 
example_menu() {



Drupal Permissions and Security

[ 222 ]

  $items['user/%user/content'] = array(
    'title' => 'Content creation',
    'page callback' => 'example_user_page',
    'page arguments' => array(1),
    'access callback' => 'example_user_access',
    'access arguments' => array('view content creation permissions', 
'administer users'),
    'type' => MENU_LOCAL_TASK,
  );
  return $items;
}

For this code to succeed, we must also provide the new function  
example_user_access():

/**
 * Access callback that checks multiple permissions.
 *
 * Takes a list of permissions and requires that all return   
 * TRUE.
 */
function example_user_access() {
  foreach (func_get_args() as $permission) {
    if (!user_access($permission)) {
      return FALSE;
    }
  }
  return TRUE;
}

Note: When developing your module, you must rebuild the menu 
cache in order to see permission changes. You can do this by 
emptying the cache_menu table, or using the tools provided by 
Devel module or Drush.

You can even dictate more complex logic within an access control function. Suppose 
we also want to prevent users from viewing pages other than their own. We would 
edit the functions in the following way:

/**
 * Implement hook_menu().
 */
function example_menu() {
  $items['user/%user/content'] = array(
    'title' => 'Content creation',



Chapter 8

[ 223 ]

    'page callback' => 'example_user_page',
    'page arguments' => array(1),
    'access callback' => 'example_user_access',
    'access arguments' => array(1, 
          'view content creation permissions', 'administer users'),
    'type' => MENU_LOCAL_TASK,
  );
  return $items;
}

/**
 * Access callback that checks multiple permissions.
 */
function example_user_access() {
  global $user;
  $arguments = func_get_args();
  $account = array_shift($arguments);
  if ($account->uid != $user->uid) {
    return FALSE;
  }
  foreach ($arguments as $permission) {
    if (!user_access($permission)) {
      return FALSE;
    }
  }
  return TRUE;
}

In the preceding way, complex access rules may be enforced on menu callbacks.

When writing an access check outside of the menu system, it is tempting 
to chain together a series of IF checks to produce the logic required. 
Consider moving such statements into a clearly defined access function. 
These can improve the readability and portability of your code. If you 
want extra style points, consider adding a drupal_alter() function 
before returning TRUE or FALSE to allow other modules to rewrite your 
standard logic.



Drupal Permissions and Security

[ 224 ]

Responding when access is denied
In a significant change from earlier Drupal, the drupal_access_denied() function 
should no longer be called when returning a normal page context.

Page callback functions wanting to report an access denied message should 
return MENU_ACCESS_DENIED instead of calling drupal_access_denied()
However, functions that are invoked in contexts where that return value 
might not bubble up to menu_execute_active_handler() should call 
drupal_access_denied(). For more details see: 
http://api.drupal.org/api/function/drupal_access_denied/7

However, what does this mean in practice?

One advantage of using a menu callback is that if access is denied for the page 
request, Drupal automatically handles the response by running the traditional 
drupal_access_denied() function.

However, the Drupal 7 rendering engine respects more contexts than the traditional 
web page. Your callback function might return a JSON object, a file, or be responding 
as a part of a larger page (such as a form). For example, consider the following 
snippet of code from contact_site_form():

// Check if flood control has been activated for sending e-mails.
  $limit = variable_get('contact_threshold_limit', 5);
  $window = variable_get('contact_threshold_window', 3600);

•

•



Chapter 8

[ 225 ]

  if (!flood_is_allowed('contact', $limit, $window) &&  
!user_access('administer contact forms')) {
    drupal_set_message(t("You cannot send more than %limit messages 
in @interval. Please try again later.", array('%limit' => $limit, '@
interval' => format_interval($window))), 'error');
    drupal_access_denied();
    drupal_exit();
  }

The preceding code stops all processing of the contact form page if the user is 
suspected of spamming the form. If the user violates the threshold of allowed 
messages per hour, a warning message is delivered and the Access denied  
page is rendered.

Note the use of drupal_exit() here to stop the rest of the page execution. Since this 
access denied message is performed during form definition, drupal_exit() must be 
invoked to stop the rest of the rendering process.

Note: Do not call the normal PHP exit() function from within Drupal 
code. Doing so may stop the execution of internal functions (such as 
session handling) or API hooks. The drupal_exit() function is 
provided to safely stop the execution of a Drupal request.

Within a normal page context, however, we should return the constant  
MENU_ACCESS_DENIED instead of drupal_exit(). We might do this instead  
of using a custom menu callback. Returning to our earlier example:

/**
 * Implement hook_menu().
 */
function example_menu() {
  $items['user/%user/content'] = array(
    'title' => 'Content creation',
    'page callback' => 'example_user_page',
    'page arguments' => array(1),
    'access arguments' => array('view content creation permissions'),
    'type' => MENU_LOCAL_TASK,
  );
  return $items;
}

/**
 * Custom page callback for a user tab.
 */



Drupal Permissions and Security

[ 226 ]

function example_user_page($account) {
  global $user;
  if ($user->uid != $account->uid) {
    return MENU_ACCESS_DENIED;
  }
 // ...

There is a subtle yet important difference between the two approaches. If we use 
a menu callback to assert access control, the tab link will only be rendered if the 
user passes the access check. If we use an access check within the page callback, the 
tab will always be rendered. It is poor usability to present a tab that only prints an 
'access denied' message to the user. For this reason, page-level access checks should 
almost always be handled by hook_menu().

Should I use drupal_access_denied() or a custom page?
drupal_access_denied() returns a version of the traditional Apache 
403 access denied page, served by Drupal. Good usability suggests that 
providing a friendlier error message page helps users navigate your site 
with ease. If you support this idea, feel free to create a custom 403 page. 
Drupal allows you to assign any content page as the 403 message page. 
The drupal_access_denied() function returns the output of that 
page, so there is no need to code a custom 403 message into your module 
since one can be created and edited through the normal Drupal content 
interface.

The settings for your 403 and 404 page are found under the Site Information settings.



Chapter 8

[ 227 ]

Enabling permissions programmatically
Drupal user roles and permissions are handled through configurations in the  
user interface. However, there may be use cases where your module needs to  
set or modify permissions. There is even a module called Secure Permissions 
(http://drupal.org/project/secure_permissions) which disables the UI for 
editing roles and permissions and forces all settings to be defined in code. 

If your module needs to define permissions in code, Drupal 7 provides some new 
hooks to make the task easier. Let's take a common example. Your module creates  
a page callback that should be visible by 'authenticated' but not 'anonymous' users. 
To activate this feature when the module is enabled, you can use hook_enable()  
as follows:

function example_enable() {
  $permissions = array('view example page');
  user_role_change_permissions(DRUPAL_AUTHENTICATED_USER,  
                               $permissions);
}

This function goes into your module's .install file. When the module is enabled, 
Drupal will add the view example page permission to the authenticated user role.

You can (and normally should) do the reverse when the module is disabled:
function example_disable() {
  $permissions = array('view example page');
  $roles = user_roles();
  // Since permissions can be set per role, remove our permission from  
  // each role.
  foreach ($roles as $rid => $name) {
    user_role_revoke_permissions($rid, $permissions);
  }
}

It is also possible to add/remove multiple permissions at the same time. To do 
so, we must build an array of permissions to be passed to user_role_change_
permissions(). Suppose that our module wants to remove the default access 
content permission from the anonymous user role, while adding our new view 
example page permission. To do so, we build an array in the format 'permission 
name' => TRUE or FALSE, for each role.

function example_enable() {
  $permissions = array(
    'access content' => FALSE,
    'view example page'  => TRUE,
  );
  user_role_change_permissions(DRUPAL_ANONYMOUS_USER, $permissions);
}



Drupal Permissions and Security

[ 228 ]

When our module is enabled, the settings for these two permissions will be changed 
for the anonymous user.

The user_role_change_permissions() function is actually used 
by the form submit handler for the Permissions form. By abstracting 
this logic to a function, Drupal provides an easy API call for other 
modules. When building your modules, you should look for similar 
opportunities so that other developers can build off your code instead of 
re-implementing similar logic.

Defining roles programmatically
Just as with permissions, Drupal 7 allows roles to be set through a simple function 
call. The new user_role_save() and user_role_delete() functions provide the 
tools your module needs.

The user_role_save() function merely adds a new named role to the {roles} table 
and assigns it a proper role id ($rid). The user_role_delete() function removes 
that role from the {roles} table, and also cleans out any associated permissions 
stored in the {role_permission} table and any user role assignments stored in  
the {users_roles} table.

Let's say that your module allows users to moderate other user accounts. This is a 
powerful capability on a site, so your module automatically creates a new role that 
contains the proper permissions.

As in our preceding example, we will use hook_enable() to create the new role.

/**
 * Create a role for managing user accounts.
 */
function account_moderator_enable() {
  // Create the 'account moderator' role.
  user_role_save('account moderator');
}

After creating the role, we can also auto-assign a series of permissions:

/**
 * Create a role for managing user accounts.
 */
function account_moderator_enable() {
  // Create the 'account moderator' role.
  user_role_save('account moderator');



Chapter 8

[ 229 ]

  $permissions = array(
    'access user profiles',
    'administer users',
  );
  $role = user_role_load_by_name('acount moderator');
  user_role_grant_permissions($role->rid, $permissions);
}

When our module is uninstalled, we should delete the role as well.

function account_moderator_uninstall() {
  user_role_delete('account moderator');
}

Securing forms in Drupal
Form handling is one of the most crucial areas of website security. Inappropriate 
handling of form data can lead to multiple security weaknesses including SQL 
injection and cross-site request forgeries (CSRF). While we cannot cover all aspects 
of security in a brief chapter, it is important to state some clear guidelines for Drupal 
module developers.

See http://en.wikipedia.org/wiki/CSRF for information on 
CSFR, and for cross-site scripting (XSS) see http://en.wikipedia.
org/wiki/XSS.

The Forms API
First and foremost, you should always use the Drupal Forms API when creating and 
processing forms in Drupal. For one, doing so makes your life easier because the 
Forms API contains standards for form definition, AJAX handling, required elements, 
validation handling, and submit handling. (See more about forms in Chapter 5.)

From a security standpoint, the Forms API is critical because it contains built-in 
mechanisms for preventing CSRF requests.

Whenever Drupal creates a form through the API, the form is tagged with a  
unique token called the form_build_id. The form_build_id is a random  
md5 hash used to identify the form during processing. This token is added  
by the drupal_build_form() routine:

$form_build_id = 'form-' . drupal_hash_base64(uniqid(mt_rand(), TRUE) 
. mt_rand());
$form['#build_id'] = $form_build_id;



Drupal Permissions and Security

[ 230 ]

The form is additionally tagged with a $form['#token'] element during  
drupal_process_form(). The #token is used to ensure that a form request came 
from a known request (that is, an HTTP request that has been issued a valid session 
for the site). The #token value is set with drupal_get_token():

function drupal_get_token($value = '') {
  return drupal_hmac_base64($value, session_id().  
  drupal_get_private_key(). drupal_get_hash_salt());
}

When Drupal processes a form, both the $form_build_id and $form['#token'] 
values are validated to ensure that the form request originated from the Drupal site.

We should also note that Drupal forms default to using the POST 
method. While it is possible to submit Drupal forms via GET, developers 
are always encouraged to use POST, which is more secure. We will look 
at securing GET requests when we discuss AJAX handling a little later in 
this chapter.

Disabling form elements
In addition to the global security of a specific form, you may also wish to enable or 
disable specific parts of a form, either your own module's form or that provided by 
Drupal core (or another contributed module). In the first example of this chapter, 
we saw how this can be done using the user_access() function (or a similar access 
control function) to mark an individual form element or entire section of a form  
as inaccessible.

$form['menu'] = array(
  '#type' => 'fieldset',
  '#title' => t('Menu settings'),
  '#access' => user_access('administer menu'),
  '#collapsible' => TRUE,
  '#collapsed' => !$link['link_title'],
);

When the content editing form is rendered, users without the administer menu 
permission will not see this element of the form.

Note that '#access' => FALSE is not the same as  
'#disabled' => FALSE in Drupal's Forms API. Using 
#disabled => FALSE will render the form element and disable 
data entry to that element, while '#access' => FALSE removes 
the element entirely from the output.



Chapter 8

[ 231 ]

This approach is the proper way to remove form elements from Drupal. You may 
find yourself tempted to unset() certain form elements, but since Drupal forms are 
passed by reference through a series of drupal_alter() hooks, the unset() cannot 
be considered reliable. Using unset() also removes valuable context that other 
modules may be relying on when processing the $form.

Passing secure data via forms
As a general rule, Drupal forms do not use the traditional hidden form element 
of HTML. Since hidden form elements are rendered in the browser, curious users 
(and malicious ones) can view the elements of a form, checking for tokens and other 
security devices.

Since Drupal is a PHP application, it can use server-side processes to handle secret 
form elements, rather than relying on information passed as hidden fields from  
the browser.

To pass such data, a form element may be defined as '#type' => 'value'. Using 
this Forms API element prevents the data from being rendered to the browser. As 
an additional advantage, it also allows for the passing of complex data—such as an 
array—during a form request. This technique is commonly used for form elements 
that the user should never see such as the id of an element to be deleted during a 
confirmation step. Consider the following code from aggregator.module:

function aggregator_admin_remove_feed($form, $form_state, $feed) {
  return confirm_form(
    array(
      'feed' => array(
        '#type' => 'value',
        '#value' => $feed,
      ),
    ),
    t('Are you sure you want to remove all items from the feed 
%feed?', array('%feed' => $feed->title)),
    'admin/config/services/aggregator',
    t('This action cannot be undone.'),
    t('Remove items'),
    t('Cancel')
  );
}



Drupal Permissions and Security

[ 232 ]

The form presented to the end user contains no information about the item to be 
deleted. That data is passed behind the scenes.

 

The form, as displayed to the browser, only contains the data that Drupal needs to 
validate the form and extract the data from its cache:

<form action="/drupal-cvs/admin/config/services/aggregator/remove/1" 
accept-charset="UTF-8" method="post" id="aggregator-admin-remove-feed" 
class="confirmation">
  <div>
    This action cannot be undone.
    <input type="hidden" name="confirm" id="edit-confirm" value="1" />
    <div class="container-inline">
      <input type="submit" name="op" id="edit-submit" value="Remove 
items" class="form-submit" />
      <a href="/drupal-cvs/admin/config/services/aggregator">
        Cancel</a>
    </div>
    <input type="hidden" name="form_build_id" 
           id="form-049070cff46eabd3b069f980066b7ad4" 
           value="form-049070cff46eabd3b069f980066b7ad4" />
    <input type="hidden" name="form_token" id="edit-aggregator-admin-
remove-feed-form-token" value="48b0294050ef62b7d55778cf1992f326" />
    <input type="hidden" name="form_id" id="edit-aggregator-admin-
remove-feed" value="aggregator_admin_remove_feed" />
  </div>
</form>

The submit handler for the form picks up the data value for processing:

/**
 * Remove all items from a feed and redirect to the overview page.
 *
 * @param $feed
 *   An associative array describing the feed to be cleared.
 */
function aggregator_admin_remove_feed_submit($form, &$form_state) {
  aggregator_remove($form_state['values']['feed']);
  $form_state['redirect'] = 'admin/config/services/aggregator';
}



Chapter 8

[ 233 ]

Running access checks on forms
While it is perfectly fine to run access checks when building a form, developers 
should normally not run access checks when processing a form's _validate() or 
_submit() callbacks. Doing so interferes with the logic of hook_form_alter(). 
For instance, if your module wishes to alter the menu form element above, so that 
additional users may add content items to the menu without being able to edit the 
entire menu, you can do so easily:

function example_form_alter(&$form, $form_state, $form_id) {
  if (!empty($form['#node_edit_form']) && isset($form['menu'])) {
    $form['menu']['#access'] = example_user_access( 
'assign content to menu');
  }
}

This code changes the access callback on the menu form element to our own function. 
Since hook_form_alter() runs after a form is initially built, we can alter any form 
element in this manner.

However, form _validate() and _submit() callbacks are not run through any alter 
functions. This means that any access checks that run during those callbacks will 
always be imposed. Take for instance, the following example from Drupal's core 
node.module, that makes it impossible for normal users to change the author of a 
node or the time it was submitted:

/**
 * Perform validation checks on the given node.
 */
function node_validate($node, $form = array()) {
  $type = node_type_get_type($node);

  if (isset($node->nid) && (node_last_changed($node->nid) >  
                            $node->changed)) {
    form_set_error('changed', t('The content on this page has 
either been modified by another user, or you have already submitted 
modifications using this form. As a result, your changes cannot be 
saved.'));
  }

  if (user_access('administer nodes')) {
    // Validate the "authored by" field.
    if (!empty($node->name) && !($account = user_load_by_name( 
                                            $node->name))) {
      // The use of empty() is mandatory in the context of usernames



Drupal Permissions and Security

[ 234 ]

      // as the empty string denotes the anonymous user. In case we
      // are dealing with an anonymous user we set the user ID to 0.
      form_set_error('name', t('The username %name does not exist.',  
                      array('%name' => $node->name)));
    }

    // Validate the "authored on" field.
    if (!empty($node->date) && strtotime($node->date) === FALSE) {
      form_set_error('date', t('You have to specify a valid date.'));
    }
  }

  // Do node-type-specific validation checks.
  node_invoke($node, 'validate', $form);
  module_invoke_all('node_validate', $node, $form);
}

The inclusion of this access check may add a level of error prevention—in that  
users who cannot 'administer nodes' cannot alter the author without special 
permissions—but it does not make Drupal itself more secure. That is because the 
security for this form element is already set in the $form definition, so its usage  
here is redundant:

// Node author information for administrators
  $form['author'] = array(
    '#type' => 'fieldset',
    '#access' => user_access('administer nodes'),
    '#title' => t('Authoring information'),
    '#collapsible' => TRUE,
    '#collapsed' => TRUE,
    '#group' => 'additional_settings',
    '#attached' => array(
      'js' => array(drupal_get_path('module', 'node') . '/node.js'),
    ),
    '#weight' => 90,
  );

Instead, placing an access check in the validate handler forces a module author to 
work around the code by replacing the core node_validate() and node_submit() 
callbacks, which may introduce additional errors or security holes in the code.

For this reason, module authors are strongly discouraged from running access checks 
during form processing.



Chapter 8

[ 235 ]

Handling AJAX callbacks securely
Drupal 7 comes with an enhanced AJAX framework that makes it easy to build 
interactive display elements for pages and forms. The security problem for Drupal 
is that AJAX callbacks take the form of menu callbacks, which unlike most Drupal 
forms, are essentially GET requests to the browser. This fact means that any request 
to an AJAX callback must be treated as malicious and that all such requests must be 
tested for validity before an AJAX response can be sent.

Using AJAX in forms
When using the #ajax element with the Forms API, Drupal automatically secures 
the AJAX callback by checking the validity of the form request. This action only 
works, of course, if you follow the FormsAPI correctly. Using the #ajax form 
element triggers the ajax_get_form() function, which uses form_build_id to test 
for validity:

function ajax_get_form() {
  $form_state = form_state_defaults();

  $form_build_id = $_POST['form_build_id'];

  // Get the form from the cache.
  $form = form_get_cache($form_build_id, $form_state);
  if (!$form) {
    // If $form cannot be loaded from the cache, the form_build_id
    // in $_POST must be invalid, which means that someone 
    // performed a POST request onto system/ajax without actually
    // viewing the concerned form in the browser.
    // This is likely a hacking attempt as it never happens under
    // normal circumstances, so we just do nothing.
    watchdog('ajax', 'Invalid form POST data.', array(),
             WATCHDOG_WARNING);
    drupal_exit();
  }
// ...

As we saw in the preceding section that form_build_id ensured that the form 
request was issued by the Drupal site and was valid.



Drupal Permissions and Security

[ 236 ]

Using AJAX in other contexts
While form handling of AJAX provides both a tidy API and a security check, we are 
not so lucky when using other AJAX callbacks. To quote Greg Knaddison, member 
of the Drupal security team and author of Cracking Drupal, the definitive work on 
Drupal security:

[I]t is often tempting when building a rich AJAX feature to slip back into creating 
a CSRF vulnerability via GET requests….However, because this practice of taking 
action in response to GET requests is not as common or standard as the form 
system, there is no way to provide this protection automatically or easily.

Cracking Drupal, pg 18.

To understand the point, let's look at a typical AJAX menu callback use case. 
Suppose we want a module that allows users to add or delete items from a list via a 
dynamic AJAX callback. The module might set up something like the following:

function example_menu() {
  $items = array();
  $items['example-ajax/%item/add'] = array(
    'title' => 'Example AJAX add to list',
    'page callback' => 'example_ajax_add',
    'page arguments' => array(1),
    'access arguments' => array('add to my list'),
    'type' => MENU_CALLBACK,
  );
  return $items;
}

function example_ajax_add($item) {
  // Do something.
}

Looking at the preceding code, several issues should be immediately apparent:

The default access callback user_access() is probably insufficient, since we 
are managing a per-user list
The permission add to my list provides no means to check if the user is the 
owner of the list being edited
Simply trying to hide the menu item from the site navigation (through the 
use of the MENU_CALLBACK property) will not prevent other users (or even 
search engine crawlers) from eventually finding the page

•

•

•



Chapter 8

[ 237 ]

As a result, we cannot trust the menu callback to fire any action in  
example_ajax_add() without adding some additional security checks.

First, we know that we need to check the user performing the action. From our 
earlier discussion, this is best handed through an access callback, so we edit  
our declaration:

'access callback' => 'example_access_ajax_add',

To run this check successfully, we also need to know the $user whose list is  
being updated:

$items['example-ajax/%item/add/%user'] = array(

We also need to pass the $user to our access callback:

'access arguments' => array(3),

So our rewritten hook looks like the following code:

function example_menu() {
  $items = array();
  $items['example-ajax/%item/add/%user'] = array(
    'title' => 'Example AJAX add to list',
    'page callback' => 'example_ajax_add',
    'page arguments' => array(1, 3),
    'access callback' => 'example_access_ajax_add',
    'access arguments' => array(3),
    'type' => MENU_CALLBACK,
  );
  return $items;
}

In our access callback, we can now check that the link references the current user. So 
our HTML code will look something like the following:

<a href="/example-ajax/3/add/10">Add to my list</a>

The code to generate this link would run through Drupal's l() function:

if ($user->uid > 0) {
  $output = l(t('Add to my list'), 'example-ajax/'. $item->id .'/
add/'. $user->uid);
  return $output;
}



Drupal Permissions and Security

[ 238 ]

In our callback, the menu system transforms 10 into a standard $user object, which 
we check for validity in two ways:

function example_access_ajax_add($account) {
  global $user;
  if (!$account->uid || $account->uid != $user->uid) {
    return FALSE;
  }
  return TRUE;
}

First, if user_load() returns FALSE, then the page argument is invalid. Second,  
if the returned $account does not match the user making the request, the request  
is invalid.

This is pretty good. It allows our code to check that the user making the AJAX 
request is the currently logged in user. However, how do we know that this  
request came from our server and is not a CSRF attack?

Well honestly, we don't know and we can't know. However, we can be a little 
paranoid and add another layer of security.

Knaddson gives us the key in Cracking Drupal, when he says:

The security team is working on an API to make [securing AJAX callback] much 
easier, but that API is not yet available…The system is based on the same token 
system used to protect Drupal forms.

Cracking Drupal, page 18

To implement this structure, we have to add an additional argument to our  
page callback:

function example_menu() {
  $items = array();
  $items['example-ajax/%item/add/%user/%'] = array(
    'title' => 'Example AJAX add to list',
    'page callback' => 'example_ajax_add',
    'page arguments' => array(1, 3),
    'access callback' => 'example_access_ajax_add',
    'access arguments' => array(3, 4),
    'type' => MENU_CALLBACK,
  );
  return $items;
}



Chapter 8

[ 239 ]

This allows us to pass a Drupal authentication token to our access callback. To make 
this work, we modify our link creation code to include a token:

if ($user->uid > 0) {
  $output = l(t('Add to my list'), 'example-ajax/'. $item->id . 
'/add/'. $user->uid) .'/'. drupal_get_token($user->uid);
  return $output;
}

This will generate a link similar to:

<a href="/example-ajax/3/add/10/c4d312412df415ca0">Add to my list</a>

Then, in our access callback, we check the token string in addition to the user:

function example_access_ajax_add($account, $token = NULL) {
  global $user;
  // Check the validity of the user account.
  if ($account->uid == 0 || $account->uid != $user->uid) {
    return FALSE;
  }
  // Check the validity of the callback token.
  if (empty($token) || !drupal_valid_token($token, $account->uid)) {
    return FALSE;
  }
  return TRUE;
}

Drupal's token handling API performs the validation for us, and we are ensured the 
same protection that is given to regular Drupal forms.

Note that this approach will only work correctly for logged-in users 
who are being served non-cached pages. The link we output to access 
this callback cannot be cached, since caching returns the same HTML 
output to all users.

As a general rule, you only need to worry about token handling for AJAX callbacks 
that perform creative or destructive actions, such as editing a list of user favorites. 
That is because such actions generally write to the database, and can change certain 
settings for your Drupal users. Simple AJAX callbacks that only read and return data 
do not necessarily need to be secured in this manner unless the data is user-specific.



Drupal Permissions and Security

[ 240 ]

Summary
Our coverage of Drupal's permission system should give you all the information you 
need to properly set the access rules for your module.

In this chapter, we have learned the basics of the permission and role system in 
Drupal. We have also seen how to use user_access() to assert permissions. We 
have discussed how hook_menu() handles access control, and also how to use  
hook_permission().

We have seen the importance of granular permission definitions, and when to use a 
function other than user_access() to assert permission control. We discussed how 
to write a custom access control function, and how to respond when access is denied. 
We also saw how to assign and remove permissions using hook_enable() and 
hook_disable().

We learnt how to manage roles programmatically along with the basics of securing 
Drupal forms. Lastly we looked at how to safely handle AJAX callbacks.



Node Access
Out-of-the-box, Drupal is a great system for creating and managing content. Users 
can log in and create content. Proper use of roles and permissions allows site editors  
to review some or all of a site's content. Site visitors can read published posts.

But what happens if you want all site visitors to view some content, but only 
registered users to view a select list of restricted content? If, for example, your site 
requires paid registration to view in-depth articles about how to build Drupal web 
sites, the basic permissions provided by Drupal are not enough.

There are cases where you need more advanced rules regarding which of the 
users (or groups of users) can create, view, edit, and delete content. To enable 
these rules, Drupal provides a Node Access system. Node Access provides an 
API for determining the grants, or permissions, that a user has for each node. By 
understanding how these grants work, a module developer can create and enforce 
complex access rules.

In Drupal 7, any module may declare node access rules. This is a change from 
the earlier versions, and it provides some of the most powerful tools for Drupal 
development.

In this chapter, we will cover:

Node Access compared to user_access() and other permission checks
How Drupal grants node permissions
The node_access() function
hook_node_access() compared to {node_access}
Controlling permissions to create content
Using hook_node_access()
When to write a Node Access module

•

•

•

•

•

•

•



Node Access

[ 242 ]

The {node_access} table and its role
Defining your module's access rules
Using hook_node_access_records()
Using hook_node_grants()
Rebuilding the {node_access} table
Modifying the behavior of other modules
Using hook_node_access_records_alter()
Using hook_node_grants_alter()
Testing and debugging your module
Using Devel Node Access

Node Access compared to user_access() 
and other permission checks
Unlike user_access(), using the Node Access system is not a simple case of 
implementing a specific permission check before executing your code.

As we saw in the last chapter, user_access() determines what code may be 
executed for a specific user under a given set of conditions. Drupal's Node Access 
system is similar, but must account for variable conditions within a given set of 
nodes. For example, certain users may be allowed to edit any Basic page content 
but not allowed to edit any Article content. This condition means that Drupal 
must be able to distinguish among different properties of each node.

The Node Access API is a series of interrelated functions that provide a consistent 
programming interface for making these types of access checks. Due to the flexible 
nature of Drupal however, there are multiple ways to define and implement node 
access control mechanisms. 

How Drupal grants node permissions
As we mentioned in the introduction, there are four fundamental operations that 
affect nodes: Create, View, Update and Delete. Collectively, these are referred to  
as CRUD (where View is replaced by Read). When dealing with nodes, it is vital  
to know which operation is being performed.

•

•

•

•

•

•

•

•

•

•



Chapter 9

[ 243 ]

The Node Access API allows modules to alter how the default Drupal CRUD 
workflow behaves. Normally, Drupal nodes are created by a single user. That user 
"owns" the node and, in most cases, may edit or delete the node at will. Some users, 
like the administrative user 1, may edit any node. But by default, Drupal has no 
concept of group ownership of nodes. Certain roles may be given permission to edit 
all nodes of a type (as shown by the core edit any Article content permission,  
for instance), but out of the box there is no provision for restricting access to view 
that content.

The Node Access API evolved out of the need to define a flexible, extensible set of 
access rules. Much has improved in Drupal 7, so experienced developers will want  
to review this material carefully.

Node Access permissions are checked in two instances: 

When requests to act upon an individual node are made.
When database queries return lists of nodes that match given conditions. 

In order to handle node access securely, module developers need to be mindful of 
both cases.

The first case is fairly simple, and is generally handled by a menu callback and the 
node_access() function. Unless your module intends to interfere with the normal 
handling of node_menu(), you may be able to skip the rest of this chapter.

However, all module developers need to understand the impact of case two. Let's 
highlight it here.

Any database query involving the {node} table must be built 
dynamically and be marked as a node access query. Failure to 
do so can introduce security vulnerabilities on sites running 
your code.

To understand this rule, let's look at a simple example from Drupal core. The 
following query is found in node_page_default(), the function that provides the 
basic node listing page:

  $select = db_select('node', 'n')
    ->fields('n', array('nid'))
    ->condition('promote', 1)
    ->condition('status', 1)
    ->orderBy('sticky', 'DESC')
    ->orderBy('created', 'DESC')
    ->extend('PagerDefault')

•

•



Node Access

[ 244 ]

    ->limit(variable_get('default_nodes_main', 10))
    ->addTag('node_access');

  $nids = $select->execute()->fetchCol();

This select statement uses Drupal 7's query builder to fetch a list of published nodes 
which have been promoted to the front page, ordered by "stickiness" and age. Notice, 
however, the final element of the query: ->addTag('node_access'). 

This directive invokes the node_query_node_access_alter() function which 
allows node access rules to be applied before the query is sent to the database. 
Failure to use the dynamic query builder and the node_access tag will mean that 
your select statement will bypass Drupal's built-in security features. Doing so may 
grant unwanted access to view, edit, or delete content by ignoring the permissions 
defined for the site.

We won't go into the inner workings of node_query_node_access_alter() yet. 
Simply put, it ensures that any query to the {node} table properly enforces the node 
access rules defined for the site.

Because of how this enforcement is handled, however, module developers have a 
near-infinite capacity to modify how Drupal handles access to nodes. The purpose 
of the rest of this chapter is to explain how this system is designed and the best ways 
for you to leverage the Node Access API to meet your specific needs.

The node_access() function
node_access() is the primary access callback for node operations. It is defined in 
node_menu() as the access callback for any attempt to create, view, edit or delete 
a node. The function itself is one of the more complex in Drupal core by virtue of 
the eight separate return statements within the function. Understanding the logic 
behind these returns is the key to using Node Access correctly.

To begin, let's examine the documentation and initial lines of the  
node_access() function:

/**
 * Determine whether the current user may perform the given operation  
 * on the specified node.
 *
 * @param $op
 *   The operation to be performed on the node. Possible values are:
 *   - "view"
 *   - "update"



Chapter 9

[ 245 ]

 *   - "delete"
 *   - "create"
 * @param $node
 *   The node object on which the operation is to be performed, or  
 * node type (e.g. 'forum') for "create" operation.
 * @param $account
 *   Optional, a user object representing the user for whom the  
 * operation is to be performed. 
 * Determines access for a user other than the current user.
 * @return
 *   TRUE if the operation may be performed, FALSE otherwise.
 */
function node_access($op, $node, $account = NULL) {
  global $user;

  $rights = &drupal_static(__FUNCTION__, array());

From reading over the code, we can use our knowledge of Drupal to infer some  
key points:

The $op parameter indicates the node operation being requested.
Creating nodes is a special case, even changing the $node parameter sent to 
the function.
Node Access is a user-driven action. That means it matters who is trying to 
perform the operation.
Node Access in Drupal 7 is statically cached per user for the duration of the 
page request. That means that once set, it cannot be changed until another 
request is sent or drupal_static_reset('node_access') is called.

Recall our discussion of $user and $account in the previous chapter. 
The node_access() function accepts an $account object, but falls back 
to using the global $user object if one is not supplied. This feature allows 
for access checks to be performed for users other than the current user.

A single node may return different answers to an access request depending on who is 
making the request and what request is being made.

•

•

•

•



Node Access

[ 246 ]

The access whitelist
The first check that node_access() makes is to see if the callback was  
invoked correctly:

  if (!$node || !in_array($op, array('view', 'update', 'delete', 
'create'), TRUE)) {
    // If there was no node to check against, or the $op was not one  
    // of the supported ones, we return access denied.
    return FALSE;
  }

This code displays a bit of paranoia not found in most of the Drupal API. Checking 
the validity of the inbound parameters ensures that access is never granted by accident. 
When dealing with access control, defaulting to FALSE (meaning "deny access") is 
the proper behavior.

Caching the result for performance
The next section of code performs three simple sanity checks, plus an optimization 
for the static cache:

  // If no user object is supplied, the access check is for the  
  // current user.
  if (empty($account)) {
    $account = $user;
  }

  // $node may be either an object or a node type. Since node types  
  // cannot be an integer, use either nid or type as the static  
  // cache id.

  $cid = is_object($node) ? $node->nid : $node;

  // If we've already checked access for this node, user and op,  
  // return from cache.
  if (isset($rights[$account->uid][$cid][$op])) {
    return $rights[$account->uid][$cid][$op];
  }

  if (user_access('bypass node access', $account)) {
 $rights[$account->uid][$cid][$op] = TRUE;
    return TRUE;
  }



Chapter 9

[ 247 ]

  if (!user_access('access content', $account)) {
    $rights[$account->uid][$cid][$op] = FALSE;
    return FALSE;
  }

The first if clause ensures that we have a proper $account for the check. 

Remember that even anonymous users generate a valid $account object 
and may have assigned permissions.

The second clause enforces the static cache. This is a performance optimization new  
to Drupal 7.

The third is a user_access() check new to Drupal 7 and allows super-users to pass 
all node access checks and perform all operations on all nodes. This permission was 
split off from the administer nodes permission of prior versions in order to more 
clearly indicate how node access functions. It has the added benefit of allowing more 
granular permissions.

The last is another user_access() check. It simply checks that a user may  
access content on the site. If not, then the user is always denied access to  
all node operations.

Invoking hook_node_access()
To this point, the code is fairly obvious and the intentions are clear: Drupal is 
running basic security checks against known values. At this point, the core node 
module begins querying other modules about the access status of the node. The next 
piece invokes hook_node_access() to check for access rules:

  // We grant access to the node if both of the following conditions  
  // are met:
  // - No modules say to deny access.
  // - At least one module says to grant access.
  // If no module specified either allow or deny, we fall back to the
  // node_access table.
  $access = module_invoke_all('node_access', $node, $op, $account);
  if (in_array(NODE_ACCESS_DENY, $access, TRUE)) {
    $rights[$account->uid][$cid][$op] = FALSE;
    return FALSE;
  }
  elseif (in_array(NODE_ACCESS_ALLOW, $access, TRUE)) {
    $rights[$account->uid][$cid][$op] = TRUE;
    return TRUE;
  }



Node Access

[ 248 ]

Here we see a distinct difference between Drupal 7 and Drupal 6 (and earlier): any 
module may respond to this access check. Prior to Drupal 7, only modules that 
defined a node type could respond, using the old hook_access() function. This 
constraint made it difficult for module developers to modify the business logic for 
node_access(). This is a major change in the Drupal API, and one which we will 
explore in some depth.

The constants NODE_ACCESS_DENY and NODE_ACCESS_ALLOW are set by 
node.module. We will look at these later in the chapter.

Notice also the note in the comments: If no module specified either allow or 
deny, we fall back to the node_access table. The execution order of Node 
Access hooks matters. When we consider the logic for our business rules, we must 
remember that other modules may also have a stake in the access rights to a node.

So far, we're up to five return statements in the code. 

Access to a user's own nodes
The next clause is an exception for handling nodes created by the current user:

  // Check if authors can view their own unpublished nodes.
  if ($op == 'view' && !$node->status && user_access('view own 
unpublished content', $account) && $account->uid == $node->uid && 
$account->uid != 0) {
    $rights[$account->uid][$cid][$op] = TRUE;
    return TRUE;
  }

Drupal assumes that unpublished content should not be visible to users. However, 
the view own unpublished content permission exists to allow authenticated users 
to see their content even if it has not been published. Unless a third-party module 
intervenes, only users with this permission, bypass node access or user 1 may  
view unpublished content.

Invoking the node access API
Now that Drupal has accounted for that special case, the code falls through to the 
{node_access} table for checking permissions.

  // If the module did not override the access rights, use those set  
  // in the node_access table.
  if ($op != 'create' && $node->nid) {



Chapter 9

[ 249 ]

    if (module_implements('node_grants')) {
      $query = db_select('node_access');
      $query->addExpression('1');
      $query->condition('grant_' . $op, 1, '>=');
      $nids = db_or()->condition('nid', $node->nid);
      if ($node->status) {
        $nids->condition('nid', 0);
      }
      $query->condition($nids);
      $query->range(0, 1);

      $grants = db_or();
      foreach (node_access_grants($op, $account) as $realm => $gids) {
        foreach ($gids as $gid) {
          $grants->condition(db_and()
            ->condition('gid', $gid)
            ->condition('realm', $realm)
          );
        }
      }
      if (count($grants) > 0) {
        $query->condition($grants);
      }
      $result =  (bool) $query
        ->execute()
        ->fetchField();
      $rights[$account->uid][$cid][$op] = $result;
      return $result;
    }
    elseif (is_object($node) && $op == 'view' && $node->status) {
      // If no modules implement hook_node_grants(), the default  
      // behavior is to allow all users to view published nodes,  
      // so reflect that here.
      $rights[$account->uid][$cid][$op] = TRUE;
      return TRUE;
    }
  }

Here we get to the heart of the Node Access API. The key is in the function  
node_access_grants(), which defines the permissions for the current user for the 
current operation. Modules respond to this function using hook_node_grants(), 
which we will examine in detail a little later.



Node Access

[ 250 ]

This clause is primarily a query builder function, designed to create the proper join 
from the {node} table to the {node_access} table and then return the result of that 
query. Understanding how that query is constructed – and how the {node_access} 
table is populated – is the key to understanding Node Access.

Dealing with unpublished content
For experienced module authors, one major difference between Drupal 
7 and previous versions is that hook_node_grants() is now invoked 
for unpublished content. Great care must be taken to prevent exposing 
unpublished content to users.

If the Node Access API does not assert rules, this clause will default to allowing 
access to content. But notice that the function does not end here.

elseif (is_object($node) && $op == 'view' && $node->status) {
      // If no modules implement hook_node_grants(), the default  
      // behavior is to allow all users to view published nodes,  
      // so reflect that here.
      $rights[$account->uid][$cid][$op] = TRUE;
      return TRUE;
    }
  }

  return FALSE;
}

At the very end of the function, notice the final return FALSE; statement. From a 
security standpoint, this catch-all ensures that we never grant access by accident. 
Whenever writing an access check, FALSE should be your default return.

hook_node_access() compared to  
{node_access}
For module developers, the two key points to the node_access() function  
are the behaviors of the two hook invocations: hook_node_access() and  
hook_node_grants(). Because of the fundamental difference between how  
the two hooks are implemented, for the rest of the chapter, we will refer to a node  
access module as one that implements hook_node_grants() and writes to the  
{node_access} table. A module that implements hook_node_access() will be 
referred to as an access control module.



Chapter 9

[ 251 ]

hook_node_access() is the simpler of the two systems. It is a self-contained hook that 
allows individual access control modules to pass judgment on a node. Note, however, 
that in Drupal core its use is limited to only three of the four node operations: Create, 
Update and Delete. We can see this clearly in node.module's implementation:

/**
 * Implements hook_node_access().
 */
function node_node_access($node, $op, $account) {
  $type = is_string($node) ? $node : $node->type;

  if (in_array($type, node_permissions_get_configured_types())) {
    if ($op == 'create' && user_access('create ' . $type . ' content', 
$account)) {
      return NODE_ACCESS_ALLOW;
    }

    if ($op == 'update') {
      if (user_access('edit any ' . $type . ' content', $account) || 
(user_access('edit own ' . $type . ' content', $account) && ($account-
>uid == $node->uid))) {
        return NODE_ACCESS_ALLOW;
      }
    }

    if ($op == 'delete') {
      if (user_access('delete any ' . $type . ' content', $account) 
|| (user_access('delete own ' . $type . ' content', $account) && 
($account->uid == $node->uid))) {
        return NODE_ACCESS_ALLOW;
      }
    }
  }

  return NODE_ACCESS_IGNORE;
}

Because hook_node_access() fires before checking the {node_access} table, it 
is used to define the default behavior for node permissions. This behavior is very 
useful for items like creating and editing content according to node type, but it can 
be very limiting when defining the rules for viewing a node. For that reason, Drupal 
core never asserts a value on the View operation for a node.



Node Access

[ 252 ]

Instead, core returns the NODE_ACCESS_IGNORE constant, which indicates that 
access to the View operation should be handled by the {node_access} table.

By default, the {node_access} table contains a single record:

nid gid realm grant_view grant_update grant_delete

0 0 all 1 0 0

This row allows the node access system to generate a default JOIN from the {node} 
table to the {node_access} table that will always return TRUE.

However, if your site is not running any node access modules (that is, no modules 
that implement hook_node_grants()), then no JOIN will be required. In this case, 
all nodes will be returned.

If you install a node access module, however, you will immediately be prompted to 
rebuild content access permissions for the site.

Rebuilding the permissions will update the {node_access} table with the rules 
defined by the module(s) you have installed. When we activate the example module 
we will be building in this chapter, here is the result:



Chapter 9

[ 253 ]

Note that the {node_access} table uses the node id (nid) as its primary key. As a 
result, it can only be used to check access for content that has already been created. 
This means that node access modules cannot assert permissions for the Create 
operation. To do so, your module must implement hook_node_access() and 
respond to the 'create' operation.

Rebuilding the access permissions will also trigger node_query_node_access_
alter() to begin rewriting node queries for the View, Update, and Delete actions.

However, modules that only implement hook_node_access() do not write records 
to the {node_access} table, nor do they impose query altering logic. As a result, 
we might consider hook_node_access() to be an easier (and often more efficient) 
approach to solving the problem of node access.

When using a node access module, Drupal will add a JOIN statement to 
every node query. This can have minor performance implications for your 
site if you have large amounts of content.



Node Access

[ 254 ]

Using hook_node_access()
Drupal 7 replaces the old hook_access() function with hook_node_access(). 
This change was one of the many improvements to come from a work session 
at DrupalCON Szeged in 2008, and credit goes to Larry Garfield (Crell) for 
implementing these changes.

hook_node_access() allows any module to have a say in how node access is 
handled. It does not require database storage, or the use of the rest of the Node 
Access API. Further, it may be applied to any of the four basic CRUD operations.

The hook passes three parameters: 

$node, the complete node object being acted upon, or a node type string in 
the case of the Create operation.
$op, the operation being performed.
$account, the user requesting access to the node for this action.

All three of these parameters will always be populated, and your hook should 
respond according to the specific operation being performed. There are three 
possible return values for each request:

NODE_ACCESS_ALLOW

Indicates that the operation should be permitted. This is an explicit allow, 
and at least one module must return this value for the operation to be 
validated by hook_node_access().
NODE_ACCESS_DENY

Indicates that the operation should not be permitted. This is an explicit deny, 
and if issued, it will cancel any NODE_ACCESS_ALLOW directives issued by 
other modules.
NODE_ACCESS_IGNORE

The default return statement. This value indicates that your module has no 
stake in whether to allow or deny the operation being requested.

A sample access control module
For example, suppose we have the following editorial rule on our site: Any 
authenticated user may post Articles provided he or she has been a member of the site for more 
than two days. (This rule prevents people from creating an account just to post spam 
the site; it also might afford a "cooling" off period before people reply to other posts.)

•

•

•

•

•

•



Chapter 9

[ 255 ]

The basic permission 'create Article content' does not allow for this use case, but a 
quick module using hook_node_access() can. Let's call it the Delay module.

Assuming we have written our module's delay.info file, we can create the 
following file:

<?php

/**
 * Implement hook_node_access().
 *
 * Only allow posts by users with accounts more than two days old.
 */
function delay_node_access($node, $op, $account) {
}

Now we can implement our custom logic controls. First, ignore all operations other 
than create.

 
function delay_node_access($node, $op, $account) {
  if ($op != 'create') {
    return NODE_ACCESS_IGNORE;
  }
}

The proper reply when your module does not wish to assert 
permission to a node is NODE_ACCESS_IGNORE. Failure to return 
this value is an API error.

Second, we ignore all content types other than 'article':

  if ($op != 'create' || $node != 'article') {
    return NODE_ACCESS_IGNORE;
  }

Next, we need to check the information about the user performing the action. 
Registration time data is stored in $account->created as a Unix timestamp,  
so it can be compared to the current time easily.

  // Drupal stores the page request in the constant REQUEST_TIME.
  if (empty($account->created) || $account->created > (REQUEST_TIME 
- (48 * 3600))) {
    return NODE_ACCESS_DENY;
  }



Node Access

[ 256 ]

And we are done, right? Well, we have properly enforced our rules, which is a 
deny statement for users who do not pass the time threshold. However, we have 
not completed our function, since the API requires a return statement from every 
module, so we must add a final note that indicates our indifference to other rules.

return NODE_ACCESS_IGNORE;

Now we are done. In one simple module, in just sixteen lines of code (six of which 
are comments), we have changed the rules for content creation on our site. Here is 
the entire module (except for the delay.info file):

<?php
/**
 * Implement hook_node_access().
 *
 * Only allow posts by users with accounts more than two days old.
 */
function delay_node_access($node, $op, $account) {
  if ($op != 'create' || $node != 'article') {
    return NODE_ACCESS_IGNORE;
  }
  // Drupal stores the page request in the constant REQUEST_TIME.
  if (empty($account->created) || $account->created > (REQUEST_TIME 
- (48 * 3600))) {
    return NODE_ACCESS_DENY;
  }
  return NODE_ACCESS_IGNORE;
}

That's how simple and powerful hook_node_access() can be.

A second access control module
Now, let's take a look at a slightly more complex example. Suppose we want users 
to be able to create content normally, but instead of editing content by type, we want 
them to be able to edit all content created by users who have the same roles that  
they do.

Before we write that code, let's rough out our logic a bit. For the 'Update' operation, 
follow these rules:

1.	 Get the role(s) of the user trying to edit the content.
2.	 Get the role(s) of the user who is the content author.
3.	 If the roles match, allow the user to edit the content.
4.	 If the roles do not match, deny editing access.



Chapter 9

[ 257 ]

It is a good idea to write out such rules and review them with the project sponsor, 
because doing so can reveal the implications of applying the logic you have defined. 
In this case, rule #4 becomes key, because we will explicitly deny access to edit 
content, even for users who might have the edit any Article content permission. 
Doing so might lead to confusion for some users, so we should ensure that this is the 
rule that we want.

We should point out, from a security perspective, that these rules will 
place all 'authenticated users' into the same group. This behavior may be 
desirable, or it may open a risk that all registered site users can edit all 
content. For the purpose of our demonstration module, let's assume that 
this behavior is desired, and that users who need their content protected 
will be given an additional role.

Since this is the behavior we want, the functionality is pretty easy to enforce. Let's 
create a role_edit.module file for this behavior. Our module starts out much like 
the Delay module.

<?php
/**
 * Implement hook_node_access().
 *
 * Allow users to edit all nodes created by their peers.
 */
function role_edit_node_access($node, $op, $account) {
  if ($op != 'update') {
    return NODE_ACCESS_IGNORE;
  }
  // Return the default response.
  return NODE_ACCESS_IGNORE;
}

Since we only care about the Update operation, we ignore all other cases.

The roles for our active user are in the $account->roles property and easily 
accessible. To find the roles of the node's owner, however, we must load the user 
based on the $node->uid.

$owner = user_load($node->uid);

For exact role matching, we can now do an array_diff() on the two user's roles.

$diff = array_diff($account->roles, $owner->roles);



Node Access

[ 258 ]

If the $diff array is empty, then the two users have the same roles and can be 
considered peers.

  if (empty($diff)) {
    return NODE_ACCESS_ALLOW;
  }

Finally, we want to change our default return value, since our rule #4 indicated we 
want strict access control enforced. So if the diff returns a value, we deny access:

return NODE_ACCESS_DENY;

And that's the entire module. 17 lines of code:

<?php
/**
 * Implement hook_node_access().
 *
 * Allow users to edit all nodes created by their peers.
 */
function role_edit_node_access($node, $op, $account) {
  if ($op != 'update') {
    return NODE_ACCESS_IGNORE;
  }
  $owner = user_load($node->uid);
  $diff = array_diff($account->roles, $owner->roles);
  if (empty($diff)) {
    return NODE_ACCESS_ALLOW;
  }
  return NODE_ACCESS_DENY;
}

If we wanted to optimize this code, we could add in two additional checks. The first 
simply checks for a user id match, and removes the need for the array_diff():

  if ($account->uid == $node->uid) {
    return NODE_ACCESS_ALLOW;
  }
  $owner = user_load($node->uid);

The second would use drupal_static() to avoid running user_load() multiple 
times for the same user id.

  $owners = &drupal_static(__FUNCTION__);
  if (!isset($owners[$node->uid])) {
    $owners[$node->uid] = user_load($node->uid);
  }



Chapter 9

[ 259 ]

On node listing pages, this hook will often be called multiple times. 
You may be able to optimize your code by using drupal_static() to 
remove repeated queries to the database. Using the Devel module can 
help you find redundant queries that would benefit from static caching: 
http://drupal.org/project/devel

Now our module is 23 lines of optimized code:

<?php
/**
 * Implement hook_node_access().
 *
 * Allow users to edit all nodes created by their peers.
 */
function role_edit_node_access($node, $op, $account) {
  if ($op != 'update') {
    return NODE_ACCESS_IGNORE;
  }
  if ($account->uid == $node->uid) {
    return NODE_ACCESS_ALLOW;
  }
  $owners = &drupal_static(__FUNCTION__);
  if (!isset($owners[$node->uid])) {
    $owners[$node->uid] = user_load($node->uid);
  }
  $diff = array_diff($account->roles, $owners[$node->uid]->roles);
  if (empty($diff)) {
    return NODE_ACCESS_ALLOW;
  }
  return NODE_ACCESS_DENY;
}

We could possibly optimize this further by statically storing the $diff results, but 
that is probably unnecessary and adds little to our example.

The same types of logic could be applied to the Delete operation for nodes as well.

View operations and access control modules
While hook_node_access() can be applied to all CRUD operations, it is very rarely 
applied to the View operation and Drupal core never does so. Module authors are 
strongly encouraged to always return NODE_ACCESS_IGNORE for the View operation 
so that the Node Access API may function as expected.



Node Access

[ 260 ]

The reasoning behind this rule is that advanced access rules are more likely to be 
applied to the View operation; many sites only require access restrictions on who can 
view content because only editors and administrators may create content. 

If you implement hook_node_access() on the View operation, you 
are likely to alter the expected node access behavior in ways that make 
debugging difficult for the site owner and other module developers. 
Therefore, only node access modules should assert rules on the View 
operation; access control modules should refrain from doing so.

If you think you must enforce View rules in hook_node_access(), please  
clearly document that you have done so on your module's project page and  
in an accompanying README.txt file.

When to write a node access module
Clearly, hook_node_access() is a very powerful function. As we have seen, many 
common use-cases can be solved in just a few lines of code. So it is important for 
module developers to consider when to use hook_node_access() to implement 
access control as opposed to a complete node access module.

Since access control modules should not respond to the View operation, node access 
modules become necessary any time you need to use access rules to restrict access 
to the nodes that a user may view. The reason for this has to do with how Drupal 
builds its access controls when listing nodes. hook_node_access() is only effective 
for running access checks against individual nodes – a fact made clear by the fact that 
the $node object is passed as a parameter.

However, hook_node_access() is no use to us when generating a list of nodes, for 
three reasons:

It provides no means to alter a node listing query to produce a proper list of 
accessible nodes.
Running an individual lookup function for every node on a page can be 
resource intensive.
An implementation of hook_node_access() can overrule the behavior 
defined by other modules, which may not be desirable.

While it is tempting to solve all your access needs with hook_node_access(), doing 
so limits the flexibility of your module. hook_node_access() is recommended for 
single use-case modules, particularly those written for a specific site or project.

•

•

•



Chapter 9

[ 261 ]

Writing a complete node access module, on the other hand, is a more complex task, 
and one that we will examine in detail in the rest of this chapter. The advantages to 
writing a node access module are:

Node access modules can work in conjunction with other modules to provide 
flexible access control rules.
Node access rules set by one module may be modified by any other module, 
whereas hook_node_access() implementations cannot.
Node access modules typically address common usage scenarios and are 
therefore re-usable by more people. While this is not a technical advantage,  
it is a great reason to contribute code to the Drupal project. 

The {node_access} table and its role 
The primary difference between access control modules and node access modules 
is the use of the {node_access} table. When a node access module is installed, 
database queries for the {node} table can be JOINed to the {node_access}  
table in order to delimit the list of returned values.

By default, the {node_access} table contains a single record which allows all 
content to be viewed by all users (except those who cannot access content,  
as we saw when looking at the node_access() function).

When a node access module is enabled, however, this default record is removed,  
and node queries will be modified appropriately. Let's look again at a sample  
query-builder function that returns a simple list of published nodes:

$select = db_select('node', 'n')
    ->fields('n', array('nid'))
    ->condition('promote', 1)
    ->condition('status', 1)
    ->orderBy('sticky', 'DESC')
    ->orderBy('created', 'DESC')
    ->extend('PagerDefault')
    ->limit(10)
    ->addTag('node_access');

  $nids = $select->execute()->fetchCol();

•

•

•



Node Access

[ 262 ]

When executed, the following query is passed to the database:

SELECT n.nid FROM node n WHERE n.promote = 1 AND n.status = 1 ORDER BY 
n.sticky DESC, n.created DESC LIMIT 0, 10;

The above query means:

Select the first ten distinct node ids for published and promoted nodes, ordered by 
"stickiness" and age.

If we have a node access module enabled, however, hook_query_alter() will fire 
the node_query_node_access_alter() function, which will rewrite the query by 
adding a conditional JOIN to the node access table. 

Drupal 7's database API uses the add_tag() method to register 
hook functions. The value passed to the method – here node_access 
– informs the name of the alter hook. Query alters take the format 
hook_query_TAG_NAME_alter().

Our sample node access query looks like so after it has been processed by  
node_query_node_access _alter():

SELECT DISTINCT(n.nid) FROM node n INNER JOIN node_access na ON n.nid 
= na.nid WHERE (n.promote = 1) AND (n.status = 1) AND (((na.gid = 
0) AND (na.realm = 'all')) OR (((na.gid = 2) AND (na.realm = 'role_
access'))) AND na.grant_view >= 1) ORDER BY n.sticky DESC, n.created 
DESC LIMIT 0, 10;

In plain English, here's what it means:

Select the first ten distinct node ids for published and promoted nodes, ordered by 
"stickiness" and age, provided that one of the following conditions is true: 1) The 
default 'all users may view all nodes' rule is still in effect; or, 2) At least one of the 
current user's access grants allows access to view the node.

That's a whole lot to take in, so we'll unpack it some more.

When node_query_node_access_alter() runs, it asks a few basic questions before 
altering the query. These are:

Can this user access all content?

This request is carried out by the node_access_view_all_nodes() function, 
which checks to see if any node access modules are enabled, what the user's 
permissions are, and if access is granted by the default 'view all content' 
record. If TRUE, then the alter query exits without changing the query.

•



Chapter 9

[ 263 ]

Can this user bypass node access?
New in Drupal 7, the bypass node access permission has been split from the 
administer nodes permission. This permission allows super-users to ignore 
all node access rules (including those enforced by hook_node_access()). 
Normally, this permission is only retained by user 1, but on some sites, select 
roles should always be allowed to view all nodes.

What node access permissions does this user have?
Here, the function calls node_access_grants() to determine what node 
access permissions the user account has been granted. These grants are 
returned by your module's hook_node_grants() function. Each returned 
grant is used to create a new OR clause in the final node access query.

Note that we said OR clause. This is crucial. Node access in 
Drupal is still a permissive system. If you are using multiple 
node access modules and one grants access, that access 
cannot be taken away by another node access module's 
grants. There are, however, ways to enforce "deny" grants 
through either hook_node_access() or hook_node_
grants_alter(), which we will discuss later.

What action are we performing?
The last question checks the operation being performed (View, Update, or 
Delete) in order to add the proper access clause against the grant_view, 
grant_update, or grant_delete columns of the {node_access} table.

Unlike hook_node_access(), the query runs against the {node_access} table 
and does not care which individual node we are trying to view, update, or delete. 
Instead, the node access system here provides a layer of abstraction so that listing 
queries can be properly filtered according to the site's access rules.

{node_access} table schema explained
The {node_access} table works by storing the necessary information for running a 
proper JOIN to the {node} table based on the conditions described above. To fully 
understand how the above query example works (and to plan your node access 
module), let's examine the structure of the table itself.

•

•

•



Node Access

[ 264 ]

The {node_access} table contains six columns, each with a specific role in the API.

nid is an integer and is the foreign key to the {node} table, used as the JOIN 
field for SELECT statements.
gid is an integer and represents the grant id declared by a node access 
module. All gids are paired with an appropriate realm, as defined by  
the module.
realm is a string (maximum 255 characters) that indicates the name of the 
access rule assigned by a module. Modules may define multiple realms, and 
each realm may have multiple gids. Taken together, a realm/gid pair creates 
a specific access grant for the given node id.
grant_view is an integer that provides a Boolean value indicating that  
the grant in this row allows the node to be viewed by users with the  
proper permission.
grant_update is an integer that provides a Boolean value indicating that  
the grant in this row allows the node to be edited by users with the  
proper permission.
grant_delete is an integer that provides a Boolean value indicating that  
the grant in this row allows the node to be deleted by users with the  
proper permission.

Taken together, each row of the {node_access} table defines a rule set for a node. A 
node may have more than one rule set. Note that the {node_access} table itself does 
not care about the publication status of the node. When defining your modules's 
realms, you should take into account how to handle access to unpublished content.

Because they can write multiple records to the {node_access} 
table and add JOINs to most node queries, node access modules 
can be resource intensive. In order to keep performance high, 
sites that plan to use node access modules should generally allow 
for 5-10% additional processing power for the database server.

Defining your module's access rules
Now that we understand how Drupal limits access to nodes, we are ready to explore 
the API for module developers. Before we write any code, however, we should  
write out the access rules we wish to enforce and review them for accuracy and 
potential trouble.

•

•

•

•

•

•



Chapter 9

[ 265 ]

For our test module, we want to leverage Drupal's role system to create tiers of users. 
Each member of a role will only be able to View, Edit, or Delete content created by 
other members of that role. Some users, however, may not be allowed to Edit or 
Delete content, so our module needs to separate the three permissions properly.

Written out, here is what our rule set looks like:

1.	 All users will be assigned to one or more roles.
2.	 All nodes will be assigned grants based on the role(s) of the node author.
3.	 Users will be assigned individual grants for the View, Update, and Delete 

actions based on their assigned roles and permissions.
4.	 Users with the proper permission will be able to View, Update, and Delete a 

node, regardless of its publication state.
5.	 If the author of a node changes, the grants for that node will change.
6.	 If the author of a node is assigned new roles, the grants for the author's nodes 

will not be altered unless the nodes are updated.

These rules all seem pretty straightforward, except for 
rule #6. To be honest, we put in rule #6 to prevent us from 
having to write additional code to handle this case, which 
would merely complicate our example. However, when 
writing a node access module, you need to keep in mind all 
the variables that may affect how your rule sets are enforced. 

Remember:

Node access rules are recalculated and stored every time a node is saved
User access grants are calculated for every page request
Node access rules must be rebuilt for the entire site any time a node access 
module is added or removed
Node access grants may be different for each of the three operations – View, 
Update, and Delete – even for the same user

Your module needs to be aware of the greater context in which its rules operate.  
So writing out the expected behavior of the module – and posting that definition  
in a README file and as online and module help documentation – is a key part  
to writing a good node access module.

Based on the rules and guidelines above, we have a good idea how to write our 
module. Let's call it Role Access and get to work.

•

•

•

•



Node Access

[ 266 ]

Creating the role access module
We begin with the standard module .info file and a stub .module file, as  
shown below:

; $Id$
name = Role Access
description = Limit content access by user role.
core = 7.x
files[] = role_access.module

Save this as role_access.info inside a /sites/default/modules/role_access/ 
directory.

Then create a stub role_access.module file:

<?php

// $Id$

/**
 * @file
 * Role access module file.
 *
 * Provides a simple content access scheme based on the
 * author's role.
 */

Now we are ready to begin building our module. The code in the next sections will 
all add to this base file.

Using hook_node_access_records()
Enforcing rules with a node access module takes two parts. The first is writing 
your module's rules to the {node_access} table. This action is performed with the 
hook_node_access_records() function. This function is called every time a node 
is created or updated. It is your module's responsibility to respond appropriately to 
this hook.

When creating or updating nodes, modules should never perform 
direct database queries to {node_access}. Doing so breaks the API 
because other modules can no longer rely on the expected behavior of 
the node access system.



Chapter 9

[ 267 ]

When hook_node_access_records() fires, it passes a single parameter, the $node 
object being acted upon. Our module must respond based on the information in the 
$node object or be able to derive its rules from that information.

This last statement may seem obvious, but bears repeating. If 
your business rules rely on special information not found in the 
default $node object, it is your responsibility to add that data 
using hook_node_load(). We will look at this in more detail 
later in this chapter.

For Role Access, we need to know the roles assigned to the user who authored  
the node. 

/**
 * Implement hook_node_access_records().
 *
 * We want to store a row for each role assigned
 * to the author of the content.
 *
 */
function role_access_node_access_records($node) {
  // First get the user record. Note that we avoid using $user here,
  // since that is the global $user object.
  $account = user_load($node->uid);

  // Now, get the roles array from the $account object.
  $roles = array_keys($account->roles);

Here we use the Drupal API to grab the roles assigned to the node author. The use of 
array_keys() in the last line means that we will be given a simple array of role ids. 
These role ids will be used as the grant ids that we store in the {node_access} table. 
A typical $roles result will look like this if we var_dump() its value:

array(2) {   
  [0]=> int(2)
  [1]=> int(4)
}



Node Access

[ 268 ]

From here, we are required to build a well-formed $grants array which defines the 
rules for our module. This array matches the schema of the {node_access} table and 
adds a 'priority' key. For our module, we return an array element for each role:

  // Initialize a $grants array.
  $grants = array();

  // Iterate through the $roles and get our grants.
  // We use the role id as the grant id, so let's name it that way for 
clarity.
  foreach ($roles as $grant_id) {
    $grants[] = array(
      'realm' => 'role_access', // The name of our module.
      'gid' => $grant_id,
      'grant_view' => 1,
      'grant_update' => 1,
      'grant_delete' => 1,
      'priority' => 0, // If not zero, other grants are ignored.
    );
  }
  // Return our grants.
  return $grants;
}

Inspecting the output of this code shows us:

    $grants[0] = array(
      'realm' => 'role_access',
      'gid' => 2,
      'grant_view' => 1,
      'grant_update' => 1,
      'grant_delete' => 1,
      'priority' => 0,
    ),
    $grants[1] = array(
      'realm' => 'role_access',
      'gid' => 4,
      'grant_view' => 1,
      'grant_update' => 1,
      'grant_delete' => 1,
      'priority' => 0,
    );

Note that we do not need to identify the node itself. The API handles that for us. 



Chapter 9

[ 269 ]

A few things to consider when returning your node grants.

Your module may assert one or more 'realms' as appropriate to your  
business logic.
The 'realm' must be a string unique to your module. Namespace your grant 
with the name of the module. If you only store one grant, use the name of the 
module as the realm.
The three grants are each checked separately to determine permissions. This 
means that you may define all three grants (view, update and delete) in a 
single statement. 
The 'priority' element is deprecated for Drupal 7. It can be used to discard 
the grants set by other modules. However, this is best done through the 
new hook_node_access_records_alter(). (See http://drupal.org/
node/686858 for details.)
Your grants declarations must be integers (0 or 1) and not Boolean TRUE or 
FALSE. Drupal 7's database layer uses stricter variable typing than Drupal 6 
and below, so be sure to update your legacy code.
The {node_access} table does not distinguish between published and 
unpublished nodes. Only trusted users should be given permission to access 
unpublished content.

We have now established our rules in the database. Let's examine the second part of 
the node access system.

Right now, if we save a node with our module in this form, nothing 
happens. Why?  Because the Node Access API assumes that your 
module also implements hook_node_grants(). Without that 
hook, your records will not be stored. Drupal does this to save 
database overhead associated with storing unused records.

Using hook_node_grants()
For every page request involving nodes, Drupal queries the enabled modules for 
the node access grants that are in force for the current user. Modules respond to this 
query using hook_node_grants().

Unlike hook_node_access_records(), which is node-centric, hook_node_grants() 
is user-centric. The hook passes two parameters: 

$account – the user object of the person viewing the page.
$op – the operation being performed (view, update or delete).

•

•

•

•

•

•

•

•



Node Access

[ 270 ]

Note that we do not have access to the $node object here. This is because the node 
access API is used to provide advanced filtering of queries, both for single nodes and 
for groups of nodes. This level of abstraction is what makes node access work.

So our Role Access module must determine what permissions our current user has. 
This is a fairly simple operation, since user roles are attached to the $account object:

/**
 * Implement hook_node_grants().
 */
function role_access_node_grants($account, $op) {
  // Get the user roles.
  $roles = array_keys($account->roles);

  // Error checking.
  if (empty($roles)) {
    return array();
  }

  // Initialize a $grants array.
  $grants = array();

  // Iterate through the roles.
  foreach ($roles as $grant_id) {
    $grants['role_access'][] = $grant_id;
  }

  // Return the grants.
  return $grants;
}

Again, we are expected to return a $grants array. This array is keyed by the realm(s) 
of our module. Each realm may then declare an array of grant ids.

These values are then concatenated for all modules on the site, and a final $grants 
array is constructed. This array is used to alter queries to the {node} table in order  
to enforce our node access rules.

These grants must match those provided in hook_node_access_records(), 
otherwise, the grants will fail and the operation will be denied.



Chapter 9

[ 271 ]

Security considerations
The above code works just fine. But there is a potentially dangerous flaw in its logic: 
we do not account for variations of the different operations. As written, the module 
gives View, Update, and Delete access to all nodes based on user role. This could be 
a huge problem if we don't want some roles to delete content.

One way to correct this issue is to leverage the core permission system to establish 
additional rules that our module implements. We can assign specific permissions  
to allow each role access to the various operations.

If you recall Chapter 8, Drupal Permissions and Security, implementing  
hook_permission() gives us an easy way to do this.

/**
 * Implement hook_permission().
 *
 * Define our modules permissions as follows:
 *  -- view role access content
 *  -- update role access content
 *  -- delete role access content
 *
 * Naming these properly helps avoid conflicts with other modules.
 * Note that we name these based on the $op value passed by
 * hook_node_grants(). This allows us to use string concatenation
 * when doing our access check.
 */ 
function role_access_permission() {
  return array(
    'view role access content' =>  array(
      'title' => t('View role-restricted content'),
      'description' => t('Allow users to view content assigned by 
role.'),
    ),
    'update role access content' =>  array(
      'title' => t('Edit role-restricted content'),
      'description' => t('Allow users to edit content assigned by 
role.'),
    ),
    'delete role access content' =>  array(
      'title' => t('Delete role-restricted content'),
      'description' => t('Allow users to delete content assigned by 
role.'),
    ),
  );
}



Node Access

[ 272 ]

Once we have these permissions in place, we can simply enforce them inside  
hook_node_grants(). We must add the permission logic to our foreach loop.

function role_access_node_grants($account, $op) {
  // Get the user roles.
  $roles = array_keys($account->roles);

  // Error checking.
  if (empty($roles)) {
    return array();
  }

  // Initialize a $grants array.
  $grants = array();

  // Iterate through the roles.
  foreach ($roles as $grant_id) {
    // Check the permission callback!
    if (user_access($op . ' role access content')) {
      $grants['role_access'][] = $grant_id;
    }
  }

  // Return the grants.
  return $grants;
}

Now we have a mechanism for restricting the access rules based on the operation 
being performed. Our  recommended configuration looks like this:



Chapter 9

[ 273 ]

Rebuilding the {node_access} table
One of the trickier parts of the node access system is rebuilding the {node_access} 
table. When you first install a node access module, you will notice a warning at the 
top of the configuration page, prompting you to rebuild permissions.

As a site administrator, you should always rebuild permissions when prompted 
to do so. As a module developer, you are responsible for ensuring that those 
permissions are rebuilt correctly.

In our example module code, we avoided this issue by relying on data that is 
always present in the $node object, the user's identity, from which we can derive the 
user's roles. However, if your module relies on data not stored by Drupal core or 
contributed modules – both of which should be listed as dependencies[] in your 
module.info file – then it is your responsibility to store the data necessary to rebuild 
the {node_access} table properly.

For example, let's look quickly at the Domain Access module. This module stores 
information about its grants in the {domain_access} table, which mirrors much  
of the data in {node_access}. The table schema is as follows:

$schema['domain_access'] = array(
    'fields' => array(
      'nid' => array('type' => 'int', 'unsigned' => TRUE, 'not null' 
=> TRUE, 'default' => 0),
      'gid' => array('type' => 'int', 'unsigned' => TRUE, 'not null' 
=> TRUE, 'default' => 0),
      'realm' => array('type' => 'varchar', 'length' => '255', 'not 
null' => TRUE, 'default' => '')),
    'primary key' => array('nid', 'gid', 'realm'),
    'indexes' => array(
      'nid' => array('nid')),
  );



Node Access

[ 274 ]

Domain Access keeps track of two separate realms, but sets all three grant operations 
to TRUE for each node. So this table stores just the data necessary to rebuild the node 
access table.

To ensure that your data is present during rebuild, your module should implement 
hook_node_load(). This will ensure that the data required by your implementation 
of hook_node_access_records() is available to you.

It is important to load this data in hook_node_load() rather than 
inside hook_node_access_records() for the following reason. Other 
modules may wish to act based on your data – particularly modules 
that implement hook_node_access_records_alter(). While 
hook_node_load() allows the $node object to be altered and extended, 
hook_node_access_records() does not. So it is your module's 
responsibility to ensure that the data used by your node access logic is 
loaded onto the $node object properly.

Since the Role Access module can always access $node->uid to derive its data, we 
won't worry about data storage for our module.

Modifying the behavior of other modules
Our choice of Role Access as a sample module was deliberate for two reasons: first, 
we can ignore the data storage issue discussed above; second, the role system gives 
us a good opportunity to look at how other modules may modify the behavior of 
node access modules.

If you saved and installed the Role Access code to this point, you will see that it 
works just fine, but with two potential issues.

For most sites, anonymous users are not allowed to create content but they 
are allowed to view content. Since Role Access restricts the View operation 
to users with the same role, this would mean that anonymous users cannot 
view any content.
All custom roles are also tagged as authenticated users (role id 2). This means 
that any content created by someone in an 'administrator' role would also be 
tagged for authenticated users. This seems too permissive.

We could write some logic into the Role Access module to handle these use cases, 
but it may also be the case that the default functionality is proper. So rather than 
edit the module or create some special module settings and exception handling, in 
Drupal 7 we can write a simple extension module that will modify the behavior of 
the parent module.

•

•



Chapter 9

[ 275 ]

Using the new hook_node_access_records_alter() and hook_node_grants_
alter(), we can fundamentally alter how any other node access module behaves.  
To do so, we will create the Role Access Extend module to implement our  
optional behaviors.

Using hook_node_grants_alter()
When using node access alter hooks, we must decide: Should we alter what is saved 
in the database {node_access} or should we alter how the user interacts with the 
stored data? Since we might want to turn this module off, the best solution is to leave 
{node_access} alone and instead alter the grants on page load. We do this with the 
new Drupal 7 hook_node_grants_alter().

hook_node_grants_alter() is a very powerful hook. After Drupal has gathered all 
the node access permissions set by your site's modules, this hook fires and allows a 
module to modify the cumulative $grants array by reference. In structure, the hook 
looks much like hook_node_grants(). It passes &$grants, plus the requesting user's 
$account object and the requested $op.

To make our first rule work, we need to control the View operation and decide 
which user roles may view content as if they were in the authenticated user  
role. First, we create our role_access_extend.info file, and then we create a  
role_access_extend.module.

<?php

// $Id$

/**
 * @file
 * Role Access Extend
 * Additional configuration options for Role Access.
 */

We know that we need a configuration option to allow anonymous users to view 
content as authenticated users. Rather than create a new setting, we can again 
leverage the permission system:

/**
 * Implement hook_permission().
 */
function role_access_extend_permission() {
  return array(
    'view role access as authenticated user' =>  array(



Node Access

[ 276 ]

      'title' => t('View role-restricted content as authenticated 
user'),
      'description' => t('Allow anonymous users to view content 
created by authenticated users. Lack of this permission removes access 
for users in custom roles.'),
    ),
  );
}

So now we have a new permission setting:

We can then use hook_node_grants_alter() to modify the permissions that 
anonymous (and other users) have. To do so, we have to understand the format  
for the $grants array that is passed to our hook.

Drupal gathers these grants with the node_access_grants() function, which 
combines all module grants into a single associative array of arrays. The $grants 
array keys are the realms of access control; and the array associated to these keys 
indicate the grant ids that are active for that realm. A var_dump() of a typical 
$grants array looks like so:

array(1) { 
  ["role_access"] => array(1) { 
    [0] =>  int(2),
    [1] =>  int(4),
  } 
}



Chapter 9

[ 277 ]

We may alter any element of this array, adding or removing items that suit our 
business rules. Remember, however, that the resulting array will be used to write a 
JOIN query to the {node_access} table. It may help to read the above array in that 
context. A standard node query might run a simple SELECT:

SELECT title, nid FROM node WHERE status > 0 ORDER BY sticky, created 
LIMIT 10;

When the node access grants are applied, the query will be executed as:

SELECT n.title, n.nid FROM node n INNER JOIN node_access na ON n.nid = 
na.nid WHERE (na.realm = 'role_access' AND na.gid = 2) AND n.status > 
0 ORDER BY sticky, created LIMIT 10;

As a module author, it is your responsibility to understand how these queries will be 
rewritten so that your code can produce the desired results.

Remember that the grant ids are the array values, not the array 
keys for your node access realm!

Now that we know how the query will be affected, we can write the code to add the 
grant necessary to make anonymous users act like authenticated users. 

/**
 * Implement hook_node_grants_alter().
 */
function role_access_extend_node_grants_alter(&$grants, $account, $op) 
{
  // We only act on the 'view' operation.
  // If our grant is not present, do nothing.
  if ($op != 'view' || !isset($grants['role_access'])) {
    return;
  }

  // Get the defined role id for 'authenticated user'.
  $rid = DRUPAL_AUTHENTICATED_RID;

  // Check the permission and set the grant.
  if (user_access('view role access as authenticated user')) {
    $grants['role_access'][] = $rid;
  }
}



Node Access

[ 278 ]

This code will grant anonymous users with the proper permission access to View 
content as if they were authenticated. 

Security warning! 
Be very careful with any code that provides this type of privilege 
escalation. For instance, if we failed to check that $op == 'view' we 
would be giving anonymous users permission to View, Update and 
Delete all content on the site!

The above example is great, but what if we want to restrict custom roles to only view 
content created by people in those roles? That is, we might need to remove the ability 
to View content as an authenticated user. With a slight modification to the code, we 
can do so:

/**
 * Implement hook_node_grants_alter().
 */
function role_access_extend_node_grants_alter(&$grants, $account, $op) 
{
  // We only act on the 'view' operation.
  // If our grants is not present, do nothing.
  if ($op != 'view' || !isset($grants['role_access'])) {
    return;
  }
  // Check the permission.
  $access = user_access('view role access as authenticated user');

  // Get the defined role id for 'authenticated user'.
  $rid = DRUPAL_AUTHENTICATED_RID;

  // Check authenticated users.
  if ($account->uid > 0) {
    // Users with more than one role should have 'authenticated users'  
    // removed.
    if (count($account->roles) > 1 && in_array($rid, $grants['role_
access']) && !$access) {
      // The grants array is in the order $grants[$realm][$key] =>  
      // $value, so flip it, unset, and flip back.
      $grants['role_access'] = array_flip($grants['role_access']);
      unset($grants['role_access'][$rid]);
      $grants['role_access'] = array_flip($grants['role_access']);
    }
  }



Chapter 9

[ 279 ]

  // Check anonymous users.
  else if ($access) {
    $grants['role_access'][] = $rid;
  }
}

With this code in place, we can easily assign the proper permissions to allow roles to 
view content as if they were authenticated users.

Using hook_node_access_records_alter()
This is great! Using very little code, we have made a major change to the business 
logic of the Role Access module, something that was nearly impossible prior  
to Drupal 7.

We still have a problem, however. Since all custom roles are also given the 
'authenticated user' role, we are storing grants in the {node_access} table that may 
be too permissive.  It may be that we do not want to store the records at all. So we 
have another hook we can use, in conjunction with a new permission.

First, we edit role_access_extend_permission():

/**
 * Implement hook_permission().
 */
function role_access_extend_permission() {
  return array(
    'view role access as authenticated user' =>  array(
      'title' => t('View role-restricted content as authenticated 
user'),
      'description' => t('Allow anonymous users to view content 
created by authenticated users. Lack of this permission removes access 
for users in custom roles.'),
    ),
    'assign role access as authenticated user' =>  array(
      'title' => t('Save role-restricted content as authenticated 
user'),
      'description' => t('Save new and updated content so that 
authenticated users have permissions. <em>Normally this is set to 
off.</em>'),
    ),
  );
}



Node Access

[ 280 ]

This permission will inform our use of hook_node_access_records_alter().

hook_node_access_records_alter() is almost identical to hook_node_access_
records(). The function passes the &$grants array by reference, plus the $node 
being acted upon.

/**
 * Implement hook_node_access_records_alter().
 *
 * If a user saves content, make sure that an access record for the
 * 'authenticated user' role should actually be stored.
 */
function role_access_extend_node_access_records_alter(&$grants, $node) 
{

If we run a var_dump() on the typical $grants being passed to this function, we see 
an array that should seem familiar:

array(2) {
  [0]=>
  array(6) {
    ["realm"]=> string(11) "role_access"
    ["gid"]=> int(2)
    ["grant_view"]=> int(1)
    ["grant_update"]=> int(1)
    ["grant_delete"]=> int(1)
    ["priority"]=> int(0)
  }
  [1]=>
  array(6) {
    ["realm"]=> string(11) "role_access"
    ["gid"]=> int(5)
    ["grant_view"]=> int(1)
    ["grant_update"]=> int(1)
    ["grant_delete"]=> int(1)
    ["priority"]=> int(0)
  }
}

What we need to do is make sure that the realm 'role_access' only returns grant id 2 
if the user's role allows it. So we run a check for the user's permissions and modify 
the $grants array as needed.

  // We cannot use the global $user here; we want the creator/editor 
of the content.
  $account = user_load($node->uid);



Chapter 9

[ 281 ]

  // Check the permission.
  $access = user_access('assign role access as authenticated user', 
$account);
  
  // Get the defined role id for 'authenticated user'.
  $rid = DRUPAL_AUTHENTICATED_RID;

  // Now add the role.
  if ($access) {
    $grants['role_access'][] = array(
      'realm' => 'role_access',
      'gid' => $rid,
      'grant_view' => 1,
      'grant_update' => 1,
      'grant_delete' => 1,
      'priority' => 0,
    );
  }
  // Or take it away.
  else {
    foreach ($grants as $key => $grant) {
      if ($grant['realm'] != 'role_access') {
        continue;
      }
      if ($grant['gid'] == $rid) {
        unset($grants[$key]);
      }
    }
  }
}

When this code runs, our $grants will be modified as needed, and the records sent 
to the {node_access} table will reflect our new permissions. Another var_dump() 
looks like so:

array(1) {
  [1]=>
  array(6) {
    ["realm"]=> string(11) "role_access"
    ["gid"]=> int(5)
    ["grant_view"]=> int(1)
    ["grant_update"]=> int(1)
    ["grant_delete"]=> int(1)
    ["priority"]=> int(0)
  }
}



Node Access

[ 282 ]

Now we have an advanced rule set that gives us a great deal of flexibility, and you 
have two new hooks in your Drupal toolkit.

Testing and debugging your module
Testing and debugging node access modules presents a particular challenge in 
Drupal, largely because most access rules are user-based. That fact, combined with 
user 1's ability to bypass all access checks, means that you cannot test node access 
module through the browser while logged in as user 1. Nor can you test while 
logged in as any user who has the bypass node access permission, since that 
permission causes the entire node access system to be ignored, granting the user 
View, Update, and Delete permission to all nodes.

While we don't have space to write up a Simpletest suite for our module here, there 
are a few simple tricks you can remember to make your development (and support!) 
life easier.

Never test as user 1 or a user who can bypass node access.
You can use hook_node_load() and hook_node_view() to append your 
modules rule set to the node object for display. If you do so, be sure only to 
display this information to trusted users.
Remember to examine the contents of {node_access} after a node is saved. 
Be sure the rules in the table reflect the logic of your code.
Be sure that the data you need to store your rules is loaded onto the $node 
object so you can safely rebuild {node_access} when you need to.
Be sure to test access to both published and unpublished content.

These guidelines will help, but there is a better, faster, and easier way to debug your 
working code.

Using Devel Node Access
The Devel Node Access module is part of the Devel module suite (http://drupal.
org/project/devel). The module is maintained by salvis (http://drupal.org/
user/82964) and gives you a browser-based view into how node access rules are 
being enforced on your site.

•

•

•

•

•



Chapter 9

[ 283 ]

The key to Devel Node Access is its own internal hook system, which allows node 
access modules to declare a readable summary of their rules. Writing this hook is 
good practice, since it helps you articulate what your module does.

Using hook_node_access_explain()
hook_node_access_explain() is a function that should be responded to only by the 
module that sets the grants returned by hook_node_access_records(). So for our 
sample, we will implement it in the base Role Access module.

The hook passes one argument $row, which is an object representing one row from 
the {node_access} table. Your module should inspect the data, and respond with 
information if the $row belongs to it.

/**
 * Implement hook_node_access_explain().
 */
function role_access_node_access_explain($row) {
  // If not our grant, ignore.
  if ($row->realm != 'role_access') {
    return NULL;
  }



Node Access

[ 284 ]

  // Get a list of user roles.
  $roles = user_roles();
  // Get our permission definitions.
  $permissions = role_access_permission();

  // Initiate a results variable, for theming the output.
  $results = array();
  // Check each access rule.
  foreach (array('view', 'update', 'delete') as $op) {
    if (in_array($row->gid, array_keys($roles))) {
      $results[] = t('%roles with the permission %perm may %op 
this content', array('%role' => $roles[$row->gid], '%perm' => 
$permissions[$op . ' role access content']['title'], '%op' => $op));
    }
  }
  // Prepare for theming. The $results are already secure, having run
  // through t().
  $variables = array(
    'items' => $results,
    'title' => '',
    'type' => 'ul',
  );
  // Return a nicely themed list.
  return theme('item_list', $variables);
}

By providing this hook, both the developer and module users can enable Devel Node 
Access to see how node access rules are being enforced.

Using the Devel Node Access by user block
The Devel Node Access module also provides a block which displays the results of 
the node_access() function. This block can help you sort through the reason(s) why 
access has been granted or denied. It presents a table, showing the ten most recent 
site visitors and their access to a specific node.



Chapter 9

[ 285 ]

In the preceding case, the user dutiwrecl has been granted editing permissions  
by the node module. Other users may view the content because a node access 
module (in this case Domain Access, http://drupal.org/project/domain)  
has granted access.

If you review our discussion of how the node_access() function operates, you can 
quickly see how handy this developer's utility can be.

Summary
This has been a long chapter, and we hope you found it rewarding. Understanding 
and using node access is one of the most powerful tools in the Drupal API. We have 
covered a wide array of topics, but the key points to remember are:

How access to a node is determined
To always use dynamic query syntax for node lists and to tag node queries 
with add_tag('node_access')
The differences between hook_node_access() and writing a node  
access module
How to alter Create, View, Update and Delete access to individual nodes
The three major operations controlled by the Node Access API
How to filter listing queries using the Node Access API

•

•

•

•

•

•



Node Access

[ 286 ]

How to write your own node access module
How to modify existing node access modules
The importance of storing the data required by your rule set and loading it 
with hook_node_load()

With an understanding of these elements and the debugging tools provided by  
Devel Node Access, you should be able to implement the access rules required  
for any Drupal project.

•

•

•



JavaScript in Drupal
JavaScript is used in Drupal like in most other web applications. It is used to  
power features such as the overlay, autocomplete, drag and drop, and so on. This 
chapter will focus on the JavaScript integration into Drupal and how to use the 
JavaScript helpers.

Some of the important topics this chapter will cover are:

How to add JavaScript to pages through Drupal
Altering JavaScript added to a page by Drupal core and other modules
Using the helper functions built into Drupal
Working with theming and translations in JavaScript
Working with AJAX and Drupal

By the end of this chapter you should have the base knowledge to work with 
JavaScript within Drupal.

JavaScript inside Drupal
JavaScript is an integral part of Drupal providing dynamic features, a unique 
administration experience, and a library of JavaScript for module developers to use. 
The jQuery JavaScript framework comes bundled with Drupal along with several 
jQuery plugins. JavaScript is provided using the Library API which is available for 
modules to take advantage of.

Along with jQuery 1.4.4 the following plugins are provided by Drupal:

jQuery UI 1.8.6
jQuery Cookie, a simple, lightweight utility plugin for reading, writing, and 
deleting cookies

•
•
•
•
•

•
•



JavaScript in Drupal

[ 288 ]

jQuery Form, a plugin to easily and unobtrusively upgrade HTML forms to 
use AJAX
iQuery Once, which filters out all elements that had the same filter applied to 
them previously
jQuery BBQ, a back button and query library
Farbtastic, a color wheel

Adding JavaScript
Most of the JavaScript written for Drupal utilizes jQuery but it is not a requirement. 
When JavaScript is added to the page there are some things to be aware of.

Drupal sets jQuery up to use its no conflict mode. This means that the $ variable is 
relinquished so Drupal can work with other JavaScript libraries that may use the $ 
variable. More detail is available at http://api.jquery.com/jQuery.noConflict.

In the absence of $ there are two methods for writing JavaScript that use jQuery. The 
first is to use jQuery in any place where you may have used the $. For example:

jQuery().ready(function() {
	 ...
});

The other way is to wrap your code in an anonymous function and choose an alias. 
For example:

(function($) {
	 $().ready(function() {
		  ...
	 });
})(jQuery);

In this case jQuery is passed in with the alias of $. Technically, $ can be replaced 
with a different valid alias of your choice. This works for JavaScript within a file or 
when placed inline on the page.

Drupal has the ability to preprocess JavaScript files where multiple files are 
converted into fewer files. Preprocessing provides a performance improvement for 
end uses as they have fewer files to download. For the preprocessor to create valid 
JavaScript it is recommended that at places where optional JavaScript semicolons 
are allowed, they should be used. In the preceding example, the semicolon after the 
closing (jQuery) is an example of where to use the optional semicolons.

•

•

•

•



Chapter 10

[ 289 ]

Adding JavaScript and CSS files to .info files
The simplest method to add JavaScript and CSS to a page is by adding them to the 
.info files for a module. When JavaScript and CSS files are specified in a .info file they 
are added to all pages and configured to use preprocessing (more on that later). An 
example that adds a script and CSS file looks like:

scripts[] = foo.js
stylesheets[screen][] = bar.css

Each of these is a file and the path is relative to the root of the module. The scripts 
property is an array of script files. The stylesheets property is an array of media 
types and each media type is an array of CSS files.

Using drupal_add_js()
The most common method of adding JavaScript to a page is by using the function 
drupal_add_js(). This utility function provides the ability to add files (both 
external to Drupal and within the file system), add inline JavaScript, and pass 
variables between PHP and JavaScript.

Typically Cascading Stylesheets (CSS) are used alongside JavaScript. Drupal provides 
a function to add CSS to a page that works in a fashion similar to drupal_add_js(). 
It's called drupal_add_css(). The APIs between the two functions are almost 
identical. The feature set differs in that CSS doesn't have variables to pass in from  
PHP and stylesheets have media and Internet Explorer options.

Through the examples in this chapter we will create a Hello World module that 
displays Hello World in various ways using JavaScript. The function definition for 
drupal_add_js() provides two arguments with varying values depending on what 
you are doing with it. The definition is:

function drupal_add_js($data = NULL, $options = NULL)

As we work through the Hello World module we will examine the different 
variances and possible values which can be passed into drupal_add_js().

Adding JavaScript files
Adding a file is the default behavior of drupal_add_js() and drupal_add_css(). 
Adding a JavaScript file and a CSS file to a page would look like the following:

drupal_add_js('path/to/hello_world.js');
drupal_add_css('path/to/hello_world.css');



JavaScript in Drupal

[ 290 ]

This provides for adding a file in the simplest form. In the case of adding a file, the 
first argument is always the path to the file. Paths to the files within the Drupal 
installation are relative to the base path of the site. When these files are displayed  
in the browser the base path will be added to the path of the file within Drupal.

Since modules can live in more than one place within the file system, the function 
drupal_get_path() can be used to get the path of the module providing the file. 
Rewriting the examples above to point to the module's location in the file system 
dynamically, we would write:

$path = drupal_get_path('module', 'hello_world');
drupal_add_js($path . '/hello_world.js');
drupal_add_css($path . '/hello_world.css');

For more information on using drupal_get_path() with modules, 
themes, and other systems within Drupal, see the API documentation at 
http://api.drupal.org/api/function/drupal_get_path/7.

In this simple example, we are only passing in the $data argument, in this case the 
file name, because Drupal defaults to adding files. The second argument is called 
$options and can accept either a string with the type JavaScript or CSS being added, 
or an array of options. Adding this JavaScript in more detail could be re-written as:

$path = drupal_get_path('module', 'hello_world');
drupal_add_js($path . '/hello_world.js', 'file');
drupal_add_css($path . '/hello_world.css', 'file');

While dealing with files, the second argument can be set to 'file' for files internal 
to the Drupal filesystem or at a relative path URL, and 'external' for files outside 
the Drupal installation.

The $options argument can be used to set several other options for each file 
including weight, group, every_page, scope, defer, preprocess, and caching.

JavaScript files are rendered based on group, whether they are on every page, and 
then by weight. The JavaScript groups are JS_LIBRARY, JS_DEFAULT, and JS_THEME. 
Within each group files are sub-grouped by whether every_page is set to true. 
Scripts on every page are listed before files on some pages. Finally, within each sub-
group files are ordered by weight.



Chapter 10

[ 291 ]

When a JavaScript library or plugin is used, it should be added with a group of 
JS_LIBRARY, so that it is added to the page before the JavaScript that uses the library 
or plugin. When two libraries are added to the page that are dependent on each 
other, they can be added with the same group with one followed by the other in the 
order they should be included or with two different weights. To illustrate this, the 
following code adds mylibrary.js to the page as a library before hello_world.js.

$path = drupal_get_path('module', 'hello_world');
$options = array(
	 'group' => JS_LIBRARY,
);

drupal_add_js($path . '/mylibrary.js', $options);
drupal_add_js($path . '/hello_world.js');

In our example you will notice that we can leave out the default settings. In this case 
'file' is default so it does not need to be added to either of the calls.

For JavaScript included in ever page there is an option of every_page that should be 
set to true. When this is set to true for a script it impacts preprocessing (more on that 
later) and the order the script is included. Within a group files flagged as being on 
every page are included before files that are not included in every page.

JavaScript within a group and within the sub-group of being or not being included in 
every page are ordered by weight. The default weight is 0. Files with a lower weight 
are listed before files with a higher weight.

Libraries that rely on drupal.js need to be aware of the weight set for 
drupal.js. The weight set for jquery.js is - 20, and the weight for 
drupal.js is – 1.

The scope that a file can be added to is either the 'header' or 'footer'. The 
default value is 'header' and places the JavaScript at the head of the page. The most 
common places to include the JavaScript are in the header or footer. Custom scopes 
for JavaScript to be placed can be defined in a theme or module. In cases where 
custom scopes have been defined, the scopes provided in the theme or module can 
be used in addition to 'header' and 'footer'.

Defer is an option for the script tag in HTML, supported by Internet Explorer. It tells 
the browser that the script can defer execution until after the page has been rendered. 
This is useful for scripts that do not need to execute or be available when the page is 
rendered. In Drupal this is set to TRUE or FALSE.



JavaScript in Drupal

[ 292 ]

The preprocessing and caching properties go hand in hand. Preprocessing is the 
feature Drupal provides to aggregate the files added to the page into fewer files. 
Preprocessing of files is based on group and if a page is included in every page. 
For example, files grouped as JS_LIBRARY on every page are all grouped into one 
preprocessed file. Files grouped as JS_LIBRARY that are not on every page are 
grouped into another preprocessed file. Each group and subgroup of every_page is 
a different preprocessed file. This is done to minimize the amount of JavaScript sent 
to the user and to take advantage of browser based caching. When cache is set to 
FALSE files are not preprocessed since preprocessed files are cached.

Putting this together, a JavaScript file set to defer with caching and its preprocessing 
disabled, with a group set to be added after drupal.js would look like the following:

$path = drupal_get_path('module', 'hello_world');
$options = array(
	 'group' => JS_LIBRARY,
	 'cache' => FALSE,
	 'preprocess' => FALSE,
	 'defer' => TRUE,
);
drupal_add_js($path . '/mylibrary.js', $options);

Adding CSS files
CSS files are added in a similar manner to JavaScript files. The API to  
drupal_add_css() differs only in the options that can be passed in via the second 
argument. The options for CSS files are weight, group, every_page, media, 
basename, browsers, and preprocess. Just like drupal_add_js(), 'file' is used 
for files internal to Drupal or using a relative path to Drupal and 'external' is used 
for CSS files that are external to Drupal and they have a full URL.

There are three groups provided as constants by Drupal:

CSS_SYSTEM is for system files and libraries
CSS_DEFAULT is the module CSS files should use
CSS_THEME comes after the other options and is used for theme CSS

CSS has different media that it's applied to. For example, stylesheets with a media 
of screen are only applied when the page is rendered for screens. Other cases, like 
printing, ignore the stylesheet. The default value is 'all'.

•

•

•



Chapter 10

[ 293 ]

The following code adds a system CSS file which is not preprocessed and is only 
used for screen:

$path = drupal_get_path('module', 'hello_world');
$options = array(
	 'group' => CSS_SYSTEM,
	 'media' => 'screen',
	 'preprocess' => FALSE,
);
drupal_add_css($path . '/hello_world.css', $options);

Passing variables from PHP to JavaScript
Drupal provides a means of passing variables from PHP to JavaScript using  
drupal_add_js(). Many applications want to pass configuration information  
to JavaScript that runs on a page. This function is the means in Drupal to pass  
that information easily.

Drupal calls the variables passed from PHP to JavaScript settings. A simple example 
of a setting that passes the text "Hello World!" from PHP to JavaScript would  
look like:

drupal_add_js(array('helloWorld' => "Hello World!"), 'setting');

Variable names in the PHP portion of Drupal are in lowercase with 
an underscore separating words. In JavaScript they should be in 
lowerCamelCase. For more information see the coding standard at 
http://drupal.org/coding-standards.

JavaScript can access this at Drupal.settings.helloWorld. For example the 
following JavaScript would display the "Hello World" as a pop-up:

alert(Drupal.settings.helloWorld);

Settings are unlike other uses of drupal_add_js(). They are added to the page 
in the header with a weight of JS_LIBRARY. There are no other options besides 
specifying that it is a setting, as shown in the following example:

drupal_add_js(array('hello_world' => "Hello World!"), 'setting');



JavaScript in Drupal

[ 294 ]

Settings should be added in a way that respects the namespacing of other settings 
added to the page. Passing multiple settings should be done in a nested array.  
For example:

$settings = array(
	 'helloWorld' => array(
		  'display' => 'alert',
		  'message' => 'Hello World!',
	 ),
);
drupal_add_js($settings, 'setting');

In this example, the message is available at Drupal.settings.helloWorld.message. 
Keeping all the settings in Drupal.settings.helloWorld, keeps the settings for this 
module separate from the settings added by other modules.

Adding inline JavaScript
JavaScript can be added inline on the page using the inline option. An example  
that alerts "Hello World!" would look like:

drupal_add_js('alert("Hello World!");', 'inline');

The options accessible to inline JavaScript are defer, group, every_page, 
weight, and scope. Inline JavaScript is not cached by the browser and cannot be 
preprocessed. Inline JavaScript that is added, which defers until after the browser 
has loaded with a weight of JS_THEME would look like this:

$options = array(
	 'type' => 'inline',
	 'group' => JS_THEME,
	 'defer' => TRUE,
);
drupal_add_js("alert('Hello World!')", $options);

API Documentation for drupal_add_js() is available at 
http://api.drupal.org/api/function/drupal_add_js/7

Adding inline CSS
CSS can also be added inline and the API is similar to the one for JavaScript. To add 
inline CSS it would look like this:

drupal_add_css("body { color: #ffffff; }", 'inline');



Chapter 10

[ 295 ]

The second argument can contain an array of options to be used including group, 
scope, and preprocess. Once CSS is added, with a weight of CSS_THEME set to not 
preprocess, it will look like:

$options = array(
	 'type' => 'inline',
	 'group' => CSS_THEME,
	 'preprocess' => FALSE,
);
drupal_add_css("body { color: #ffffff; }", $options);

API Documentation for drupal_add_css() is available at 
http://api.drupal.org/api/function/drupal_add_css/7

Using the Library API
Drupal 7 provides a Library API where libraries and plugins of JavaScript and CSS 
can be defined and programmatically added later. jQuery and the other libraries 
provided with Drupal are all defined using the system modules implementation of 
hook_library(). We can use farbtastic, a jQuery color picker included with Drupal, 
as an example. Included in farbtastic is a JavaScript file and a CSS file. To add 
farbtastic to a page it would look as follows:

drupal_add_library('system', 'farbtastic');

This will not only add JavaScript and CSS, but will also add any dependent libraries. 
An example of this can be seen in the overlay module where drupal_add_library() 
adds the overlay. A call is made to add the parent overlay JavaScript that looks  
like this:

drupal_add_library('overlay', 'parent');

In the function overlay_library(), parent is set to have jQuery BBQ and jQuery 
UI core as dependencies to the overlay parent. This means those two libraries 
will be added to the page before the overlay. Drupal knows the library chain of 
dependencies, so you don't have to.

API documentation about drupal_add_library() is available at 
http://api.drupal.org/api/function/drupal_add_library/7.



JavaScript in Drupal

[ 296 ]

Defining a library with hook_library
When a module has a library or plugin it wants to use or make available to other 
libraries, it should define it as a library using hook_library(). Since we have a 
JavaScript file and CSS file in our Hello World module, we can add it as a library  
in the following way:

/**
 * Implements hook_library().
 */
function hello_world_library() {
	 $path = drupal_get_path('module', 'hello_world');
	 $libraries = array();
	 $libraries['hello_world_library'] = array(
	   'title' => 'Hello World',
	   'website' => 'http://example.com',
	   'version' => '1.0',
	   'js' => array(
	           $path . '/hello_world.js' => array(),
	   ),
	   'css' => array(
	            $path . '/hello_world.css' => array(),
	   ),
	   'dependencies' => array(
	                     array('system', 'ui.dialog'),
	   ),
	 );
	 return $libraries;
}

The title, website, and version properties are used to define meta data about 
the libraries. This is important when looking for information, documentation, and 
checking for updates to a library.

The js, css, and dependencies do all the work. If any dependencies are defined, 
they are added before the JavaScript and CSS defined here. Then the JavaScript  
and CSS are added with the key for each line being the first argument for either 
drupal_add_js() or drupal_add_css() and the value being the options argument 
for each of the corresponding functions.

Drupal has three special dependencies that are added which do not need to  
be defined. They are jquery.js, jquery.once.js, and drupal.js. These are  
added to the page when the first call to drupal_add_js() is made or when  
drupal_add_library() is first called.



Chapter 10

[ 297 ]

From here onwards, when we want to use the hello world library, we would add it 
with the following call:

drupal_add_library('hello_world', 'hello_world_library');

The first argument is the module that defined the library and the second argument is 
the key for the library defined.

API documentation about hook_library() is available at 
http://api.drupal.org/api/function/hook_library/7.

Altering information in hook_library
Drupal provides a hook_library_alter() function, where modules can intercept 
the libraries defined by hook_library() and either act or make changes to them. 
A simple example could be another module providing a more recent version 
of the hello_world.js script. For the example the module will be called Hello 
World Update. In the file hello_world_update.module we have the following 
implementation of hook_library_alter():

/**
 * Implements hook_library_alter().
 */
function hello_world_library_alter(&$libraries, $module) {
  if ($module == 'hello_world' &&      
      isset($libraries['hello_world_library'])) {
    // Verify existing version is older than the one we are
    // updating to.
    if (version_compare($libraries['hello_world_library']['version'], 
'2.0', '<')) {
      // Update the existing Hello World to version 2.0.
      $libraries['hello_world_library']['version'] = '2.0';
      $libraries['hello_world_library']['js'] = array(
        drupal_get_path('module', 'hello_world_update') . '/hello_
world_2.0.js' => array(),
      );
    }
  }
}

The two arguments passed in are the libraries defined by a module and the name 
of the module. In this case we check to see if the version already defined is older 
than the version provided by this module. If so, we replace the JavaScript call with a 
different one.



JavaScript in Drupal

[ 298 ]

API Documentation for hook_library_alter() is available at 
http://api.drupal.org/api/function/hook_library_
alter/7

Using renderable arrays
A Drupal Renderable Array is the way much of the output for a Drupal page is 
represented before it is rendered into HTML. Theme functions, discussed in Chapter 3, 
Drupal's Theme Layer, can return either a Drupal Renderable Array or HTML to output. 
If a Renderable Array is returned it will be rendered into HTML by drupal_render(). 
If you are familiar with the Form API from previous versions of Drupal you've seen 
the Renderable Arrays. They are the arrays from Form API extrapolated to other uses. 
The Renderable Array for a form element might look like this:

$form['options'] = array(
    '#type' => 'textfield',
    '#title' => t('Author name'),
    '#maxlength' => 25,
    '#attached' => array(
       'css' => array(
        drupal_get_path('module', 'hello_world') . '/example.css',
    ),
      'js' => array(
        "alert('Hello World!')" => array('type' => 'inline'),
    ),
  );

The #attached property on a renderable or form array can be used to add 
JavaScript, CSS, and libraries. The keys are as follows:

js is for JavaScript
css is used for CSS
library is used to add libraries

For each item in a sections array, like js, the key is the data and the options are the 
value. If the value is omitted, the default options are assumed.

Using renderable arrays and attaching the JavaScript, CSS, and libraries is important 
in several places throughout Drupal where caching of individual elements happen. 
An example is with blocks which can be cached. A common use case is when 
JavaScript is added to a block. If the JavaScript is added within the content of the 
block using drupal_add_js() it will be added when the block is not cached. 
Cached blocks do not rebuild the content so drupal_add_js() will not be called.

•

•

•



Chapter 10

[ 299 ]

If a renderable array is used instead with attached JavaScript, the renderable array 
is cached which contains the calls to the JavaScript. When the cached content is 
rendered and JavaScript, CSS, then the libraries included in the renderable array  
will be added to the page.

An example that adds JavaScript and CSS to the output of a block would look like 
the following:

$output['content'] = array(
  '#value' => 'The content of the block.',
  '#attached' => array(
	  'css' => array(
	    drupal_get_path('module', 'hello_world') . '/example.css',
    ),
    'js' => array(
      "alert('Hello World!')" => array('type' => 'inline'),
    ),
  ),
);

Altering JavaScript
JavaScript added to a page has a last chance to be altered before being rendered to 
the output page. Just before the JavaScript is rendered in HTML it is passed through 
hook_js_alter(). A module that implements hook_js_alter() has a last chance  
to act on or change the JavaScript.

An example of this would be if a module wants to swap out the compressed version 
of jQuery with an uncompressed version. This would be helpful for debugging 
purposes. In the example, we will call the module jQuery Uncompressed. In the 
jquery_uncompressed.module file hook_js_alter() would look like the following:

/**
 * Implements hook_js_alter().
 */
function jquery_uncompressed_js_alter(&$javascript) {
  $path = drupal_get_path('module', 'jquery_uncompressed')
  $javascript['misc/jquery.js']['data'] = $path . '/jquery.
uncompressed.js';
}

The $javascript array passed in contains all the JavaScript to be added to the 
current page. This hook is called just before JavaScript is rendered to be added to the 
page. This is the last point to alter it.



JavaScript in Drupal

[ 300 ]

The keys to the array, to find what you're looking for, are dependent on the type of 
JavaScript that was added.

File and external JavaScript is identified by the path to the file that was 
passed in for its location.
Settings are available at $javascript['settings'].
Inline JavaScript is not easily identifiable. Each time an inline script is 
added to a page it is added with a numeric value starting at 0. If two inline 
scripts were added to a page, they would be added at $javascript[0] and 
$javascript[1]. The numbers are based on the order in which they were 
added to a page, which is unreliable.

API Documentation for hook_js_alter() is available at 
http://api.drupal.org/api/function/hook_js_alter/7

Altering CSS
CSS can be altered in a similar manner to JavaScript using hook_css_alter(). An 
array containing all the CSS about to be added to the page is passed though  
hook_css_alter() as a last opportunity to make changes before the CSS is rendered 
into HTML and added to the page. An example use of the hook_css_alter() would 
be to remove the system.css file provided by core, as seen here:

/**
 * Implements hook_css_alter().
 */
function example_css_alter(&$css) {
  unset($css[drupal_get_path('module', 'system') . '/system.css']);
}

Identifying items in the array passed in for CSS files is similar to JavaScript files. The 
key for internal and external files is the path to the file used when it was originally 
added. Like inline JavaScript, inline CSS is added using numeric keys in the order 
the CSS was added.

API Documentation for hook_css_alter() is available at 
http://api.drupal.org/api/function/hook_css_alter/7

•

•

•



Chapter 10

[ 301 ]

Drupal specific JavaScript
Within Drupal there are numerous helper functions. These range from systems like 
theming and translation to utility functions that parse JSON.

Themeable presentation
The entire presentation inside of Drupal is customizable through the theme system, 
and JavaScript is no different. Drupal provides a system for theming the presentation 
generated by the JavaScript that can be overridden within JavaScript in a theme. We 
can start with an example, hello_world.js, that is added by a module that looks 
like this:

(function($) {
  $().ready(function() {
    $('#hello-world').html('<h2>Hello World!</h2>');
  });
})(jQuery);

When the page is loaded, the html inside the div with the ID hello-world will be 
replaced with <h2>Hello World!</h2>. What if a theme wants the wrapper to be  
an h3 tag instead of an h2 tag? This is where Drupal JavaScript theming comes in.

A module should provide a theming function within the Drupal.theme.prototype 
namespace. Then, the module would call Drupal.theme() to access the theme 
function. This system allows a theme to provide an override function within the 
Drupal.theme namespace. The following example illustrates this.

(function($) {
  Drupal.theme.prototype.hello = function(text) {
    return '<h2>' + text + '</h2>';
  }
  $().ready(function() {
    $('#hello-world').html(Drupal.theme('hello', 'Hello World!'));
  });
})(jQuery);



JavaScript in Drupal

[ 302 ]

Drupal.theme() will call the Drupal.theme.prototype.hello() function and pass 
in all the arguments, but the first one. This is useful because the theme can provide 
an override function. If a module provides a hello_world.js file as the one above, 
and a theme provides a JavaScript file with the following function, the output will  
be changed.

(function($) {
  Drupal.theme.hello = function(text) {
    return '<h3>' + text + '</h3>';
  }
})(jQuery);

Drupal.theme() will call Drupal.theme.hello() instead of Drupal.theme.
prototype.hello(). The theme can override the presentation in JavaScript this way.

Translatable strings
All the text inside the Drupal interface is translatable. The text within JavaScript 
can be translated as well. Inside the PHP code for Drupal the t() function is used 
for translations. Inside JavaScript the Drupal.t() function is used to handle 
translations.

Continuing the Hello World module we can extend it to handle, say "hello" to 
different cities, where the "hello" part is translatable.

(function($) {
  Drupal.theme.prototype.hello = function(text) {
    return '<h2>' + Drupal.t('Hello @city', {'@city': text}) + '</
h2>';
  }
  $().ready(function() {
    $('#hello-world').html(Drupal.theme('hello', 'Chicago'));
  });
})(jQuery);

The part we are interested in is where it says: 
Drupal.t('Hello @city', {'@city': text}) 

Here the string 'Hello @city' is a translatable string. The @city part is dynamic 
and will be filled in by the value of text. This setup enables translations  
to modify the string and still pass the dynamic portions through.



Chapter 10

[ 303 ]

There are three ways variables can be passed through Drupal.t() depending on the 
first character of the variable:

Variables beginning with a ! are inserted as is, with no modification.
When a variable begins with an @ symbol the value is passed through 
Drupal.checkPlain(), a function that converts the string to plain text. 
HTML markup is converted to text that can be displayed.
% at the beginning of a variable will cause the variable to be passed through 
Drupal.checkPlain() and Drupal.theme('placeholder').

Behaviors
If you're familiar with writing jQuery, you know that the code you want to execute 
as early as possible in a page load is wrapped in something like the following:

$(document).ready(function() {
  ...
});

When the document is ready the code wrapped inside this function will be executed. 
This is a common pattern for jQuery-based JavaScript. Drupal provides a system 
that wraps and extends this concept called behaviors. Behaviors are attached and 
detached from a section of content. The most common usage is to attach a behavior 
to an entire page.

Rewriting our Hello World example seen previously to use behaviors would look  
as follows:

(function($) {
  Drupal.theme.prototype.hello = function(text) {
    return '<h2>' + Drupal.t('Hello @city', {'@city': text}) +  
'</h2>';
  }
  Drupal.behaviors.helloWorld = {
    attach: function(context, settings) {
       $('#hello-world', context).html(Drupal.theme('hello', 
'Chicago'));
    }
  }
})(jQuery);

•

•

•



JavaScript in Drupal

[ 304 ]

The behavior is at Drupal.behaviors.helloWorld and has an attach function to 
attach the behavior to the page. When the document is ready, Drupal calls all the 
attach functions for all behaviors. It passes in the context, the document, and the 
settings, which on page load is the value of Drupal.settings.

On the surface this looks like an unintuitive method as compared to the more common 
pattern used in jQuery. The behaviors pattern provides a lot more. For example, when 
content retrieved through AJAX is added to the page, it is passed through the attach 
functions for all the behaviors. The context is the content being added that was 
obtained from the AJAX request and the settings is either settings that were returned 
with the AJAX request or the settings within Drupal.settings.

For more general information on context see  
http://api.jquery.com/jQuery/.

Along with the ability to attach behaviors is the ability to detach a behavior.  
A typical structure for a behavior is:

(function($) {
  Drupal.behaviors.example = {
    attach: function(context, settings) {
      ...
    }
    detach: function(context, settings, trigger) {
      ...
    }
  }
})(jQuery);

For example, when an AJAX-based JavaScript removes content from a section of 
the page before adding new content to the section, the detach functions for the 
behaviors are called on the content being removed. This provides an opportunity  
for behaviors to act on this content one last time.

An example of this is initiated by the Drupal AJAX system. Before a form is sent, via 
AJAX to Drupal, detach is called on all the behaviors. This provides an opportunity 
for behaviors that make changes to the form, that should not be sent to Drupal,  
to be removed. When the new content is brought into the page the behaviors are 
attached again.



Chapter 10

[ 305 ]

AJAX helpers
Included in Drupal is an AJAX library that integrates Drupal, jQuery, and AJAX. 
This system provides a set of properties for forms and functions, to use in Drupal 
callbacks, which quickly and easily build AJAX into Drupal modules. Using the 
helper functions and properties AJAX can be built into Drupal pages rather than 
bolted into the pages.

Adding AJAX to forms
A common use of AJAX is dynamically updating forms, based on input, to other 
parts of the form. When one element in the form is updated, other elements change 
or are populated with information based on a change. For an example, we can look  
at an option list form element that updates a markup element.

We start with an implementation of hook_menu() to define the form page, as  
seen here:

/**
 * Implements hook_menu().
 */
function hello_world_menu() {
  $items = array();
  $items['hello_world/simple_form_example'] = array(
    'title' => 'Hello World: Simple AJAX Example',
    'page callback' => 'drupal_get_form',
    'page arguments' => array('hello_world_simple_form_example'),
    'access callback' => TRUE,
  );

  return $items;
}

We follow this by creating a form callback called hello_world_simple_form_
example(). This creates the form to insert into the page.

function hello_world_simple_form_example($form, &$form_state) {
  $form = array();
  $form['hello_city'] = array(
    '#title' => t("Choose a city"),
    '#type' => 'select',
    '#options' => array(
      t('World') => t('World'),
      t('Chicago') => t('Chicago'),
      t('New York') => t('New York'),



JavaScript in Drupal

[ 306 ]

      t('Los Angelas') => t('Los Angelas'),
    ),
    '#ajax' => array(
      'callback' => 'hello_world_simple_form_callback',
      'wrapper' => 'ajax_markup_div',
     ),
  );

  $form['ajax_markup'] = array(
    '#prefix' => '<div id="ajax_markup_div">',
    '#suffix' => '</div>',
    '#markup' => t('Hello World'),
  );

  if (!empty($form_state['values']['hello_city'])) {
    $form['ajax_markup']['#markup'] = t("Hello !city", array('!city' 
=> $form_state['values']['hello_city']));
  }
  return $form;
}

Here we have two form elements of hello_city and ajax_markup. The hello_city 
element has a #ajax property, which is new to Drupal 7. It defines a callback, which 
is an internal Drupal callback function, and a wrapper. This is the wrapper on the 
page that will be updated by the response to the AJAX request.

The second element, called ajax_markup, is a markup form element. This element 
holds HTML. We initially populate the markup with 'Hello World'. For this element 
to be updated we need to add a wrapper to it. In this case the wrapper is a div with 
the same ID that we set as the wrapper in the #ajax part of the hello_city element.

After the form is set up there is an if statement for the case when a value is available 
on $form_state for the hello_city element. When the form is initially created, 
there won't be a value. When the AJAX request is made, it will be passed through 
this form with the values from the form. When that happens the if statement will  
be executed causing the ajax_markup element to be updated.

This will be followed by the execution of the callback defined by the #ajax property 
on the hello_world element. That function looks like this:

function hello_world_simple_form_callback($form, $form_state) {
  return $form['ajax_markup'];
}



Chapter 10

[ 307 ]

The callback function hello_world_simple_form_callback() passes the  
$form and $form_state variables after they have gone through hello_world_
simple_form_example(). In this case we are returning the form element that is 
being replaced.

Drupal knows this is a renderable array and renders it to the appropriate value. 
Drupal sends the updated HTML back to the page where the Drupal AJAX  
handlers retrieve the changes and replace the wrapper.

AJAX automatically applied
AJAX can be automatically applied to elements on a page. This is done by applying 
the use-ajax class to an element on a page. A typical use would be to apply the  
use-ajax class to a link within a page to trigger an AJAX action. Links are 
commonly used because the page the link points to might be for the cases when 
JavaScript is disabled as a fallback.

In the following example we are going to provide a link that, when clicked, will add 
"Hello World" to a div within the page. To start, we have two menu callbacks that 
we add to hello_world_menu(). One item for the page we are generating and the 
other is the callback URL used for AJAX or when JavaScript is disabled.

$items['hello_world/link'] = array(
  'title' => 'Hello World: Link',
  'page callback' => 'hello_world_link',
  'access callback' => 'user_access',
  'access arguments' => array('access content'),
);
$items['hello_world_link_callback'] = array(
  'page callback' => 'hello_world_link_response',
  'access callback' => 'user_access',
  'access arguments' => array('access content'),
);

The first menu item is to our page where the link is located and where the AJAX will 
add content. The second menu item is the callback that will handle the AJAX request 
or the page request, when JavaScript is unavailable.

function hello_world_link() {
  drupal_add_js('misc/ajax.js');
  $link = l(t('Say Hello'), 'hello_world_link_callback/nojs/', 
array('attributes' => array('class' => array('use-ajax'))));
  return '<div>' . $link . '</div><div id="saying-hello"></div>';
}



JavaScript in Drupal

[ 308 ]

The page callback where the link lives, starts by using drupal_add_js() to add 
misc/ajax.js. This JavaScript does the work to automatically make the AJAX 
work. This is followed by a link with a callback to hello_world_link_callback/
nojs/. The first part of this link is the callback where the AJAX request is handled. 
The /nojs/ at the end is special. When JavaScript is not available it is passed to the 
response function so it knows it was called to be a full page load. When JavaScript 
is available it is replaced with /ajax/. This is passed into the callback function so it 
knows it was called via an AJAX request.

What makes this link become an AJAX link is the class being added with the name 
use-ajax. The JavaScript file we added at the beginning, ajax.js, looks for links 
with this class and converts them into AJAX.

function hello_world_link_response($type = 'ajax') {
  if ($type == 'ajax') {
    $output = t("Hello World!");
    $commands = array();
    $commands[] = ajax_command_append('#saying-hello', $output);
    $page = array('#type' => 'ajax_commands', '#ajax_commands' => 
$commands);
    ajax_deliver($page);
  }
  else {
    return t("Hello World in a new page.");
  }
}

When the callback to handle the request is called, the type of action is passed in. 
When no JavaScript is available, nojs is passed in. When the request is AJAX, ajax  
is passed in. This can be used in the callback functions logic to properly respond  
to each case.

In this case we use an if statement. When the request is AJAX, we respond in one 
way and when JavaScript is not available we respond differently.

When the request is an AJAX callback we start by creating the response text of "Hello 
World!". This is followed by creating an array to hold commands we want Drupal  
to execute and adding a command to it.

A command is an action we want the JavaScript to perform when it receives the 
AJAX response. The commands provide ways in which jQuery can manipulate the 
content of the page with the responded data. In this case the command used is the 
ajax_command_append(). This command accepts a jQuery selector and content.  
The content is appended to the selector. This Drupal function utilizes the  
jQuery.append() function.



Chapter 10

[ 309 ]

Once the response is set up it is inserted into a renderable array. The type is  
ajax_commands, which will know how to render the AJAX command that was created 
in the callback. To send the AJAX response properly ajax_deliver() is used. This 
function properly formats the response for the JavaScript on the receiving side.

Additionally, Drupal tracks the JavaScript and CSS files within a page. If a new  
file is added within an AJAX request that is not already loaded in the page the new 
file is sent as part of the response and added to the page along with the rest of  
the response.

For cases when JavaScript is not available in the initial page view and the link is 
followed, it is treated as a full page request and the user is sent to a new page. This 
page lives at the same callback that built the AJAX response. The difference is nojs is 
passed into the callback so it knows the response is not in AJAX. In this case the else 
is executed generating a different message for the new page.

AJAX commands
Drupal provides several AJAX commands that can add or alter content in a page 
using jQuery methods. In the previous section we covered ajax_command_append(). 
Here are all the possible commands that can be used.

ajax_command_after
When ajax_command_after() is used, jQuery.after() is the method used to 
add content to the page. The arguments are $selector, $content, and $settings. 
$selector is the jQuery selector on the page and $content is the content to add 
after the selector. $settings, the third argument, is a set of settings used by the 
behaviors for this single command.

ajax_command_alert
The alert command is a core JavaScript command. ajax_command_alert($text) is 
used to alert returned text. The text is presented in an alert box. 

ajax_command_append
This command is similar to ajax_command_after. Instead of adding the content 
after the selector it appends it to the end of the selector. The interface to the function 
is the same as ajax_command_after() with the $selector, $content, and 
$settings arguments. $selector is the jQuery selector on the page, $content is  
the content to append to the selector, and $settings is used by behavior for just  
this one command.



JavaScript in Drupal

[ 310 ]

ajax_command_before
To add content before an element use ajax_command_before(). It utilizes  
jQuery.before() to add content before a selector. Again the $selector, $content, 
and $settings arguments are used.

ajax_command_changed
To note that something within a page has changed ajax_command_
changed($selector, $asterisk) can be used. Elements found on the page with the 
given jQuery selector will have the ajax-changed class applied to them. $asterisk 
is an optional CSS selector, that resides inside $selector. This is used to optionally 
append an asterisk to that element.

ajax_command_css
ajax_command_css() uses the jQuery.css() command to update the CSS within 
the page. This command takes in $selector and $argument arguments. For 
example, changing a page's background color would look as follows:

$commands[] = ajax_command_css('body', array('background-color' => 
'#FFFFFF'));

ajax_command_data
jQuery provides a 'data' command to store data within a page outside of element 
attributes. The ajax_command_data() function enables Drupal AJAX to add and 
update data inside jQuerys data cache. The three arguments are:

$selector, the jQuery element selector
$name, the name of the data item being accessed
$value, the value for the item

ajax_command_html
ajax_command_html() utilizes jQuery.html() to update the html for a given selector. 
The arguments are $selector (the jQuery selector), $html (the HTML to update the 
selector to use), and $settings (optional settings for this command to use).

•

•

•



Chapter 10

[ 311 ]

ajax_command_prepend
To add content at the beginning of an element use the prepend command.  
This utilizes jQuery.prepend() to add the content. The arguments for  
ajax_command_prepend() are $selector, $content, and $settings.

ajax_command_remove
The remove command removes elements from a page. The single argument is the 
selector to be removed. jQuery.remove() is utilized to remove the elements from 
the page.

ajax_command_replace
The ajax_command_html replaces the html content within an element. For cases 
where the entire element needs to be replaced ajax_command_replace() should be 
used. It takes advantage of jQuery.replaceWith() to replace the entire element. 
The three arguments are $selector, $html, and $settings. $html is the full html 
the selector will be replaced with. For example, take the html:

<div class="container">
  <div class="inner">Hello World!</div>
</div>

An ajax_command_replace() looks like the following:

$commands[] = ajax_command_replace('.inner', '<h2>Goodbye World! 
</h2>';

This will update the html to look like the following:

<div class="container">
  <h2>Goodbye World!</h2>
</div>

ajax_command_restripe
The restripe command tells Drupal to restripe a table. This is useful when content 
inside the table has been altered. The only argument is the jQuery selector for  
the table.



JavaScript in Drupal

[ 312 ]

ajax_command_settings
ajax_command_settings() is used to add settings to the response. The first 
argument is the settings to be sent with the response. If only the first argument is 
given, or the second argument is FALSE, then the setting will only be used for the 
response. If the second argument, the $merge argument, is set to TRUE the settings 
will be merged into Drupal.settings.

For more information on the jQuery APIs visit 
http://api.jquery.com.

Summary
We have covered the basic principles and commands of using JavaScript and jQuery 
within the context of Drupal. We started by adding JavaScript to a page as a file, 
inline, and as a setting. We continued by looking at adding complete libraries with 
dependencies and altering JavaScript right before the page was rendered.

Drupal provides helper functions and libraries which are useful in creating Drupal 
modules. We covered how these libraries and some of the more commonly used 
elements work.



Working with Files  
and Images

Drupal 7 introduced a new API for files and images, bringing the functionality of 
popular contributed modules like Imagecache and Imagefield into core for the  
first time. In this chapter, we will build two modules that take advantage of this  
new functionality. Some of the concepts we will cover are:

Understanding Drupal's public and private filesystems
Associating files and images with content
Implementing a stream wrapper for custom file handling
Programmatically manipulating images using image styles and effects
Understanding Drupal's new Image Styles functionality
Implementing your own image effects for use with Image Styles

By the time you are done with this chapter, you should have a good understanding 
of how to manipulate files and images using Drupal, including some methods for 
retrieving remote files and images.

The Twitpic and watermark modules
In this chapter, we will be building the Twitpic module. This module will enable 
you to interact with images stored on the Twitpic website (http://twitpic.
com) and integrate them with Drupal in a variety of ways. It provides a stream 
wrapper that allows developers to pull images from Twitpic by referring to them 
with a custom URI, and offers a demo of how Drupal's Image API can be used to 
manipulate these images.

•

•

•

•

•

•



Working with Files and Images

[ 314 ]

We will also be creating a second module, which allows users to add a simple  
text watermark to images. Users will be able to configure the watermark so that  
it displays custom text in a specified color. This effect will be available for use in 
Image Styles, the Drupal 7 implementation of the Imagecache module. 

Files in Drupal
When you installed Drupal for the first time, you probably got the following error 
and wondered why you needed to create three directories for files:

Drupal defines three types of file storage, namely, public, private, and temporary. 
Public files are available to the world at large for viewing or downloading. This is 
where things such as image content, logos, and downloadable files are stored. Your 
public file directory must exist somewhere under Drupal's root, and it must be 
readable and writeable by whatever 'user' your web server is running under. Public 
files have no access restrictions. Anyone, at anytime, can navigate directly to a public 
file and view or download it.

Private files are not available to the world for general download. The private files' 
directory should reside outside Drupal's root directory. However, it will still be 
writeable by the web server user. Isolating private files this way allows developers  
to control who can and can't access them as they wish. For instance, you could write 
a module that only allows users who have a specific role, to access PDFs in the 
private filesystem.



Chapter 11

[ 315 ]

It is very important that private files live outside of Drupal's web root, 
despite the fact that by default they do not. In order for private files to 
be useful, they must be readable to the user your web server runs as. 
However, if these files are then under Drupal's web root, they will be 
readable to anybody. Proper testing is extremely important for properly 
securing private files. For more information on how to properly secure 
your private file system, see the following site: 
http://drupal.org/node/344806

Temporary file storage is typically only used by Drupal for internal operations. 
When files are first saved by Drupal, they are first written into the temporary file 
area so they can be checked for security issues. After they have been deemed safe, 
they are written to their final location.

Each of the directories in the preceding error message reflects the default location 
for each type of file. You can change these default locations after your installation is 
complete by logging in as administrator and visiting admin/config/media/file-
system as seen in the following image:

You can also indicate whether the default download method should be public or 
private. (After installation it is public.)



Working with Files and Images

[ 316 ]

File API
In Drupal 6, most file handling functionality was provided through a rough core API 
combined with contributed modules such as Filefield. Drupal 7 provides a more 
robust and consistent API that allows developers to interact with files in a standard 
set of functions that perform tasks like creating, opening, moving, and deleting files.

In order for files to be associated with nodes and other Drupal content, they must 
have a record in Drupal's file table. Each record identifies a file with a unique ID  
as well as associated metadata like file size and mime-type.

Many File API functions, such as file_copy() and file_move(), take a file object 
as one of their arguments. The file object is a PHP standard class containing the 
metadata from the files table, and these API functions manage updating the 
information in the files table when files are moved or deleted. This is one reason 
it is so important to use these API functions for files associated with content—if you 
don't, the files table will be inconsistent and your files may not show up properly.

If you need to work with files outside the context of Drupal content, there is  
a separate set of functions in the File API with unmanaged in their name. For  
instance, where file_copy() will update the files table and copy your file,  
file_unmanaged_copy() will just copy the file.

For a full list of the functions available in the File API, 
refer to the API documentation at: 
http://api.drupal.org/api/group/file/7

Here is a simple example of how this works. A common task while building a 
Drupal site is importing data from another source and turning it into nodes. This 
will not only include textual information like the title and body, but also images. 
These images may live in a local directory, or they may live out on a website you're 
importing from.

Let's look at how we can grab a file from an external site, save it to the default file 
system, and attach it to a node we create. For this example, you will be working with 
the field image in the article content type.

First we need to get a file and save it:

$image = file_get_contents('http://drupal.org/files/issues/druplicon_
2.png');
$file = file_save_data($image, 'public://druplicon.png',FILE_EXISTS_
REPLACE);



Chapter 11

[ 317 ]

In order to open files from remote locations, PHP must have the allow_
url_fopen setting enabled in your php.ini. For more information see:
http://us2.php.net/manual/en/filesystem.configuration.
php#ini.allow-url-fopen

This is pretty straightforward. Using the PHP function file_get_contents(), 
we grab an image of Drupal's mascot, the Druplicon, and save it into the variable 
$image. We then save it locally using the Drupal API function file_save_data(), 
which returns a file object file_save_data(), and takes three arguments. The first 
argument is the contents of the file, as a string. file_get_contents() returns a 
string, so this works out well.

The second argument specifies the location where the file should be saved. This 
destination should be represented as a URI, using one of the system's registered 
stream wrappers. We will discuss stream wrappers in more detail later in the 
chapter, but for now, just know that you can refer to any of Drupal's file system types 
using a custom URI scheme, namely, public://, private://, or temp://. This will 
read or write the file into the appropriate file system without the developer needing 
to know the details of where the files are physically located. Here we are saving our 
file to the public file system.

The third argument specifies what file_save_data() should do when a file already 
exists with the same name as the file we're trying to save. There are three constants 
defined to indicate the possible actions that Drupal can take:

FILE_EXISTS_REPLACE: The new file should overwrite the existing file. 
FILE_EXISTS_RENAME: Rename the new file by appending an incrementing 
number to the new file's name until no collision occurs. For example, if 
druplicon.png and druplicon_1.png already existed, then the new file 
would be druplicon_2.png.
FILE_EXISTS_ERROR: Don't do anything and just return FALSE.

The default option is FILE_EXISTS_RENAME but we have specified that the file should 
be replaced if it exists.

After the file is saved, a file object is returned. This object contains the fid or file ID, 
as well as associated metadata. Now that we have saved the image, we can create a 
node and attach the image to it:

$node = new stdClass;
$node->type = 'article';
node_object_prepare($node);

•

•

•



Working with Files and Images

[ 318 ]

$node->title = 'The World of Crell';
$node->language = LANGUAGE_NONE;
$node->body[LANGUAGE_NONE]['0']['value'] = 'GAHHHH!';
$node->field_image[LANGUAGE_NONE]['0']['fid'] = $file->fid;
node_save($node);

As discussed in Chapter 6, Working with Content, a node is an object and fields 
are properties of the object, indexed by language. In terms of this example, the 
highlighted line is the most important one. All we need to do, is to associate our file 
with the image field, is add the fid of our returned file object to a fid property of 
the field's instance. When the node is saved, Drupal will extract all the appropriate 
information from the files table and add it to the image field.

That's it! After running this code, you can visit your site's front page and you should 
see something like the following:

This simple example shows how easy it is to manage files in Drupal, and should 
provide a good jumping off point for further exploration.

As mentioned earlier in the chapter, Drupal 7's File API uses PHP stream wrappers. 
It also introduces the ability for developers to create their own PHP stream wrappers 
and integrate them with Drupal file handling. Let's take a look at what stream 
wrappers are and how developers can use them.



Chapter 11

[ 319 ]

Stream wrappers
If you've been writing PHP for very long, you have most likely needed to work with 
local or remote files at some point. The following PHP code is a common way to read 
a file into a variable that you can do something with:

$contents = ";
$handle = fopen("/var/www/htdocs/images/xyzzy.jpg", "rb");
while (!feof($handle)) {
  $contents .= fread($handle, 8192);

}

fclose($handle);

This is pretty straightforward. You get a handle to a local file using fopen() and 
read 8 KB chunks of the file using fread() until feof() indicates that you've 
reached the end of the file, at which point you fclose() the handle. The contents 
of the file are now in the variable $contents. In addition to local files, you can also 
access remote files through fopen() like this:

$handle = fopen("http://drupal.org/files/issues/druplicon_2.png", 
"rb"); 

Data that you can access this way is streamable, meaning you can open it, close it, 
or seek to an arbitrary place in it. Stream wrappers are an abstraction layer on top 
of streams that tell PHP how to handle specific types of data. When using a stream 
wrapper, you refer to the file just like a traditional URL—scheme://target. Often 
the target will be the path and filename of a file either located locally or remotely, but 
as we will see in our sample code, it can be any data that uniquely identifies the data 
you are trying to access.

The above examples use two of PHP's built in stream wrappers. The second uses 
the http:// wrapper for accessing websites using the http protocol, and the first 
uses the file:// wrapper for accessing files on local storage. file:// is the default 
scheme when one is not specified, so in this case simply passing the file's path  
works fine.

PHP also allows developers to define their own wrappers for schemes that PHP does 
not handle out of the box, and the Drupal File API has been built to take advantage 
of this. For instance, Drupal defines the private scheme to allow Drupal developers 
to interact with files in Drupal's private file system. Let's look at how this works by 
creating a scheme to retrieve images from a remote website.



Working with Files and Images

[ 320 ]

Creating a stream wrapper
In this example we are going to create a stream wrapper to retrieve photos from 
Twitpic, an image hosting service for Twitter users. Twitpic defines a REST API 
to retrieve photos from the URL http://twitpic.com/show/<size>/<image-
id> where size is either mini or thumb, and image-id is a unique identifier you can 
retrieve from a photo's URL, as seen in the following screenshot:

The full Twitpic API is defined at http://twitpic.com/api.do

So you can retrieve the thumbnail of this photo from the URL http://twitpic.
com/show/thumb/7nyr2. This makes it very easy to refer to photos from Twitpic 
in your code. However, if this URL format should change, then you could end up 
with a lot of code to clean up. We can mitigate this by writing a stream wrapper 
that encapsulates this logic in one place. This stream wrapper will use the format 
twitpic://<image-id>/<size>.

There are two things that we need to do to create a custom stream wrapper in 
Drupal. First, we need to create a custom class which implements our functionality, 
then we need to register the class using hook_stream_wrappers().

PHP defines a set of functions that stream wrappers can implement, as listed at 
http://www.php.net/manual/en/class.streamwrapper.php. Drupal expanded 
on that list and created an interface called DrupalStreamWrapperInterface. Any 
stream wrapper class used in Drupal must implement this interface or else it will  
not register properly.



Chapter 11

[ 321 ]

In some cases you may not need some of this functionality provided by the interface. 
For instance, in our example, we are only reading photos from Twitpic without 
offering the ability to write data anywhere, so functions like stream_write()  
and stream_mkdir() don't apply. In these cases we simply return FALSE.

For the full implementation details of 
DrupalStreamWrapperInterface, refer to http://api.drupal.
org/api/drupal/includes--stream_wrappers.inc/7. You may 
also want to refer to PHP's prototype stream wrapper class at http://
php.net/manual/en/streamwrapper.stream-open.php.

DrupalStreamWrapperInterface is quite extensive, with over 20 functions to be 
defined by the implementing classes. Every stream wrapper should implement each 
of PHP's file handling functions. As mentioned earlier, many of these simply return 
FALSE. Others simply pass through to matching PHP functionality. (stream_eof() 
simply calls and returns the results of feof($handle).)

Since the class is so large, you may want to put it into a separate file to improve 
readability and maintainability of your code. You can do this by creating a new file 
in your module's directory, and adding it to the files[] array in your module.info 
file as shown:

files[] = twitpicstreamwrapper.inc

In order to keep things simple, we will only discuss the most noteworthy parts of the 
class shown in the following code. The full code listing can be downloaded from the 
Packt website.

/**
 * Twitpic Stream Wrapper
 *
 * This class provides a complete stream wrapper implementation.
 */
class TwitPicStreamWrapper implements DrupalStreamWrapperInterface {

  /**
   * Instance URI as scheme://target.
   */
  protected $uri;

  /**
   * A generic resource handle.
   */
  public $handle = NULL;



Working with Files and Images

[ 322 ]

  /**
   * Overrides getExternalUrl().
   *
   * Return the HTML URL of a Twitpic image.
   */
  function getExternalUrl() {
    // Get image_id and size from the URI into an array.
    $target = file_uri_target($this->uri);
    $options = array_combine(
      array('image_id', 'size'),
      explode('/', $target)
    );

    // If no size is specified, default to thumb.
    if (empty($options['size'])) {
      $options['size'] = 'thumb';
    }

    // Create the URL
    $url = 'http://twitpic.com/show/' . $options['size'] . '/' . 
$options['image_id'];
    return $url;    
  }

  /**
   * Support for fopen(), file_get_contents(),etc.
   */
  public function stream_open($uri, $mode, $options, &$opened_path) {
    $allowed_modes = array('r', 'rb');
    if (!in_array($mode, $allowed_modes)) {
      return FALSE;
    }

    $this->uri = $uri;
    $url = $this->getExternalUrl();

    $this->handle = ($options & STREAM_REPORT_ERRORS) ? fopen($url, 
$mode) : @fopen($url, $mode);
    return (bool)$this->handle;
  }
}



Chapter 11

[ 323 ]

A read-only stream wrapper like ours needs to perform two main functions. First, it 
needs to translate a URI like twitpic://y6vvv/thumb to a URL or path that can be 
opened and read. Second, it needs to be able to open a file handle to this resource so 
that developers can get the necessary data.

To manage the first requirement, we have implemented getExternalURL(). Any 
class implementing DrupalStreamWrapperInterface is required to override this 
function with their own implementation. This code is pretty straightforward; we just 
parse the object's URI, set some appropriate defaults, and return an appropriately 
structured Twitpic API URL:

function getExternalUrl() {
  // Get image_id and size from the URI into an array.
  $target = file_uri_target($this->uri);
  $options = array_combine(
    array('image_id', 'size'),
    explode('/', $target)
  );

Note the use of file_uri_target() to retrieve the target information from the URI. 
This is a helper function provided by the Drupal File API to make it easier to parse 
stream wrapper URIs. You can also call file_uri_scheme() to retrieve the scheme 
from a URI.

The stream_open() function is similarly straightforward. This will get called 
when a developer tries to open a resource handled by our stream wrapper using 
PHP functions like fopen() or file_get_contents().This function takes four 
arguments, and needs to return FALSE or a handle to our resource.

The first argument is our wrapper's URI. The second argument, $mode, indicates 
whether the stream should be opened for reading and/or writing, as well as  
other flags. Any mode can have b appended to it, to indicate that the file should be 
opened in binary mode. (So where r indicates read-only, rb indicates read-only in 
binary mode.)

    $allowed_modes = array('r', 'rb');
    if (!in_array($mode, $allowed_modes)) {
      return FALSE;
    }

We are implementing a read-only scheme, so if we get any mode other than r or rb 
we return FALSE.



Working with Files and Images

[ 324 ]

The third argument is a bitmask of options defined by PHP. The one we're  
dealing with here is STREAM_REPORT_ERRORS, which indicates whether or not 
PHP errors should be suppressed (for instance if a file is not found). The second is 
STREAM_USE_PATH, which indicates whether PHP's include path should be checked  
if a file is not found. This is not relevant to us, so we ignore it. If a file is found on  
the include path, then the fourth argument $opened_url should be set with the  
file's real path.

Looking at the rest of the code for stream_open(), we can see how this  
comes together:

    $this->uri = $uri;
    $url = $this->getExternalUrl();

We save our URI into a protected property, and then call getExternalURL() to 
translate it into an actual Twitpic URL that we can grab a photo from. We can then 
fopen() this URL and set our internal handle.

    if ($options && STREAM_REPORT_ERRORS) {
      $this->handle = fopen($url, $mode);
    }
    else {
      $this->handle = @fopen($url, $mode);      
    }

If STREAM_REPORT_ERRORS is not set, we suppress fopen() errors by prepending @, 
which indicates to PHP that errors should not be reported. It is always good coding 
practice to properly handle the options available to your stream functions if they are 
applicable to your user case.

In addition to creating an implementation of DrupalStreamWrapperInterface, 
modules that define their own stream wrappers must register them with Drupal's 
stream wrapper registry by implementing hook_stream_wrappers(). This hook 
returns an associative array defining some information about our stream wrapper,  
as shown in the following code:

/**
 * Implement hook_stream_wrappers().
 */
function twitpic_stream_wrappers() {{
  return array(
    'twitpic' => array(
      'name' => 'Twitpic photos',
      'class' => 'TwitpicStreamWrapper',
      'description' => t('Photos from the Twitpic hosting service.')



Chapter 11

[ 325 ]

      'type' => STREAM_WRAPPERS_READ_VISIBLE,
    ),
  );
}

The array is keyed on our wrapper's scheme, in this case twitpic. Each scheme must 
in turn define another associative array with the following keys:

name: A short descriptive name for our wrapper.
class: The name of your PHP class that implements Drupal's stream 
wrapper interface.
description: A sentence or two describing what this wrapper does.
type: A constant indicating what type of stream wrapper this is—readable 
and/or writeable, local or remote, among other things. These are defined 
in includes/stream_wrappers.inc and can be reviewed at: http://api.
drupal.org/api/drupal/includes--stream_wrappers.inc/7

Note that in our example we have defined our wrapper as STREAM_WRAPPERS_
READ_VISIBLE. This means it is read only, but visible in Drupal's UI. An example 
of a wrapper that is not visible in the UI is Drupal's temp:// scheme, which is for 
internal use only (it is set to STREAM_WRAPPER_HIDDEN).

This is all that is needed to implement your own custom stream wrapper. It may 
seem like a lot, but once you understand what needs to be implemented, it is really 
quite simple.

Now that your stream wrapper is finished, you will be able access photos from 
Twitpic as easily as any other remote source using Drupal's File API. Now that we 
can do this, let's look at some of the ways in which Drupal's Image API can be used 
to modify and manage images.

In this example we have mostly focused on the Drupal-specific part 
of writing stream wrappers. For more general documentation on 
stream wrappers see http://us2.php.net/manual/en/intro.
stream.php

•

•

•

•



Working with Files and Images

[ 326 ]

Images in Drupal
Just as the contributed Filefield module largely handled file handling in Drupal 
6, two modules—Imagefield and Imagecache, largely handled image handling. 
Imagefield was used for attaching images to nodes, and Imagecache was used 
to create derivations of those images by resizing or cropping them. This was very 
popular for things like creating square thumbnails in a grid for image galleries. The 
functionality of both modules has been brought into core for Drupal 7, along with  
an improved API for managing this functionality from code.

Image API
The Drupal 7 Image API provides a variety of functions to manipulate images. By 
default, Drupal uses the GD image management library that is included with PHP. 
However Drupal also offers the ability to switch to a different library if needed. 
For instance, a contributed module could implement the ImageMagick library for 
developers who needed support for additional image types such as TIFF, which GD 
does not support.

Working with images is similar to working with files. You get an image object by 
opening a local image using image_load(), and then pass this object to one of the 
image manipulation functions provided by Drupal. Once you've performed the 
desired modifications to your image, you save it using image_save().

Image API functions can only access files on your local file system. 
You can still use stream wrapper schemes like public:// and 
private:// to refer to files, but remote file systems will not 
function properly.

The following Drupal functions are available for image manipulation:

image_crop(): Crop an image to specified dimensions.
image_desaturate(): Convert an image to grayscale.
image_resize(): Resize an image to specified dimensions. This can affect 
the image's aspect ratio.
image_rotate(): Rotate an image to the specified number of degrees.
image_scale(): Resize an image to specified dimensions without affecting 
the image's aspect ratio.
image_scale_and_crop(): Combine scale and crop in one operation.

•

•

•

•

•

•



Chapter 11

[ 327 ]

For full details of these and other functions available in the Image API 
refer to http://api.drupal.org/api/group/image/7

Let's take a look at how to we might integrate some of these functions with our 
Twitpic module. First, let's make create a hook_menu() implementation that we  
can use to trigger our code.

/**
 * Implement hook_menu().
 */
function twitpic_menu() {
  $items = array();

  $items['twitpic/munge/%'] = array(
    'title' => 'Munge a Twitpic image',
    'description' => 'Displays a Twitpic image, munged in various ways 
(cropped, rotated, etc).',
    'page callback' => 'twitpic_image_munge',
    'access arguments' => array('access_content'),
    'type' => MENU_CALLBACK,
  );

  return $items;
}

When the URL twitpic/munge is requested, this hook will call the function 
twitpic_image_munge(), which takes two arguments. The first is the ID of 
the Twitpic image we want to manipulate, and the second is an operation to be 
performed. The allowed operations are rotate, scale, and desaturate. These 
arguments will be automatically passed to twitpic_image_munge() when 
appended to the URL, as discussed in Chapter 5, Building an Admin Interface.

Let's look at the callback function now:

/**
 * Munge an image from Twitpic by applying a resize, crop or 
 * rotate to it.
 *
 * @param $id
 *   The image's ID, as extracted from its original URL.
 * @param $operation
 *   An operation to perform on the image. Can be 'rotate', 
 *   'scale', or 'desaturate'.



Working with Files and Images

[ 328 ]

 */
function twitpic_image_munge($id, $operation = 'rotate') {
  // If we get a disallowed operation, just return.
  $operations = array('rotate', 'desaturate', 'scale');
  if (!in_array($operation, $operations)) {
    return;
  }

  $twitpic_uri = 'twitpic://' . $id . '/thumb';
  $local_uri = 'public://' . $id . '.jpg';
  $twitpic_image = file_get_contents($twitpic_uri);
  $local_path = file_unmanaged_save_data($twitpic_image,     $local_
uri, FILE_EXISTS_REPLACE);
  $local_image = image_load($local_path);

  switch ($operation) {
    case 'scale':
      image_scale($local_image, NULL, 50, FALSE);
      break;

    case 'desaturate':
      image_desaturate($local_image);
      break;

    case 'rotate':
      image_rotate($local_image, 45, 0x7D26CD);
      break;
  }

  $local_uri = drupal_tempnam('public://', $id);
image_save($local_image, $local_uri);

  return theme('image', array('path' => $local_uri));
}

The first thing we do is to define our allowed operations, and return if the 
operation passed in doesn't match one of them. This allows us to fail gracefully in 
that situation. Then we put together the Twitpic URI and grab a local copy of the 
Twitpic image using file_get_contents() as we did earlier in the chapter. For the 
purposes of this example, we just hardcode the size to thumb, but you could easily 
add that as an additional argument, if you wish to do so.



Chapter 11

[ 329 ]

After this setup, we start getting into the meat of the function.

$local_path = file_unmanaged_save_data($twitpic_image, $local_uri, 
FILE_EXISTS_REPLACE);
  $local_image = image_load($local_path);

Since we are not associating this file with any other content within Drupal,  
we have no need for it to be entered into the files table. Therefore, we use  
file_unmanaged_save_data() as opposed to file_save_data(), in order  
to prevent unnecessary records from being written.

Once the file is saved, we call image_load() to get back $local_image, a Drupal 
image object that we can pass on to the image manipulation functions. Like the file 
object, an image object contains a variety of information about the image that has 
been loaded, including its height and width, mime-type, and a handle to the image.

Now that we have an image object, we can mess with it using Drupal's API 
functions. For the purposes of this experiment, we just hardcode some sample 
manipulations in, to see the kind of things you can do. 

switch ($operation) {
  case 'desaturate':
    image_desaturate($local_image);
    break;

  case 'scale':
    image_scale($local_image, NULL, 50, FALSE);
     break;

  case 'rotate':
    image_rotate($local_image, 45, 0x7D26CD);
    break;
}

As you can see, we have three possible manipulations depending on the operation 
passed in through the URL. All of these functions work directly on our image  
object, $local_image which is passed by reference, so we don't need to worry  
about return values. 

The first example, image_desaturate(), is the simplest. It just converts the image  
to grayscale, with no configuration arguments.



Working with Files and Images

[ 330 ]

The scale case uses image_scale(), which takes four arguments. The first two are 
the target height and width of the new image. Since image_scale() preserves an 
image's aspect ratio, you actually only need to provide one of these, and you can 
leave the other one NULL, as we've done in the example. If you provide both values, 
one of them may end up smaller than specified because of the calculations needed  
to preserve the image's aspect ratio. The last argument specifies whether or not 
image_scale() should upscale an image when you provide a height and/or width 
that is larger than the original. This typically results in a lower quality pixilated 
image, so we have specified FALSE.

Finally, the rotate case uses image_rotate(), which takes two arguments. The first 
is the number of degrees the image should be rotated to, and the second specifies an 
optional background color that should be used to fill in any space left behind by the 
rotation. This color should be specified using the color's hex value. In this example, 
we rotate 45 degrees and fill the background with purple.

Finally we need to save and display the resulting image:

  $local_uri =drupal_tempnam('public://');
image_save($local_image, $local_uri);

  return theme('image', array('path' => $local_uri));
}

We create a local filename using drupal_tempnam(), which just generates a random 
filename we can use when given a path. It may seem tempting to use information like 
the file's Twitpic ID or the operation to be performed in the file's name. However, in 
this example, these items are passed in through the URL, and this cannot be trusted. It 
is possible to create a security problem if you are not very careful using user-submitted 
data in filenames, and thus it is best to avoid that, if at all possible. 

We can now pass this path, along with our modified image object, to image_save(), 
to save our image to the public filesystem. Once saved, it is a simple matter to call 
the theme function for images, to generate the necessary HTML for our image to 
be displayed. The following is an example of what you would see when requesting 
twitpic/munge/7nyr2/rotate:



Chapter 11

[ 331 ]

This is all very cool, but sometimes it might be nice to pre-create some manipulations 
for repeated use, or even a set of manipulations to be executed in order. This is what 
Image Styles are for, and we'll look at that now.

Image Styles
Image Styles is the Drupal 7 core replacement for the popular Imagecache module, 
which has been around since Drupal 5. Image Styles is a collection of manipulations 
which can be saved as a group to be applied to images. Once saved, these styles can 
be easily used as formatters for Image fields, or they can be used in code by calling  
a theme function as we did above with our hand-crafted images. 



Working with Files and Images

[ 332 ]

You can create an image style by visiting admin/config/media/image-styles 
where you will see the following screen:

Drupal ships with three commonly used image styles in place, namely, thumbnail, 
medium and large. Each of these scales an image to a specific size. If you want to 
create a new style, you can click Add style, and after entering a unique name for 
your style, you will see the following screen:



Chapter 11

[ 333 ]

This is where you can start adding new manipulations (or, in Drupal parlance, 
'effects') to your image. As you can see from the drop-down menu shown, all of 
the standard Drupal effects are available to be used. When you select an effect 
and click on the Add button, you may get a configuration form that allows you to 
specify options for that effect. Typically these configuration options will match the 
arguments of the associated functions. So the Desaturate effect does not have a 
configuration form, but the Scale effect does, as shown:

Once the appropriate options are entered and saved, the styles screen will be 
updated with a live preview of what the new effect will look like. As you add more 
and more effects, this live update will continue to reflect them. You can also adjust 
the order in which the effects are applied, since this can vastly affect the resulting 
image. Rotating before a crop results in an image that is different from one that is 
cropped before rotating.

This may seem like a lot of configuration information for a book focused on coding, 
but it provides the context for what we're about to do. As you can see, all of Drupal's 
built in effects are available for use in a style, but what if you need an effect that isn't 
listed? For instance, a common effect is to add a text watermark to your images. Let's 
look at how we might do that.



Working with Files and Images

[ 334 ]

Creating image effects

Note that this example is not compatible with pluggable image libraries, 
and will only work with GD. For more information about making 
your image functions compatible with multiple libraries, see the API 
documentation on image_toolkit_invoke() at:
http://api.drupal.org/api/function/image_toolkit_
invoke/7

We will begin with the assumption that you have created a standard module .info 
file with all the information needed for a module named watermark. The first step in 
creating a new image effect is implementing hook_image_effect_info().

/**
 * Implements hook_image_effect_info().
 */ 
function watermark_image_effect_info() {
  $effects = array();

  $effects['watermark'] = array(
    'label' => t('Watermark'),
    'help' => t('Add a watermark to an image.'),
    'effect callback' => 'watermark_effect',
    'form callback' => 'watermark_form',
    'summary theme' => 'watermark_summary',
  );

return $effects;
}

This kind of hook should look pretty familiar by now. It is very similar to  
hook_menu(), which was discussed in Chapter 5, Building an Admin Interface. We 
create an associative array of the effects that we are defining, and return it to the 
caller. The array is keyed by a unique identifier, in our case, watermark. This array 
contains the following information about our image effect:

label: The label that will be used in the effects drop-down on the styles 
page. This text will also be used after you have added your effect, if you  
have not defined a summary theme below.
help: A text description of what your effect does.
effect callback: A function that will be called to actually execute your 
effect on an image. This function name indicates where your image 
manipulation code will go.

•

•

•



Chapter 11

[ 335 ]

form callback: If your effect allows users to enter configuration data  
(such as the width and height fields in the previous scale example), then this 
indicates the function that defines your configuration form. This value is 
optional. If your effect does not require any configuration information,  
then this key is not necessary.
summary theme: After your effect is added to a style, you can create a theme 
callback which returns customized text to be displayed on the styles admin 
screen. For instance, the rotate effect displays the number of degrees that the 
user entered. This value is also optional. If you don't provide it, your effect 
will display the value you provided in the label key.

As you can see, we have defined three callbacks that we need to create. First, we will 
look at our configuration form. It would be nice for users to be able to specify what 
text they would like on watermarked images, so we will offer the option to enter 
custom text as well as give them an option to indicate what color it should be.

/**
 * Form structure for the watermark configuration form.
 *
 * @param $data
 *   The current configuration for this watermark effect.
 */
function watermark_form($data) {
  $form['text_color'] = array(
    '#type' => 'textfield',
    '#default_value' => (isset($data['text_color'])) ? $data['text_
color'] : '#FFFFFF',
    '#title' => t('Text color'),
    '#description' => t('The color of the text to be used for this 
watermark. Use web-style hex colors (#FFFFFF for white, #000000 for 
black).'),
    '#size' => 7,
    '#maxlength' => 7,
    '#element_validate' => array('image_effect_color_validate'),
  );

  $form['text'] = array(
    '#type' => 'textfield',
    '#default_value' => (isset($data['text'])) ? $data['text'] : 
'Drupal loves kittens!',
    '#title' => t('Watermark text'),
    '#description' => t('Text to be written on the image.'),
    '#size' => 30,
    '#maxlength' => 60,

•

•



Working with Files and Images

[ 336 ]

  );

  return $form;
}

Effect form callbacks return partial Form API structures. You only need to provide 
the fields you would like users to enter, and Drupal will take care of the submission 
details. We have defined two form elements to hold our configuration options, 
namely, text_color and text. In general these are pretty standard Form API  
arrays, but there a couple of things to point out.

Your form callback also takes a single argument—$data—which is an associative 
array containing the current values of our form options, if any. You should use this 
information to fill your form elements with the user's current options or, if they are 
empty, to fill in sane defaults. We have set the default color here to be white, and the 
default text to Drupal loves kittens!

One final thing to note is that we are using the #element_validate property to 
specify an array of callbacks, which will be used to validate this specific element. 
This is a Form API property we haven't seen before, but you can use it in any form 
element definition. Drupal contains the function image_effect_color_validate() 
to verify that hex colors are properly entered, and we take advantage of this function 
by specifying it here.

Now let's make a customized message based on the user's options, to be displayed 
in the image style's effect listing. This just allows us to give a little more detail to the 
user, and makes it more obvious what our effect is doing.

/**
 * Theme callback for image watermark effect summary output.
 *
 * @param $variables
 *   An associative array containing configuration data.
 */
function theme_watermark_summary($variables) {
  $data = $variables['data']; 
  return t('with color @textcolor', array('@textcolor' => $data['text_
color']));
}

As you can see we just return the text we're using along with the color that  
has been configured. This gets appended to the label we specified in our initial  
effect declaration.



Chapter 11

[ 337 ]

Finally we can make the modification to our image:

/**
 * Image effect callback; add a text watermark to an image.
 *
 * @param $image
 *   An image object returned by image_load().
 * @param $data
 *   An array of attributes to use when performing the 
 *   watermark effect.
 * @return
 *   TRUE on success. FALSE on failure.
 */
function watermark_effect(&$image, $data) {
  $data['text_color'] = str_replace('#', '', $data['text_color']);
  $red = hexdec(substr($data['text_color'], 0, 2));
  $green = hexdec(substr($data['text_color'], 2, 2));
  $blue = hexdec(substr($data['text_color'], 4));

  $color = imagecolorallocate($image->resource, $red, $green, $blue);
  imagestring($image->resource, 5, 5, 5, $data['text'], $color);
}

From a Drupal perspective, the important thing is that our effect callback, 
watermark_effect(), takes two arguments. The first is an image object just like 
we've encountered earlier, which contains a resource handle we can pass to GD 
functions for modification. The second is the data array just like the one passed to 
our configuration form callback, containing an associative array of user submitted 
configuration information. This array is keyed on the field names as specified in the 
form callback above. We use the information in $data to properly format our text.

Beyond that this functionality is pretty straightforward. Most of the code is 
concerned with properly formatting the color information. In the first four lines we 
convert the hex color submitted by the user (found in $data['text_color']) to the 
RGB decimal values which we will need later. We do this by parsing each individual 
hex value of the string and using hexdec() to convert them to their decimal 
equivalent. 

The rest of the code relates to the image creation functionality from the GD  
image library. We will cover this briefly but for more details refer to the GD 
documentation at:

http://in2.php.net/manual/en/book.image.php



Working with Files and Images

[ 338 ]

Once we have the color values, we use imagecolorallocate() to create a color 
identifier representing this color. Finally we can call imagestring(), a GD function 
that plots text on a string. Without going into too much detail, the following are the 
arguments this function takes:

A handle to the image (in this example the resource property of the  
image object)
A font size from 1-5 (5 being the largest)
The x and y coordinates of where the text should be plotted with (0, 0) being 
the top left corner of the image
The text to be plotted, in this example, the $data['text'] as submitted by 
the user through our configuration form
The color identifier we created with the user-submitted color choice

You should now be able to install this module and have the option to watermark an 
image on the Image Styles admin screen, as shown in the following screenshot:

You can now add this effect, alone or in combination with other effects to a new 
image style. This image style can then be applied to images in nodes by adjusting 
the display settings in the administration screens for the node's content type. 
The following image shows our previous example node with a user-configured 
watermark applied to the image:

•

•

•

•

•



Chapter 11

[ 339 ]

Pretty cool right? However, sometimes it would be nice to be able to ship some 
preconfigured image styles with your module. For instance, a popular Drupal 
contributed module is the Pirate module, which translates your entire website to 
pirate-speak on Talk Like A Pirate Day. It might be cool for the Pirate module to 
be able to ship a totally preconfigured image style that adds the YAR! watermark 
to images. Rather than having to create this image style themselves, administrators 
could simply install the module and it would be all set up for them. Not only that, 
but because this style is in code, it is more easily deployable between development 
environments. Thankfully, this is quite easy to do and will provide our final 
demonstration of Drupal 7's Image API.

Creating image styles from a module
At this point in your Drupal experience, you can probably guess what is involved 
in creating an image style in your module—a hook and an associative array. The 
hook is hook_image_default_styles() and the array is a simple definition of the 
components of your style.

For those familiar with views in Drupal 6, this is very similar to exporting 
views to code using hook_views_default_view().

/**
 * Implements hook_image_default_styles().
 */
function watermark_image_default_styles() {
  $styles = array();

  $styles['yar'] = array(
    'effects' => array(
      array(
        'name' => 'watermark',
        'data' => array(
          'text_color' => '#000000', 
          'text' => 'YAR!'
        ),
        'weight' => 0,
      ),
    ),
  );

return $styles;
}



Working with Files and Images

[ 340 ]

This is about as simple as Drupal hooks get, especially given everything that  
has already been covered previously in this chapter. Our implementation of  
hook_image_default_styles() returns $styles, an associative array of image 
style definitions, keyed on a unique string. This string will act as the style's name  
and will be displayed on the image styles admin page.

Each style definition is a set of image effects, along with their effect-specific settings, 
if any. The keys this array can contain are as follows:

name: The unique name of the effect we're implementing.
data: An optional array of configuration settings. These should be keyed on 
the same text string that are used in the form callback defined by the effect. 
Note that default values defined in the form callback will NOT be honored if 
you do not include them. You will have to enter them by hand here. 
weight: An optional weight, used to control effect ordering when multiple 
effects are included in a single style. As is Drupal standard, lower weights 
'float to the top' and higher weights 'sink to the bottom'.

That is really all there is to it. If you load the image styles listing, you will now see 
your style listed (you may need to clear the Drupal cache first).

One nice aspect about image styles defined by a module is that they are protected 
from being changed or modified by end users (or accidentally broken by the 
developers themselves). This is implemented in two ways. First, in order to modify 
the settings of a style implemented through hook_image_default_styles(), you 
must specifically take the extra step of saying you want to override it. Take a look  
at the following screen:

•

•

•



Chapter 11

[ 341 ]

As you can see, there is a large warning indicating that in order to change this 
module's settings, you must click the Override defaults button. This can help 
prevent users from inadvertently changing your image settings, thus throwing off 
the content and theme of your site. Once the defaults have been overridden, the user 
will be able to modify the settings as they wish.

This leads us to the second useful aspect of implementing your styles in code—no 
matter how much a style is modified; it can always be reverted back to its original 
state with the click of the mouse. Observe the change on the style list after a user  
has overridden a default style:

As you can see, this style has been marked as Overridden and it has gained a revert 
link! Clicking the revert link takes you to a confirmation screen, and if you agree  
to revert, the style's settings will be reset back to their original state as defined in  
the module.



Working with Files and Images

[ 342 ]

Default styles are very simple to implement, but as you can see they bring along 
with them an enormous amount of functionality that can dramatically improve 
your workflow. If you spend a lot of time configuring image settings or moving 
configuration between sites, there is really no reason not to implement your styles  
in a module using hook_image_default_styles().

Summary
The new File and Image APIs in Drupal 7 not only make management and 
maintenance of these assets much easier, they are also great fun to play around 
with and amazingly easy to use. By now you should be comfortable with the central 
concepts of file management in Drupal. You should know the difference between 
Drupal's public and private file systems, and understand how Drupal associates file 
metadata with the files they represent in the files table. You should also have a 
good understanding of stream wrappers and how they are implemented in Drupal 
7. Finally you should know how to use the Image API to crop or otherwise modify 
images, and how to save these modifications as Image Styles for use in your content.

Many of the examples in this chapter are just shells, and could easily be improved 
upon or expanded. For instance, it would be reasonably easy to expand the 
watermark module so that it can position the watermark based on user choice, or 
outline it for easier readability against different backgrounds. Experimentation  
is encouraged!

Earlier we discussed how pre-defined image style settings can improve workflow 
and maintainability. In the next chapter we kick that concept up a notch by learning 
how to create completely pre-configured Drupal installations using install profiles.



Installation Profiles
This chapter will focus on creating installation profiles. Previous chapters covered 
building modules and features into Drupal. This chapter will cover bundling 
modules and themes with an installer that configures Drupal for a specific purpose.

Here are some important topics that we will cover in this chapter:

Starting a new installation profile
Bundling modules and themes in a distribution
Creating a .profile file to store installation tasks
Enabling modules in the install process
Configuring the default blocks
Running the installer without using the interactive wizard

By the end of the chapter you should have the basic knowledge to create your own 
installation profile and Drupal distribution.

Introducing installation profiles
Installation profiles are the way to plug into and customize the Drupal installation 
process. With installation profiles, additional forms and steps can be added to the 
installer, modules can be enabled, blocks can be set up, default settings can be 
configured, and the Drupal site can be customized.

An installation profile is useful when you repeat the same install tasks regularly. 
These tasks can be automated, which is perfect for setting up a Drupal distribution  
or for situations where you build out the same base site repeatedly.

•

•

•

•

•

•



Installation Profiles

[ 344 ]

Drupal distributions
Distributions provide out-of-the-box functionality without the need to download 
and install anything but the distribution itself. Without a distribution, you typically 
need to download Drupal and additional modules and themes that you need for 
the site to operate. Then you need to spend time running through a normal Drupal 
installation process, followed by time spent configuring the site. With a 'distribution', 
you download it, run it through the installer, and you have a functioning and a 
configured site. Distributions build on installation profiles by providing everything 
you need in one place.

Setting up a distribution
Distributions consist of Drupal core, additional modules and themes, and  
an installation profile to configure the site. While going through creating an 
installation profile, we are also going to walk through the steps needed to  
create a full-fledged distribution.

Standard and minimal profiles
Drupal comes pre-packaged with the standard and minimal installation profiles. The 
standard installation profile installs a common set of core modules. This is similar 
to the installation profile packaged with Drupal 6. The minimal installation profile 
installs only the required modules along with the block and dblog modules.

Creating a profile directory
Profiles are located in the /profiles directory, off the base of the Drupal site. To 
create a new profile, create a directory alongside the standard and minimal profiles 
provided by core. The name should be the machine-readable name of the install 
profile you are creating. Throughout this chapter we will build an installation  
profile with the name store.

Modules, themes, and profiles cannot share the same 
machine-readable name. This name should be a unique 
namespace for the Drupal installation.



Chapter 12

[ 345 ]

Profile modules and themes
While modules and profiles can be stored in the /sites/all folder, as described in 
Chapter 2, modules and themes bundled with a profile have a special place where they 
can reside. In the profile they may have their own modules and themes directories:

Storing the modules and themes within the profile enables distributions to be 
packaged together in one part of Drupal, and allows the standard module and  
theme overriding system to work.

Since modules and themes can be stored in more than one place 
there is an order to how Drupal chooses which source to use for a 
module. Modules and themes in the /sites/all folder are chosen 
over those in the profile folder, and modules and themes in a site 
specific folder are chosen over those in the /site/all folder.

Drupal.org Bundled Distributions
The drupal.org packaging system is capable of taking an 
installation profile with some additional configuration and  
creating a downloadable distribution. Details are available at 
http://drupal.org/node/642116.

Creating profiles
Profiles consist of a .info file and a .profile (pronounced "dot-profile") file. This is 
similar to how modules are structured, as described in Chapter 2.

The .info file for a profile looks just like a .info file for a module and contains the 
same information.

name = Example Store
description = "An example store installation profile."
version = VERSION
core = 7.x
files[] = store.profile
files[] = store.install.inc  
files[] = store.install



Installation Profiles

[ 346 ]

The name and description fields from the store.info file are used in the first step  
of the installer, as seen in the following image:

If there is only one profile present in the /profiles directory, Drupal will 
automatically select that profile and move on to the next step.

The .profile file serves two purposes. First, it enables customizations to the 
installation process. These changes include adding tasks to the installer, such as 
adding a custom form, or altering the default installation tasks.

The second purpose of the .profile file is to act as a custom module for the site. 
After the installation is complete, the profile acts as any other module on the site, 
except that it cannot be disabled. It can run Drupal hooks, alter forms, and do 
anything else a normal module can do.



Chapter 12

[ 347 ]

Enabling modules
Just like modules can be dependencies of other modules, modules can be set 
as dependencies of a profile. All dependent modules will be enabled as part of 
the install process. The difference between module dependencies and profile 
dependencies is that profile dependencies can be disabled without disabling  
the profile.

To add a dependency to a profile, use the dependencies field in the .info file. Here 
is an example from our store.info file of the modules we want enabled:

dependencies[] = block
dependencies[] = comment
dependencies[] = contact
dependencies[] = contextual
dependencies[] = dashboard
dependencies[] = help
dependencies[] = image
dependencies[] = menu
dependencies[] = path
dependencies[] = taxonomy
dependencies[] = dblog
dependencies[] = search
dependencies[] = shortcut
dependencies[] = toolbar
dependencies[] = overlay
dependencies[] = field_ui
dependencies[] = file
dependencies[] = rdf

By default, the field, field SQL storage, filter, list, node, number, options, 
system, text, and user modules are enabled. Any other modules you want 
enabled need to be listed in the .info file for the profile.

Ensuring profile dependencies
Since dependencies of profiles can be disabled, profiles that rely on 
dependencies should ensure that a module is enabled before acting on 
it. The function module_exists() can be used to test if a module is 
both installed and enabled. For more details on module_exists() see 
http://api.drupal.org/api/function/module_exists/7.



Installation Profiles

[ 348 ]

The install task system
The Drupal installer is task based. Tasks consist of steps to collect information and 
act on it. For example, three of the core tasks are to collect the database configuration 
details, write the database configuration to the settings.php file, and install the 
modules. Drupal core provides a set of default tasks for the installer to run that  
an installation profile can add to or alter. The two hooks that provide access to  
the install tasks are:

hook_install_tasks(): This allows the profile to add tasks at the end of the  
default tasks
hook_install_tasks_alter(): This allows the profile to alter all the tasks 
including those provided as defaults by the installer

For the first step of the installer, an installation profile is selected. This 
step cannot be altered by an installation profile.

Choosing an install task or using hook_install
Since profiles operate as a module, they can have a .install file containing a  
hook_install() which will be called when the profile is installed. This leaves  
two choices of where to perform configuration tasks.

There are two main differences between these two types of tasks:

The profile hook_install() is run before custom install tasks and the site 
configuration form.
Tasks in the installer can have forms, utilize the Batch API, and more.  
hook_install() can only run as a callback in a single page load.

For complete documentation regarding hook_install() visit the API 
documentation at http://api.drupal.org/api/function/hook_
install/7.

Anatomy of an install task
There are five properties to describe each task step to the installer.  
hook_install_tasks() describes each step to the installer as a keyed array. The key 
is a unique name to a callback function that executes the task. The properties of each 
item describing the task are as follows:

•

•

•

•



Chapter 12

[ 349 ]

display_name: A human readable name to display for this task. This is used 
in the user interface to inform a user as to the step they are on.
display: tells the installer whether or not to display the task. This is used to 
provide fine-grained control over the display of the task in the installer. It is 
useful for tasks that may display only under certain conditions. The value is a 
Boolean and the default value is whether or not the "display_name" key is set.
type: Specifies the type of task to be run. There are three types of tasks the 
installer can execute. The normal type of task will execute a callback function 
and optionally return some html. The form type brings up a form using the 
Form API. The batch type will return a Batch API definition.
run: Tells the installer when to run the task. The default setting is  
INSTALL_TASK_RUN_IF_NOT_COMPLETED, which tells the installer to run 
the task once in the install process when reached in the list of install tasks. 
Alternately, INSTALL_TASK_RUN_IF_REACHED tells the installer to run  
the task on every page load if the task is reached in the list of tasks and 
INSTALL_TASK_SKIP tells the installer to skip the task. 
function: An optional parameter to set a callback function other than the 
key name. This is useful if you want to call the same callback function on 
more than one step.

Creating a task
Let's create two tasks for the store profile. The tasks will create two content types 
and fill in default settings for our site-wide contact form.

We start by defining the task to create the two content types. This will be done in 
store_install_tasks(), the profiles implementation of hook_install_tasks() 
which goes in store.profile:

/**
 * Implements hook_install_tasks().
 */
function store_install_tasks() {
  $tasks = array();
  $tasks['store_create_content_types'] = array(
    'type' => 'normal',
  );
  return $tasks;
}

•

•

•

•

•



Installation Profiles

[ 350 ]

In this case we set the array key to store_create_content_types, which is the 
callback function for this task. The type is set to normal, meaning this is a task  
that is run, and may return HTML.

Then in our profile, we create the function store_create_content_types()  
as follows:

function store_create_content_types(&$install_state) {
  $types = array(
    array(
      'type' => 'page',
      'name' => st('Page'),
      'base' => 'node_content',
      'description' => st("Use <em>pages</em> for your static content, 
such as an 'About us' page."),
      'custom' => 1,
      'modified' => 1,
      'locked' => 0,
    ),
    array(
      'type' => 'product',
      'name' => st('Product'),
      'base' => 'node_content',
      'description' => st('Use <em>products</em> for items in the 
store.'),
      'custom' => 1,
      'modified' => 1,
      'locked' => 0,
    ),
  );

  foreach ($types as $type) {
    $type = node_type_set_defaults($type);
    node_type_save($type);
    node_add_body_field($type);
  }
}

In this case the function has one variable passed, it being $install_state. This is 
a variable passed through the entire install process and each of the tasks. It contains 
the state and all relevant information that needs to be passed around the installer.

The content of this function defines two content types. It also makes sure that all the 
default information is filled in, and saves the types creating two new content types.



Chapter 12

[ 351 ]

Next, let's create a form to enter in default contact information for the site-wide 
contact form. In this case we expand the store_install_tasks() function to  
add a task for the form.

/**
 * Implements hook_install_tasks().
 */
function store_install_tasks() {
  $tasks = array();
  $tasks['store_create_content_types'] = array(
    'type' => 'normal',
  );
  $tasks['store_configure_contact_form'] = array(
    'display_name' => t('Default site contact information'),
    'type' => 'form',
  );
  return $tasks;
}

In this chapter you will notice the use of the t() and st() 
functions for translations. The t() function is the standard 
function to use for translatable text. The st() function should be 
used when some of the systems are not available. For example, in 
the tasks of the installer before the modules are installed. If there 
are functions that need to be called in both places and you need 
to discover which function to use, get_t() returns the name of 
the appropriate translation function to use.

After the task store_create_content_types, the task store_configure_contact_
form is added. We provide this task with a display_name so it will show up as a 
step in the installer. The type is set to a form. Just like any other Drupal form, it will 
have access to FORM_ID_validate and FORM_ID_submit callbacks.

Once a profile has been selected in the first step of the installer, any additional task 
will be displayed using their display_name in the installer steps.



Installation Profiles

[ 352 ]

The form function will look a little different than a normal form function:

function store_configure_contact_form($form, &$form_state, &$install_
state) {

  drupal_set_title(t('Default site contact information'));

	 $form['recipients'] = array(
    '#type' => 'textarea',
    '#title' => t('Recipients'), 

    '#default_value' => '',
    '#description' => t("Example: 'webmaster@example.com' or 'sales@
example.com,support@example.com' . To specify multiple recipients, 
separate each e-mail address with a comma."),
    '#required' => TRUE,
  );
  $form['reply'] = array(
    '#type' => 'textarea',
    '#title' => t('Auto-reply'),
    '#default_value' => '',
    '#description' => t('Optional auto-reply. Leave empty if you do 
not want to send the user an auto-reply message.'),
  );
  $form['submit'] = array(
    '#type' => 'submit',
    '#value' => t('Save'),
  );
  return $form;
}



Chapter 12

[ 353 ]

Notice that $install_state is passed in as a third variable into the form function. 
This is different from typical form functions in the Form API. It provides access to 
the state and information in the installer.

Setting the page title
Setting the display_name for a task only sets the title in the list of 
installer tasks. To set the page title, use drupal_set_title(). For full 
details on using drupal_set_title() see the API documentation at 
http://api.drupal.org/api/function/drupal_set_title/7.

Just like other Form API functions we have access to the store_configure_
contact_form_validate() and store_configure_contact_form_submit() 
functions, as seen below:

function store_configure_contact_form_validate($form, &$form_state) {
  // Validate and each e-mail recipient.
  $recipients = explode(',', $form_state['values']['recipients']);
  foreach ($recipients as &$recipient) {
    $recipient = trim($recipient);
    if (!valid_email_address($recipient)) {
      form_set_error('recipients', t('%recipient is an invalid e-mail 
address.', array('%recipient' => $recipient)));
    }
  }
  form_set_value($form['recipients'], implode(',', $recipients), 
$form_state);
}

function store_configure_contact_form_submit($form, &$form_state) {
  $values = $form_state['values'];
  $values += array(
    'cid' => 1,
  );
  drupal_write_record('contact', $values, array('cid'));
  watchdog('contact', 'The default category has been updated.', 
array(), WATCHDOG_NOTICE, l(t('Edit'), 'admin/structure/contact/edit/' 
. $values['cid']));
}



Installation Profiles

[ 354 ]

There are some tasks which need to be run after a certain point in the process on 
every page load. An example of this is in the default install tasks. The installer 
initializes with a low-level Drupal bootstrap enabling very base level functionality. 
After the modules have been installed but before the site configuration part of the 
process, there is a point when the installer can do a full Drupal bootstrap with all the 
functionality of all the enabled modules. Once the installer reaches this point it runs 
a task on all subsequent page loads to perform a full Drupal bootstrap. The definition 
for this task looks like the following:

$tasks = array(
  ...
  'install_bootstrap_full' => array(
    'run' => INSTALL_TASK_RUN_IF_REACHED,
  ),
  ...
);

By setting run to INSTALL_TASK_RUN_IF_REACHED, the function install_bootstrap_
full() is run on every page load after it is encountered in the install tasks.

Altering tasks
The installer provides a method to alter tasks in the installer. Where  
hook_install_tasks() provides a method to add tasks at the end of the install 
process, hook_install_tasks_alter() provides access to all the tasks in the 
installer (including the default tasks provided by the installer). This allows a profile 
to insert tasks earlier in the install process or alter the default tasks.

Tasks performed before the install_bootstrap_full() task, which 
is before the modules are installed, only have access to a very base level of 
Drupal configuration, with access to the system module, user module, the 
PHP settings, and a site's settings.php file.

Let's look at an example of altering tasks before the modules are installed; only the 
base level system is available, which means your installation profile is not yet able to 
call hook_form_alter or hook_form_FORM_ID_alter. In this case we want to alter 
the step where the database is set up to add some additional instructions.

/**
 * Implements hook_install_tasks_alter().
 */
function store_install_tasks_alter(&$tasks, &$install_state) {
  $tasks['install_settings_form']['function'] = 'store_database_
settings_form';
}



Chapter 12

[ 355 ]

Here, the task that sets up the database is altered, telling it to call a different function 
using the function key for the task.

function store_database_settings_form($form, &$form_state, &$install_
state) {
  // Retrieve the default form.
  $default_form = install_settings_form($form, &$form_state, 
&$install_state);
  $default_form['basic_options']['database']['#description'] .= st(' 
If you choose use SQLite please provide an absolute path outside of 
the webroot directory.');
  return $default_form;
}

In this task callback function, we retrieve the default form provided by Drupal, 
alter it, and use that form. Since we are using a different form callback, we need to 
provide _validate and _submit handlers to process the information submitted in 
the form. The following two functions wrap the _validate and _submit functions 
used for install_settings_form():

/**
 * Form API validate for store_database_settings_form form.
 */
function store_database_settings_form_validate($form, &$form_state) {
  install_settings_form_validate($form, &$form_state);
}

/**
 * Form API submit for store_database_settings_form form.
 */
function store_database_settings_form_submit($form, &$form_state) {
  install_settings_form_submit($form, &$form_state);
}

Configuring blocks
Out of the box, Drupal does not have any blocks configured to be displayed.  
An installation profile will need to enable and configure any blocks it wants 
displayed. In this case we will use hook_install() in a store.install file as  
part of our install. When the modules for the profile are installed, the function 
store_install() will run, configuring the blocks. The following is a basic  
store_install() function enabling three blocks in the Bartik theme:

function store_install() {
  // Enable some standard blocks.
  $values = array(
    array(



Installation Profiles

[ 356 ]

      'module' => 'system',
      'delta' => 'main',
      'theme' => 'bartik',
      'status' => 1,
      'weight' => 0,
      'region' => 'content',
      'pages' => '',
      'cache' => DRUPAL_NO_CACHE,
    ),
    array(
      'module' => 'user',
      'delta' => 'login',
      'theme' => 'bartik',
      'status' => 1,
      'weight' => 0,
      'region' => 'sidebar_first',
      'pages' => '',
      'cache' => DRUPAL_NO_CACHE,
    ),
    array(
      'module' => 'system',
      'delta' => 'management',
      'theme' => 'bartik',
      'status' => 1,
      'weight' => 1,
      'region' => 'sidebar_first',
      'pages' => '',
      'cache' => DRUPAL_NO_CACHE,
    ),
  );
  $query = db_insert('block')->fields(array('module', 'delta', 
'theme', 'status', 'weight', 'region', 'pages', 'cache'));
  foreach ($values as $record) {
    $query->values($record);
  }
  $query->execute();
}

There is no API function to enable blocks. Here we have to add rows to the block 
table for each block we want to configure. In this case we enable the main content, 
the login form, and the site management block.



Chapter 12

[ 357 ]

Each row being added to the block table contains the following information about 
the block:

module: The module that owns the block.
delta: The name of the block within the module.
theme: The theme the block will display within. Each theme has an 
individual block configuration.
status: When set to 1, the module is displayed.
weight: Used for ordering the block within a region. Larger weights are 
displayed below smaller weights.
region: The region in the page that the block will be displayed within.
pages: Any rules about the pages that the block will be displayed on.
cache: How the block will be cached.

In Drupal 7, the sidebars were renamed for better 
multi-lingual support. What used to be the left sidebar 
is now sidebar_first and what used to be the right 
sidebar is now sidebar_second.

Variable settings
Installation profiles will often want to set their own variable settings, which are 
out-of-the-box, separate from those provided by Drupal core. Drupal provides the 
variable_set() function which can be used in an install task or in hook_install() 
to set a variable. For example, adding the following lines to store_install() will 
set the admin_theme to the Seven theme:

function store_install() {
	 ...
  // Set the admin theme to seven.
  variable_set('admin_theme', 'seven');
}

•

•

•

•

•

•

•

•



Installation Profiles

[ 358 ]

Text filters
Text filters, known as input formats in previous versions of Drupal, are created  
and configured by the installation profile. In order for a site to have text filters  
that users can choose from, the installation profile must set up the filter first. The 
simplest method for setting them up is in the hook_install() function inside the 
profile's .install file. Continuing our example, the following code at the top of 
store_install() would add Filtered HTML and Full HTML text filters, with the 
filtered one set as the default:

// Add text formats.
$filtered_html_format = array(
  'format' => 'filtered_html',
  'name' => 'Filtered HTML',
  'weight' => 0,
  'filters' => array(
    // URL filter.
    'filter_url' => array(
      'weight' => 0,
      'status' => 1,
    ),
    // HTML filter.
    'filter_html' => array(
      'weight' => 1,
      'status' => 1,
    ),
    // Line break filter.
    'filter_autop' => array(
      'weight' => 2,
      'status' => 1,
    ),
    // HTML corrector filter.
    'filter_htmlcorrector' => array(
      'weight' => 10,
      'status' => 1,
    ),
  ),
);
$filtered_html_format = (object) $filtered_html_format;
filter_format_save($filtered_html_format);

$full_html_format = array(
  'format' => 'full_html',
  'name' => 'Full HTML',
  'weight' => 1,
  'filters' => array(



Chapter 12

[ 359 ]

    // URL filter.
    'filter_url' => array(
      'weight' => 0,
      'status' => 1,
    ),
    // Line break filter.
    'filter_autop' => array(
      'weight' => 1,
      'status' => 1,
    ),
    // HTML corrector filter.
    'filter_htmlcorrector' => array(
      'weight' => 10,
      'status' => 1,
    ),
  ),
);
$full_html_format = (object) $full_html_format;
filter_format_save($full_html_format);

Code placement
Code placed in the .profile file will be loaded on every page load. This means 
that after Drupal is installed, the install tasks contained in the .profile file for the 
installation will be loaded all the time. Since the install tasks will only be used during 
the installer, they do not need to be loaded after that.

The first step is to move the tasks to a different file that can be loaded only when 
needed. In this case let's create a file named store.install.inc in the installation 
profile and move the following install task functions into it:

store_configure_contact_form()
store_configure_contact_form_validate()
store_configure_contact_form_submit()
store_database_settings_form()
store_database_settings_form_validate()
store_database_settings_form_submit()
store_create_content_types()



Installation Profiles

[ 360 ]

The profile will need to load this file during the install process to have access to the 
tasks and forms. To do this update store_install_tasks_alter()needs to append 
a call to include this file as shown here:

/**
 * Implementation of hook_install_tasks_alter().
 */
function store_install_tasks_alter(&$tasks, &$install_state) {
  ...
  // Include store.install.inc containing the tasks and forms.
  include_once 'store.install.inc';
}

This could be appended to hook_install_tasks() as well.

Running the installer from the  
command line
The installer can be run from both, a browser as a wizard as well as a part of an 
external installation script. For example, the installer may be used as a part of 
a system that automatically builds new sites. This is useful for cases where the 
installation will be automated. By default the installer runs in an interactive mode 
where it runs as an interactive wizard. The installer is capable of running in a  
non-interactive mode where settings are passed in as an array which will fill in the 
detail for each step. For example, see the following script which installs the site using 
the default profile:

<?php

// The settings for the installer to use when installing Drupal
$settings = array(
 
  // This overrides the PHP array $_SERVER so we can tell
  // Drupal the path to the site. This is important for
  // multi-site support.
  'server' => array(
    'HTTP_HOST' => 'localhost',  // The domain name.
    'SCRIPT_NAME' => '', // The path to the site.
  ),

  // Select the profile and the locale.
  'parameters' => array(
    'profile' => 'minimal',



Chapter 12

[ 361 ]

    'locale' => 'en',
  ),

  // The values to use in each of the forms.
  'forms' => array(
    'install_settings_form' => array(
      'driver' => 'sqlite',
      'database' => 'test',
      'username' => '',
      'password' => '',
      'host' => 'localhost',
      'port' => '',
      'db_prefix' => '',
    ),

    // The site configuration form.
    'install_configure_form' => array(
      'site_name' => 'Drupal Site',
      'site_mail' => 'email@example.com',
      'account' => array(
        'name' => 'admin',
        'mail' => 'email@example.com',
        'pass' => array(
          // On the form there are two password fields. The
          // installer is filling out the form so we need to
          // fill in both form fields.
          'pass1' => 'password',
          'pass2' => 'password',
        ),
      ),
 
      // The default country and timezone.
      'site_default_country' => 'US',
      'date_default_timezone' => 'America/Detroit',
 
      // Enable clean URLs.
      'clean_url' => TRUE,
 
      // Check for updates using the Update manager.
      // Possible values are:
      //  - array() = off, 
      //  - array(1) = check for updates, 
      //  - array(1, 2) = check for updates and notify by 
      //    email



Installation Profiles

[ 362 ]

      'update_status_module' => array(1, 2),
    ),
  ),
);
 
/**
 * Root directory of Drupal installation.
 */
define(‘DRUPAL_ROOT’, getcwd());

/**
 * Global flag to indicate that site is in installation mode.
 */
define(‘MAINTENANCE_MODE’, ‘install’); 
// Load the installer and initiate the install process using  
// $settings.
require_once DRUPAL_ROOT . '/includes/install.core.inc';
install_drupal($settings);

This script starts by creating a $settings array that provides information for  
the installer and the values for the forms within the installer. After the settings  
are defined, the installer (includes/install.core.inc) is included and kicked  
off by calling install_drupal() with the $settings being passed in.

Summary
We have now completed creating an installation profile. We started by looking at 
where to store modules and themes associated with the profile. We then moved on 
to creating the install profile, which included creating a new task and altering a task 
bundled with Drupal core.

Along the way, we looked at how to create content types, enable blocks, and  
set variables.

We closed the chapter by looking at how to optimize code placement and looked at 
how to execute a Drupal installation outside the web-based install wizard.



Database Access
Although Drupal 7 has made major leaps forward in terms of the flexibility of its 
data storage in practice the vast majority of Drupal sites still rely on an SQL database 
for both their primary data and for most of the configuration. In the past Drupal has 
relied on a very thin database layer that provided only limited abstraction beyond 
PHP's native support for the MySQL and PostgreSQL databases, which was a serious 
limitation for complex or traffic-heavy sites.

Drupal 7, however, features a brand new database layer rewritten from the  
ground up to provide a wide range of robust features in the areas of security, 
scalability, and developer flexibility. Known somewhat tongue-in-cheek as 
"Databases: The Next Generation" or "DBTNG" during development, it offers 
support for many advanced SQL features as well as vastly improved portability 
between the leading SQL databases on the market. In fact, Drupal 7 now ships with 
support for the three leading open source databases (MySQL and variants such as 
Maria DB, PostgreSQL, and SQLite) out-of-the-box and as of this writing add-on 
drivers are available for both, Microsoft SQL Server and Oracle.

The database API is well documented, but this section will provide an overview of 
the major features of the database API and how to use them to ensure fast, robust 
code. We'll assume an existing knowledge of SQL. For more detailed information see 
http://drupal.org/developing/api/database and http://api.drupal.org/
api/group/database/7.



Database Access

[ 364 ]

Basic queries
Most SELECT queries are, in practice, fairly simple and do not change. Drupal calls 
these static queries, and they are very straightforward to use.

For example, to get a list of all enabled modules in the system, we could run the 
following query:

$result = db_query("SELECT name, filename FROM {system} WHERE type = 
:type AND status = :status", array(':type' => 'module', ':status' => 
1));

In practice, if we wanted to get that information we would simply 
call module_list() instead, but for the purposes of this example 
we'll do it the manual way.

The query looks very much like normal SQL that we would expect to see anywhere 
else, but there are a few important items to mention.

All SQL table names are wrapped in curly braces. That identifies the string 
as a table name to the database layer and allows Drupal to easily add a 
configured prefix to all tables for a given Drupal instance.
There is no MySQL-specific syntax (or any database-specific syntax) 
anywhere in the query.
There are no literal values in the query. Instead, literal values are specified by 
placeholders. Values for placeholders are specified in an associative array as 
the second parameter to db_query().

Those placeholders are significant. They allow us to separate the query from the 
values in the query and pass them to the database server separately. The database 
server can then assemble the query string and placeholder values as needed, with 
full knowledge of what data type makes sense in each case. That eliminates most 
(although not quite all) opportunities for SQL injection from unexpected data.

There are three other important things to remember about placeholders:

Placeholders must be unique within a query, and must begin with a colon.
Placeholders should never have quotation marks around them, regardless of 
the data type. The database server will handle that for us.
Placeholders should be used for all literal data, even if it will not vary.

This third point is important for cross-database portability, as separating out literal 
values allows database drivers to make database-specific optimizations.

•

•

•

•

•

•



Appendix A

[ 365 ]

Result objects
The return value from a db_query() call is result object. In order to access the data 
returned by the database server, we need to iterate over the result set.

$list = array();
foreach ($result as $record) {
  $list[] = t('@name: @filename', array(
    '@name' => $record->name, 
    '@filename' => $record->filename,
  ));
}

By default, each $record in the result set is a stdClass object. We can, however, get 
the record as an associative array by telling the db_query() call that we want arrays 
instead. Here's how it is done:

$result = db_query("SELECT name, filename FROM {system} WHERE type = 
:type AND status = :status", array(':type' => 'module', ':status' => 
1), array('fetch' => PDO::FETCH_ASSOC));

Here, we specify a third parameter to db_query(), which is another associative  
array of options. We specify only one option, the fetch mode, which we set to  
PDO::FETCH_ASSOC. This tells the database layer we want associative arrays  
instead of stdClass objects.

We can also fetch a single record, or even just a single field:

// Fetch a single record as an object.
$record = $result->fetchObject();

// Fetch a single record as an array.
$record = $result->fetchAssoc();

// Fetch just the first field of the next record.
$field = $result->fetchField();

// Fetch the entire result set at once into an array.
$records = $result->fetchAll();

See the online documentation for more details about various ways to retrieve data 
from a result set.



Database Access

[ 366 ]

Dynamic queries
Although most SELECT queries are static, at times we will need a more flexible 
query. That could be because the query itself may change depending on incoming 
user data, because we want to allow other modules to modify our query before 
it is executed, or we want to take advantage of some database feature that is 
implemented differently on different databases. For these cases, Drupal provides  
a mechanism for building dynamic queries using a robust query builder.

To start, we create a new query object with db_select():

$query = db_select('node', 'n');

The first parameter is the name of the base table of the query and the second is the 
alias we want to use for it. We then call additional methods on the $query object in 
order to build up the query logic we want to create dynamically. For example:

$query = db_select('node', 'n');
$query->fields('n', array('nid, title'));
$u_alias = $query->innerJoin('users' ,'u', '%alias.uid = n.uid');
$query->addField($u_alias, 'name', 'username');
$query->condition("{$u_alias}.name", 'Bob');
$query->condition('n.created', REQUEST_TIME - 604800, '>=');
$query->orderBy('n.created', 'DESC');
$query->range(0, 5);
$query->addTag('node_access');
$result = $query->execute();

The fields() method tells the query to select the fields in the second parameter 
from the table in the first parameter. In this case, as of line 2, our query would 
effectively read:

SELECT n.nid AS nid, n.title AS title FROM {node} n

Note that the curly braces are added for us automatically. Also note that aliases are 
created for every field. If we want to specify an alternate alias, we need to use the 
addField() method for that one field. We'll see more on that shortly. We can also 
join against other tables using the innerJoin(), leftJoin(), and rightJoin() 
methods. There is also join(), which is an alias of innerJoin(). The join() 
methods take the table to join against, its alias, and the join conditions as parameters 
in the form of an SQL fragment. Note that in this case we are using the string %alias 
in the join clause. That's because while we are joining against the users table and 
asking for an alias of "u", we may end up with a different alias if that alias already 
exists in this query. Although we're quite sure that's not the case here, it could be  
the case in query_alter() hooks, so it's a good habit to get into.



Appendix A

[ 367 ]

The join() methods all return the alias for the table that was actually used, so we 
can use that in later method calls. In this case we will also select one field from the 
users table, the user's name, and alias it to "username". Again, since there's a slight 
chance the alias could already be used, addField() will return the alias that was 
actually used for that field.

Our effective query now looks like this:

SELECT n.nid AS nid, n.title AS title, u.name AS username FROM {node} 
n INNER JOIN {users} u ON u.nid = n.nid

Now we need to restrict the query, that is, add the WHERE clauses. That is done with 
the condition() method, which takes a field name, the value to match against, and 
optionally a comparator. The default is equals. The above lines, therefore, add WHERE 
clauses for a username of 'Bob' and a node creation time within the past week (that 
is, where the creation timestamp is greater than or equal to the current time minus 
seven days' worth of seconds). For more complex conditionals there is also a where() 
method that takes an SQL fragment.

We then tell the query to order by creation time, in descending order (DESC) and to 
only return five results starting with record 0, that is, the five most recently created 
nodes. Our SQL query now looks something like this:

SELECT n.nid AS nid, n.title AS title, u.name AS username 
FROM {node} n 
  INNER JOIN {users} u ON u.nid = n.nid 
WHERE (n.created >= 1286213869) 
  AND (u.name = 'Bob') 
ORDER BY n.created DESC 
LIMIT 5 OFFSET 0

There's one more important method to call—addTag(). This method doesn't  
affect the query directly but does mark the type of query it is. If a query has been 
tagged then before it is turned into an SQL string it will be passed through  
hook_query_alter() and hook_query_TAG_alter(). That allows other modules 
an opportunity to change the query if they need to. The node_access tag, used here, 
is most important as it allows the node access system to alter the query, to filter out 
nodes that the current user should not have access to.

When querying the node table, always us a dynamic query with the 
node_access tag. If you do not, then you have a security hole.



Database Access

[ 368 ]

Finally we execute the query. execute() takes the information we have provided, 
runs the query through alter hooks if necessary, compiles the corresponding SQL 
string, and runs the query, returning a result object. The result object is the same as 
that returned from a static query.

Also note that most methods of the select builder return the select object itself and 
thus are chainable. The exceptions are the addField() and join() methods, as those 
need to return a generated alias instead. The above query could therefore also have 
been written as:

$query = db_select('node', 'n');
$u_alias = $query->innerJoin('users' ,'u', '%alias.uid = n.uid');
$query->addField($u_alias, 'name', 'username');
$result = $query
  ->fields('n', array('nid, title'));
  ->condition("{$u_alias}.name", 'Bob');
  ->condition('n.created', REQUEST_TIME - 604800, '>=');
  ->orderBy('n.created', 'DESC');
  ->range(0, 5);
  ->addTag('node_access')
  ->execute();

The query builder is capable of building far more complex queries, too, including 
subselects, complex AND and OR conditions, among others. See the online 
documentation for the full details.

Insert queries
While SELECT queries have both static and dynamic versions, INSERT, UPDATE, 
DELETE, and MERGE queries only support a dynamic version. That is necessary in 
order to support the full range of SQL databases in the wild, many of which require 
extra special handling for some field types. As a nice bonus, the dynamic version of 
these queries is often much easier to work with than the static version would be and 
makes it easy to add additional database-specific optimizations. We'll look at Insert 
queries first.

Just as with Select queries, Insert queries start with a constructor function and are 
chainable. In fact, all methods of Insert queries are chainable.

$id = db_insert('imports')
  ->fields(array(
    'name' => 'Groucho',
    'address' => '123 Casablanca Ave.',
    'phone' => '555-1212',
  ))
  ->execute();



Appendix A

[ 369 ]

The db_insert() method creates a new insert query object for the imports table. 
We then call the fields() method on that object. fields() takes an associative 
array of values to insert. In this case, we are adding a record for one of the world's 
great comedians. We then execute the query, causing it to be translated into the 
appropriate query string and executed. If there is an auto-increment or "serial" field 
in the imports table, the generated ID will be returned. That's all there is to it.

db_insert() can get fancier, too. For instance, it supports multi-insert statements. 
To do that, we must first call fields() with an indexed array to specify what  
fields we are going to use and then call the values() method repeatedly with  
an associative array for each record.

$values[] = array(
  'name' => 'Groucho',
  'address' => '123 Casablanca Ave.',
  'phone' => '555-1212',
);
$values[] = array(
  'name' => 'Chico',
  'address' => '456 Races St.',
  'phone' => '555-1234',
);
$values[] = array(
  'name' => 'Harpo',
  'address' => '789 Horn Ave.',
  'phone' => '555-1234',
);
$values[] = array(
  'name' => 'Zeppo',
  'address' => '22 University Way',
  'phone' => '555-3579',
);

$insert = db_insert('imports')->fields(array('name', 'address', 
'phone' => '555-1212'));
foreach ($values as $value) {
  $insert->values($value);
}
$insert->execute();

On databases that support multi-insert statements, the preceding code will be run as 
a single query. For those that don't, they will run as separate queries within a single 
transaction. That makes them extremely powerful and efficient for mass import 
operations. Note that in a multi-insert query the return value from execute() is 
undefined and should be ignored.



Database Access

[ 370 ]

Update queries
Update queries look like a hybrid of Insert and Select statements. They consist  
of both fields to set on a table and conditions to restrict the query.

db_update('imports')
  ->condition('name', 'Chico')
  ->fields(array('address' => 'Go West St.'))
  ->execute();

The condition() method works exactly like the condition() method of Select 
queries, and we can add multiple if we need to. fields() takes an associative array  
of values to set. The above query is therefore equivalent to:

UPDATE {imports} SET address = 'Go West St.' WHERE name = 'Chico';

We still always want to use the dynamic approach rather than just call db_query(), 
because on some databases (such as PostgreSQL or Oracle) there are cases where 
the above query would not work and we would need to run multiple queries with 
bound values and other odd edge cases. All of that handling is handled for us 
automatically by the database layer.

The return value from execute() for Update queries is the number of records that 
were changed by the query. Note that 'changed' does not mean 'matched'. If the 
WHERE portion of the query matches a record but if that record already has the values 
that it would be set to, it will not be changed and would not count towards the 
return value from execute().

Delete queries
Delete queries should come as no surprise, as they consist of essentially just a  
WHERE clause:

db_delete('imports')
  ->condition('name' => 'Zeppo')
  ->execute();

The return value from execute() for Delete query is the number of records that 
were deleted by the query.

Merge queries
Merge queries are one of the oft-forgotten parts of SQL. In part, that's because the 
most popular open source databases do not support them directly even though  
they are part of the SQL specification.



Appendix A

[ 371 ]

A Merge query says, in essence, "If this record exists, update it with this query 
otherwise create it with this other query". The syntax for it is somewhat verbose, 
but it is a very powerful concept. It is most useful for setting records that may or 
may not exist yet, that is, merging data into the table. It can also be very useful for 
incrementing counters.

A true merge query is atomic, that is, we're guaranteed that it will run as a single 
uninterrupted operation or fail completely. Since most of the databases Drupal 
works with do not directly support Merge queries, Drupal emulates them with 
multiple queries and a transaction, which in most cases is close enough.

The syntax should be familiar based on the other queries we've looked at already. 
The following example is straight out of the variable system:

db_merge('variable')
  ->key(array('name' => $name))
  ->fields(array('value' => serialize($value)))
  ->execute();

The key() method takes an associative array of field/value pairs that are the pivot 
of the query. The fields() method is about the fields to set, and works the same as 
it does on Update or Insert queries. The above query can be read as "If there is a 
record where the field 'name' has the value $name, set the 'value' field. If not, insert a 
new record with name equal to $name and value equal to the given string." (Isn't the 
query above so much easier to say?)

We can also define more complex logic using the insertFields() and 
updateFields() methods. Those work exactly like fields() but, as we  
might expect, apply only when taking the insert or update branches.

    db_merge('people')
      ->key(array('job' => 'Speaker'))
      ->insertFields(array(
        'age' => 31,
        'name' => 'Meredith',
      ))
      ->updateFields(array(
        'name' => 'Tiffany',
      ))
      ->execute();

In this case, if there is already a record whose job field is "Speaker" its name field will 
be updated to Tiffany. If not, a new record will be created with 'job' as Speaker and 
'name' as Meredith. (Yes, this example is rather contrived.)



Database Access

[ 372 ]

Advanced subjects
While the five basic types of queries cover the vast majority of our database needs, 
there are two other advanced subjects we should cover: Transactions and master/
slave replication. We will just touch on each briefly.

Transactions
A transaction in a database is a way to wrap two or more queries together and 
declare that they should be atomic. That is, either all succeed or none succeed. That 
can be very useful when, say, saving a node; we don't want only some fields to get 
written and then an error to break the process halfway through. We saw an example 
of that in Chapter 6. In a nutshell, in Drupal we start a transaction by creating a 
transaction object. Everything we do to the database is then part of the transaction 
until that object is destroyed, at which point the entire query is committed at once. In 
most cases, we let PHP destroy the transaction object for us when a function ends.

function my_function() {
  $transaction = db_transaction();
  try {
    $id = db_insert('example')
      ->fields(array(
        'field1' => 'mystring',
        'field2' => 5,
      ))
      ->execute();
    my_other_function($id);
    return $id;
  }
  catch (Exception $e) {
    $transaction->rollback();
    watchdog_exception('type', $e);
  }
}

In most cases we don't need a transaction, and they have no effect on Select queries. 
They're most useful when we're going to be running a lot of data modification 
queries (Insert, Update, Delete, and Merge) together, and the system will be broken 
if only some of them run. Imports, rebuilds of lookup tables, and other modules 
allowed to run queries via hook in the middle of our process are good candidates.



Appendix A

[ 373 ]

Slave servers
Drupal also supports Master/slave database replication. Certain select queries can 
be run against a slave server to offload the work to separate servers, allowing the site 
to scale better. However, most sites do not have a slave server configured, so how do 
we write code that will work properly either way?

Drupal lets us do so by specifying "targets". The third parameter to db_query() or 
db_select() is an array of options that tweak the behavior of the query. We saw the 
fetch key earlier. The other key of interest is target, which specifies which database 
variant the system should try. Legal values are default (which is the default) and 
slave. If "slave" is specified, Drupal will try to run the query against a slave server. If 
one is not available, though, it will silently fall back to using the default server. Using 
our previous example:

$result = db_query("SELECT name, filename FROM {system} WHERE type = 
:type AND status = :status", array(':type' => 'module', ':status' => 
1), array('fetch' => PDO::FETCH_ASSOC, 'target' => 'slave'));

The way we handle the query is otherwise identical.

So why don't all Select queries use the slave server? Data on a slave server is always 
a little behind the master server, by a fraction of a second or as much as a minute or 
two depending on the configuration and traffic. Not all Select queries can handle 
their data being slightly stale and there's no reliable way to detect automatically 
which are which, so by default all queries use the master server.

However, there is another trick up our sleeve which we can use. After writing data, 
we can call db_ignore_slave(). That will make a note in the active session to 
disable the slave server for the current user only for a configurable period of time. 
(The default is five minutes.) That way, Select queries run on subsequent page 
requests by that user will always get the most up-to-date data but other users will 
get the old data until the slave servers catch up. That can be very useful, for instance, 
when a user posts a comment. They want to see the comment immediately but it's 
OK if other users don't see it for 20-30 seconds.



Database Access

[ 374 ]

Summary
Although in practice it's surprising how often we won't need to deal with the 
database directly, we do in some way or the other. In this appendix we've seen how 
to leverage Drupal's database layer to build powerful, cross-database queries that 
are, in many cases, easier to work with than SQL, while still mirroring actual SQL.

We've seen how to portably and securely write arbitrary SQL queries.
We've seen how to allow other modules to modify our queries before  
they're run.
We've seen how to write complex queries that change based on user input  
in a portable way.
We now know how to write data modification queries that will be 
automatically optimized for whatever database we happen to be using.
We've seen how to use transactions to make our code more robust and  
fault-tolerant.
We understand how to support master/slave replication to allow sites  
to scale to high levels of traffic.

•

•

•

•

•

•



Security
Throughout this book, we have repeatedly discussed the question of security.  
What makes good security practice? How do we make code more secure? How do 
we protect against common attacks? That's because security is not a feature to be 
bolted into a program. It is part and parcel of the development process itself.

Nonetheless, because it is such an important subject this appendix will give an 
overview of the tools Drupal offers to help make code more secure, and the sorts 
of things to think about when writing code to ensure that our code is as secure as 
possible. It is by no means exhaustive; many books have been written exclusively on 
the subject of security. However, it should lay a strong foundation for approaching 
code writing in a secure fashion.

Thinking securely
Security is a process. Specifically, it is a development process. The most important 
aspect of security is how we approach the code that we are going to write. We need 
to "think securely" in order to write robust code. Although there are many aspects  
to thinking securely, it can be summed up as "think paranoid".

The vast majority of input into our system is going to be sane and what we expect, 
not dangerous. However, there will always be that last 1% that is not at all what we 
expect. It could be someone deliberately trying to break into our website. It could be 
a spambot trying to find vulnerabilities so that it can turn our site into a billboard for 
fake proscription drugs. Alternatively, it could just be an honest user who entered 
input that we didn't anticipate and account for. All of these things will happen 
at some point during the life of a website or web application, and the best way to 
protect against them is to assume that any input is a suspected attack until we can 
verify otherwise.



Security

[ 376 ]

Always assume that incoming data is insecure until and 
unless it's been processed to ensure that it is safe.

Most security vulnerabilities come from not properly checking whether a piece of 
data is what we expect it to be. Remember also that there are many of types of input.

Any information coming from the user, either in the GET query or a POST 
request, is input and may be insecure.
Any cookies the user sends are input, and may be faked.
Any files read from disk are input, which may contain data we do not  
expect. Even if not malicious, unexpected data formats can pose a serious 
security risk.
Any data stored in a database that we didn't write to may be insecure.
Even data stored in Drupal's own database may be insecure, unless we know 
for certain that we cleaned it before saving it.

Data does not have to be malicious in order to be a 
security threat. 

Also remember that our website may not be the target of an attack. A very common 
tactic is to post comments on a website that contains JavaScript that, when viewed, 
will take over a user's web browser or trick them into visiting another site that will 
download malicious code to their computer. Although our site is not harmed, it is 
still used as a way to attack another user. We don't want that.

Filtering versus escaping
There are two ways of dealing with potentially insecure data, namely, filtering  
and escaping.

Filtering involves stripping out portions of the data that could be trouble, or forcing 
the data into a simpler, safer form. Common practice in PHP is to filter all input into 
the system unequivocally. Drupal takes a slightly different tactic, as for certain pieces 
of content, such as a node body, we may not know the proper format in advance. If 
a user changes a text format setting, for instance, we don't want the user's previous 
text to be lost, just filtered differently. Instead, we filter it on output.

•

•

•

•

•



Appendix B

[ 377 ]

Filtering
The following guidelines then should guide us as to how to properly screen 
incoming data:

If we know in advance that a given piece of data is supposed to be numeric, 
and logically would not make sense otherwise, cast it to an integer or a float 
in order to filter out unsafe strings.
If we know in advance that there are a fixed number of possible values  
a piece of data could hold, outrightly reject any values that are not one of 
those on the allowed list. In most cases, Drupal's form API does this for us.
Do not filter out HTML tags when saving textual data to the database, 
as whether those tags are appropriate or not depends on where they get 
displayed later.
Treat any textual data, even if it comes from our own database, as unsafe 
until filtered at display time.

Drupal provides a number of tools for filtering textual data. The most important are:

filter_xss() will strip out all HTML tags except those in a specified list. 
The default list is reasonably safe.
filter_xss_admin() is the same as filter_xss(), but with a very 
permissive tag list. It is best used for text that we know will only be  
entered by a trusted administrator.
check_markup() will filter a piece of text according to a specified set of filter 
rules, which are configured through the administrative UI as text formats.
check_plain() takes a more sledgehammer approach to a piece of text. 
Rather than removing untrustworthy HTML tags, it escapes all HTML  
tags so that they will appear literally in the browser. See below for more  
on escaping.

Escaping HTML
Escaping, by contrast, does not remove content from a piece of data but encodes it 
in a format that another system expects to avoid confusing that system. For instance, 
if we want to print HTML tags to the page such that the user can see them, we need 
to escape the < and > characters using HTML entity codes. The two most common 
systems that Drupal will be sending data to are an SQL database and the web 
browser, and both require different approaches.

•

•

•

•

•

•

•

•



Security

[ 378 ]

For output to the browser, check_markup() may be configured to escape HTML or 
other content. The check_plain() function takes a somewhat more sledge-hammer 
approach, escaping all HTML in a string so that it displays verbatim on the page for 
the user to see.

SQL injection
For writing to the database, Drupal's database layer is built on the concept of 
prepared statements. Prepared statements, among other things, cleanly separate 
the SQL query from the variable data in it. That allows the database server itself to 
sanely construct a query while escaping input itself, avoiding the common attack 
known as "SQL injection". For example, a value that contains an apostrophe causes a 
syntax error in an SQL statement (since single quotes have meaning in SQL) at best, 
or allows an arbitrary extra SQL query to sneak into the command at worst.

To avoid that problem, never, ever put a variable into an SQL string directly. When 
writing a query against Drupal's database, always ensure that the query portion is a 
single string literal using placeholders and then provide values for the placeholders. 
Doing so will allow the database to separate the query template from the variable 
content and avoid SQL injection. If the query itself is variable, use the dynamic query 
builder, db_select().

SQL injection from badly written queries is the most common, and 
the most easily avoidable, form of security vulnerability.

Node access control
A particularly Drupal-specific security question is how to control access to nodes. 
While Drupal's permission system handles the common use case of globally-readable 
nodes and limited access to edit or delete nodes, there are plenty of cases where we 
need more complex access control. Drupal's node access system handles those cases, 
but it requires that we tie into it every time we look up nodes, that is, any time we 
run a query that tries to find records in the node table.

Since there are so many varied situations where nodes could be used, such additional 
access checks can only be done at the database level, that is, in the query itself. 
Fortunately, Drupal allows modules to manipulate certain types of queries before 
they are executed to add any sort of filtering. In order to allow Drupal to modify  
our queries, we need to "tag" them appropriately.



Appendix B

[ 379 ]

First, whenever we write a query against the node table, we must use a dynamic 
query, built using db_select(). Second, we must call the addTag() method on  
the query object and give it a tag of node_access. For example:

$result = db_select('node')
  ->fields('node')
  ->condition('type', 'page')
  ->addTag('node_access')
  ->execute();

In the preceding code, we are selecting all the data in the node table for nodes of type 
"page". The extra tag, however, allows Drupal to alter the query before it is run and 
also to filter out nodes that the current user does not have access to view.

Always use a dynamic query with a tag of node_access when 
querying the node table so that Drupal can apply additional 
security filters that are necessary.

See http://drupal.org/node/310077 for more details on how query tagging and 
query alteration work, and how some other common tags work.

Handling insecure code
Sooner or later, you will stumble across code that is insecure. It could be a module 
that you have written, or a contributed module that you have downloaded from 
Drupal.org, or possibly even Drupal core itself. No code is perfectly secure and no 
developer is perfect, either, so it will happen. It's just a question of when and what 
we do about it.

Regardless of whose code it is, the way to handle it is more or less the same:

Don't panic.
Investigate the module in question (whether ours or not) to determine 
exactly what the problem is. Sometimes it's a very simple bug that is easily 
fixed, and at other times it's very subtle. We need to figure out if it affects just 
one version of the module or multiple versions, or if it applies only to certain 
configurations (say, only on Apache web servers, only on Windows OS), 
among other things.
If we are able to do so, put together a patch that fixes the issue but do not 
post it to the issue queue.
Don't panic.

•

•

•

•



Security

[ 380 ]

Send a detailed description of the problem, along with a patch if you were 
able to make one, to the Drupal Security Team at security@drupal.org. 
They coordinate all security-related matters for code hosted on drupal.org. 
If it's not one of our modules, they will coordinate with the maintainer of  
the module.
If it is one of our modules, let the security team review the problem and the 
patch. If they agree that it is a security hole, they will work with us to vet  
the patch or improve it and schedule a security release. It will be up to us  
to write a Security Advisory (SA) as well.
Security releases almost always come out on Wednesdays, so we wait until 
we get a go-ahead from the security team. When they say its clear to do so, 
we apply the patch to all affected releases of the module and create a new 
release. The security team will then publish the SA.
Did we mention don't panic?

Drupal operates on a principle of full disclosure. When a security issue is discovered, 
it is kept secret until a fix is made available. Once a fix is made available, the full 
details of the security issue, including the code to fix it and what releases are 
affected, is published for the whole world to see. This is a standard security best 
practice, as on the one hand it minimizes the chances of a ne'er-do-well learning of 
the vulnerability before there is a fix available but on the other, once a fix is available, 
we make it as easy as possible for people to know that they need to upgrade their 
code in order to stay secure before an attacker can take advantage of it.

For more information on how to handle security issues in Drupal, see:

http://drupal.org/security-team

Staying up to date
So how do we keep a site up-to-date with the latest security fixes? There are two key 
ways to stay on top of security needs, and any site administrator should make use of 
both of them.

First, all Drupal Security Advisories are announced on Drupal.org at the  
following site:

http://drupal.org/security

•

•

•

•



Appendix B

[ 381 ]

There are both RSS feeds to subscribe to and e-mail lists we can join to get notified 
any time an SA is issued. All Drupal site administrators and developers should 
subscribe to one or the other in order to be notified when there is a security-related 
release. Both are, fortunately, very low-traffic.

Second, Drupal itself includes a module called Update Status that will periodically 
connect to drupal.org to see if there is a new version of any module installed on 
our site. It is enabled by default but can be disabled. Don't disable it, though. In fact, 
it's best to keep the e-mail notification option enabled as well to remind us by e-mail 
when a module has a new security release. We can't keep a site secure if we don't 
know that it has a vulnerability to begin with.

Summary
Security is a large subject, and one that we could easily spend much more time 
discussing in greater detail. However, for the time being it is sufficient to focus  
on a secure approach to overall development.

Security is a process
All incoming data, from whatever source, should not be trusted until it has 
been verified and sanitized
Filter all data, either on input or on output as appropriate
Always filter or escape data sent to the browser in a way that makes sense, 
given where it will be used
Protect against SQL injection using prepared statements, and never, ever put 
a variable directly into an SQL query
When security vulnerabilities are discovered, don't panic, but follow 
established best practices to report and fix the problem
Always stay on top of available security releases for Drupal or  
Drupal modules

•

•

•

•

•

•

•





Index
Symbols
$account parameter  254
$element variable  201
$form_state parameter  128
$form parameter  128
$node parameter  254
$op parameter  245, 254
$options argument  290
.info file  

about  29, 93, 345
CSS, adding to  289
JavaScript, adding to  289
need for  29
writing  29-32

.module file
about  29, 33
creating  34

.profile file
about  346
installation tasks, storing  346

<?php ?> processor instruction  35
{node_access} table

about  250, 261, 263
comparing, with hook_node_access()  250-

253
need for  261, 262
permissions, checking from  248
rebuilding  273, 274
schema  264

{node} table  243

A
access

controlling, for nodes  378, 379

access checks
running, on forms  233, 234

access control module
rules  264, 265
versus node access module  261

access functions
declaring  221, 222

Acquia Drupal
URL  21

addField() method  366
addTag() method  367
advanced database, Drupal

master/slave database replication  373
transaction  372

Agile software development  26
AJAX

adding, to forms  305, 306
applying, to elements on page  307, 308
commands  309-312
using, in forms  235

AJAX, commands
ajax_command_after  309
ajax_command_alert  309
ajax_command_append  309
ajax_command_before  310
ajax_command_changed  310
ajax_command_css  310
ajax_command_data  310
ajax_command_html  310
ajax_command_prepend  311
ajax_command_remove  311
ajax_command_replace  311
ajax_command_restripe  311
ajax_command_settings  312

ajax_command_after command  309



[ 384 ]

ajax_command_alert command  309
ajax_command_append command  309
ajax_command_before command  310
ajax_command_changed command  310
ajax_command_css command  310
ajax_command_data command  310
ajax_command_html command  310
ajax_command_prepend command  311
ajax_command_remove command  311
ajax_command_replace command  311
ajax_command_restripe command  311
ajax_command_settings command  312
ajax_get_form() function  235
AJAX callbacks

handling  235
using  236, 237

API hooks  63
artwork

about  152, 183
adding  165, 167
creating  153, 154
deleting  178-181
editing  177, 178
features  184
saving  172-174
viewing  176, 177
working  208-210

artwork, adding
revisions, handling  175
submit callback  171
validation callback  170

artwork.controller.inc module
creating  162

artwork_menu() hook  163
artwork_page_view() function  177
artwork_revision table

calling  154, 155
artwork_type_load() function  161
artwork_types() function  160
artwork_uri() function  158
ArtworkController class  162
artwork types

managing  163-165
automated testing, Drupal

about  49
test, creating  50

B
behaviors

about  303
example  303

Block API
about  42
hook_block_info()  43, 44
hook_block_view()  45-47
working with  43

blocks
configuring  355-357
theming  98

block subsystem
about  25
using, in modules  25

bootstrapping  13
bundle  152
business logic

versus presentation logic  62, 63
bypass node access permission  263

C
caching  292
Cascading Style Sheets. See  CSS
check_markup() function  377
check_plain() function  41, 166, 377
closures  32
CMF  8
CMS  8
Coder module

features  23
coding conventions, Drupal  30
command line

installer, running from  360-362
comment module  18
complex formatters  201-204
complex widget  194-198
condition() method  370
confirm_form() function  140, 141
content

handling  151
Content Management Framework. See  CMF
Content Management System. See  CMS
controller  156



[ 385 ]

core libraries  13
core modules  14
Create, View, Update and Delete. See  

CRUD
cross-site request forgeries (CSRF)  229
CRUD  242
CSS

about  10
adding, to .info file  289
altering  300
inline, adding on page  294

CSS_DEFAULT, Drupal weight  292
CSS_SYSTEM, Drupal weight  292
CSS_THEME, Drupal weight  292
CSS files

adding, to pages  292
CVS  31

D
database  15
Databases The Next Generation. See  

DBTNG
data granularity

about  64, 65
advantages  65
illustration  65

db_ignore_slave() method  373
db_insert() method  369
db_select() query builder  378
db_transaction() function  174
DBTNG  363
default_formatter property  186
default_widget property  186
default theme implementation

building, steps  106
reusing  91, 92

delete queries  370
dependencies[] directive  32
description property  186
Devel Node Access module

about  282-285
hook_node_access_explain()  283, 284
user block, providing  284, 285

developer module
about  22
features  23

dimfield.module  185
distributions, Drupal

about  344
modules, bundling  345
profile directory  344
setting up  344
themes  345

doc block  36
documentation block. See  doc block
Doxygen-style doc blocks

using  36, 37
Doxygen program  22
Drupal

about  7
AJAX commands  309-312
architecture  11, 12
automated testing  49
caching  292
coding conventions  30
content handling  151
custom form elements  132
distributions  344, 345
Doxygen-style doc blocks  36, 37
features  7
File API  316
file storage  314, 315
forms, securing  229
helper functions, using  305
Image API  326
image manipulation functions  326
Image Styles  331-333
JavaScript  287
Library API  295
node permissions, granting  242-244
permissions  211
plugins  287, 288
preprocessing  292
renderable array  298
security fixes, updates  380
stream wrapper  319
tools, requisites  20
website link  8
weights  292

Drupal, helper functions
behaviors  303, 304
themeable presentation  301, 302
translatable strings  302, 303



[ 386 ]

Drupal, subsytems
blocks  20
code testing  20
comments  18
entities  19
fields  19
files  18
Forms API  19
menus  17
nodes  17
themes  16
users  18

Drupal, technologies
about  8
CSS  10
database API  10
databases  9
HTML  10
JavaScript  10
MySQL  9
PHP  9
PHP Data Objects library  9
PostgreSQL  9
RSS (Really Simple Syndication)  10
XML (eXtensible Markup Language)  10
XML-RPC  10

Drupal, weights
CSS_DEFAULT  292
CSS_SYSTEM  292
CSS_THEME  292

drupal_access_denied() function
about  224
working  226

drupal_add_css() function  102, 289
drupal_add_js() function

using  289, 293
drupal_exit() function

about  225
example  225

drupal_get_form() function
about  128
using  127

drupal_get_path() function  102, 290
drupal_mail() function

about  141
arguments  142, 143

implementing  142
mail, sending  141

drupal_render() function  128  77
drupal_set_message() function  137
drupal_static() function

about  161
using  161

Drupal architecture  
about  11, 12
core libraries  13
core modules  14
database  15
hooks  13
theme system  16

DrupalDefaultEntityController class  156
Drupal Security Advisories

URL  380
DrupalStreamWrapperInterface  321
DrupalWebTestCase::getInfo() method   52
DrupalWebTestCase::setUp() method  55
Drush  23, 28
dynamic queries  366-368

E
e-mail templating system  141
edit any Article content permission  257
elements

disabling, in form  230
entities

about  151
creating, reasons  151, 152
declaring  156-161
example  152
finding  206-210
managing  163

entities system  19
entity_get_controller() function  168
entity controller  161
entity level data  207
entity management

about  163
artworks, adding  165, 167
artworks, deleting  178-181
artworks, editing  177, 178
artworks, viewing  176, 177



[ 387 ]

artwork types, managing  163-165
new artwork, adding  167-170

escaping
about  377
versus filtering  376

explode() function  198

F
fclose() function  319
feof() function  319
Field API

pluggable field storage  185
working  184

field code
writing, reasons  183, 184

field instance  184
fields

about  184
declaring  185
displaying, formatters used  199
finding  206-210
settings  188, 189
structure, defining  186-188
validating  189, 190

fields() method  366
fields system  19
field structure

defining  186-188
field type

about  184, 185
creating  185

file_copy() function  316
FILE_EXISTS_ERROR constant  317
FILE_EXISTS_RENAME constant  317
FILE_EXISTS_REPLACE constant  317
file_get_contents() function  317, 328
file_link, theme hook  92
file_move() function  316
file_save_data() function  317, 329
file_unmanaged_copy() function  316
file_unmanaged_save_data() function  329
file_uri_target() function  323
File API  316
File API functions

about  316
file_copy()  316

file_get_contents()  317
file_move()  316
file_save_data()  317
file_unmanaged_copy()  316

Filefield module  316
files[] directives  32
files system  18
file storage, Drupal

about  314
private  314
public  314
temporary  314, 315

filter_xss() function  377
filter_xss_admin() function  377
filtering

about  376
guidelines  377
tools  377
versus escaping  376

filtering tools, Drupal
about  377
check_markup()  377
check_plain()  377
filter_xss()  377
filter_xss_admin()  377

first_block_info() function  43
fopen() function  319, 324
foreach() loop  190
Form API

about  126
drupal_get_form() function, using  127
features  127
fields, exposing with widgets  191
system settings  138, 139

Form API Full Reference
URL  127

formatter_view callback  201
formatters

about  184, 200
complex formatters  201-204
declaring  200
fields, displaying  199
single-value formatters  200

form callback
creating  305

form callback function
building  128-130



[ 388 ]

form handling  229
forms

access checks, running on  233, 234
AJAX, adding  305, 306
AJAX, using  235
elements, disabling  230
secure data, passing  231
securing, in Drupal  229 
submitting  136, 137

Forms API  
about  19, 229
working  229

fread() function  319
functional tests  49

G
getExternalURL() function  323
getInfo() method  53

H
helper functions, Drupal

behaviors  303, 304
themeable presentation  301, 302
translatable strings  302, 303

hook
implementing  14

hook_block_info()  43, 44
hook_block_view()  43-47
hook_css_alter() 

CSS, altering  300
example  300

hook_element_info  80
hook_enable() 

about  227
role, creating  228
using  227

hook_entity_info()  156
hook_field_extra_fields()  206
hook_field_info_alter() hook, properties

default_formatter  186
default_widget  186
description  186
instance_settings  186
label  186
settings  186

hook_form_alter()   233
hook_help()

about  38
implementing  38, 39, 120

hook_image_default_styles()  339, 340
hook_image_effect_info() 

implementing  334
hook_init()  14
hook_install_tasks() 

about  348
properties  348

hook_install_tasks_alter()  348
hook_library() 

about  295
information, altering  297
Library API, defining  296

hook_library_alter()  297
hook_mail()

implementing  144, 145
hook_menu() 

form page, defining  305
page callback, defining  121-124

hook_menu() implementation
creating  327

hook_node_access()
about  254, 260
access control modules  259
comparing, with {node_access} table  250-

253
implementing, on view operation  260
invoking  247
node access module, writing  260
parameters  254
sample access control module  254-259
view operations  259

hook_node_access(), parameters
$account  254
$node  254
$op  254  254

hook_node_access_explain()  283, 284
hook_node_access_records()  266-268
hook_node_access_records_alter()

about  279
using  280, 281

hook_node_grants()
about  269, 270
using  249



[ 389 ]

hook_node_grants_alter()
about  275
using  275-277

hook_page_alter()  81
hook_permission()  

about  124, 217
module permissions, defining  218, 219
need for  217
using  218
writing  219

hook_query_alter()  262, 263
hook_stream_wrappers()  320, 324
hook_theme()

about  86, 87
implementing  107

hook_theme_registry_alter  88
hook_user_view()

implementing  213-216
hook implementation  33
HTML

about  10
escaping  377

html_tag, theme hook  92
HyperText Markup Language. See  HTML

I
image

node, attaching to  318
image, theme hook  92
image_crop()  326
image_desaturate() function  326, 329
image_effect_color_validate() function  336
image_load() function  326
image_resize() function  326
image_rotate() function  326, 330
image_save() function  326, 330
image_scale() function  326, 330
image_scale_and_crop() function  326
image_style, theme hook  92
Image API  326
Imagecache module  314, 326
imagecolorallocate() function  338
image effects

creating  334-338
Imagefield module  326

ImageMagick library  326
image manipulation functions, Drupal

image_crop()  326
image_desaturate()  326
image_resize()  326
image_rotate()  326
image_scale()  326
image_scale_and_crop()  326

imagestring() function  338
Image Styles

about  331
working  332, 333

image styles
creating, from module  339-341

inline option  294
innerJoin() method  366
insecure code

handling  379, 380
insert queries  368, 369
installation profiles

about  343
benefits  343

install task system
about  348
selecting  348

instance_settings property  186
item_list, theme hook  93

J
JavaScript

about  10, 287
adding, to .info files  289
adding, to pages  288
altering  299, 300
files, adding  289-291
files, preprocessing  288
inline, adding on page  294
weights  290

JavaScript files
adding  289-291
preprocessing  288

join() methods  366, 367
jQuery.append() function  308
jQuery 1.4.2  287



[ 390 ]

K
key() method  371

L
label property  186
leftJoin() method  366
Library API

about  287
defining, with hook_library() function  296
using  295

links, theme hook  93
list_modules block

properties  45
load() method  162

M
mail issues

debugging  146
master/slave database replication  373
menu_block module  92
menu paths

wildcards, using  125
menu router  17
menu system  12, 17, 121
merge queries

about  370
syntax  371

module
block subsystem, using  25
building, steps  26
creating  26
debugging  282
enabling, in install process  347
filesystem layout  28
image styles, creating from  339-341
testing  282

module_exists() function  347
module_invoke() method

about  57
parameters  57

module_invoke_all() function  175
MODULE_preprocess_page() function  76
module directory

creating  29

module names
about  27
human-readable  27
machine-readable  27

more_link, theme hook  93
multi-hook preprocess function  73
MySQL  9

N
new artwork

adding  167-170
node

about  318
attaching, to image  318
creating  318

node_access() function
about  243, 244
documentation  244, 245
hook_node_access(), invoking  247
static cache, optimizing  246, 247
whitelist  246

NODE_ACCESS_ALLOW constant  254
NODE_ACCESS_DENY constant  254
node_access_grants()  249
NODE_ACCESS_IGNORE constant  254
node_access_view_all_nodes() function  262
node_page_default() function  243
node_query_node_access_alter() function  

244
Node Access API

about  243
invoking  248-250
need for  243

node access module
enabling  261, 262
versus access control module  261
writing  260

node access system
about  241
versus user access system  242

node module  18
node permissions, Drupal

granting  242-244
nodes

access, controlling  378, 379



[ 391 ]

node system  12, 17
non-field data

managing  205, 206

O
Object Oriented Programming  9
overlay_library() function  295

P
page callback

defining, hook_menu() function used  121-
124

pager, theme hook  93
pages

JavaScript, adding to  288
page title

setting  353
permissions

about  211
asserting, user_access() function used  212, 

213
assigning  211
defining, for modules  218, 219
enabling, programmatically  227
user account, verifying  213-216

persistent data
managing  133-135

persistent variables  133
PHP

about  9
stream wrapper  319
variables, passing to JavaScript  293

PHP mail configuration  142
PHPTemplate  66
PostgreSQL database  363
pre_render function

creating  100
preprocess function

about  68, 69
defining, with template_ prefix  109-113

preprocess functions, template files
about  72
multi-hook preprocess functions  73, 74
preprocess execution order  76
process functions  74, 75
template_  72, 73

preprocess functions, theme functions
theme_username function  69

preprocessing  292
private files  314
procedural programming  9
profile directory

creating  344
profiles

about  345
creating  345, 346
dependency, adding  347

profiles, creating
blocks, configuring  355-357
code, placing  359
hook_install(), using  348
install task, selecting  348
install task system  348
modules, enabling  347
task, altering  354, 355
task, creating  349-353

progress_bar, theme hook  93
public files  314

Q
queries

delete queries  370
dynamic queries  366-368
insert queries  368, 369
merge queries  370
update queries  370

R
range() method  208
README file  8
renderable array

using  298
render element

versus variables  108
Render element properties  79, 80
Render elements

about  77, 78
hook_element_info  80, 81
hook_page_alter()  81
properties  79

result object  365



[ 392 ]

revision handling  175
revisions

handling  175
rightJoin() method  366
Right To Left languages. See  RTL languages
role access module

{node_access} table, rebuilding  273, 274
creating  266
hook_node_access_records(), using  266-268
hook_node_grants(), using  269, 270
security considerations  271, 272

roles
about  211
creating  228

RTL languages
about  103
stylesheets, creating for  104-106

S
Schema API

about  152
URL  154
working  153, 154

Search module
about  217
example  217

Secure Permissions module  227
security

about  375
vulnerabilities  376

SELECT queries  364
settings property  186
setUp() method  54
simple test  49
single-value formatters  200
single_blog_block_view() function  97

editing  100
single_blog_list() function  95
single_blog module

API, providing  95, 96
building  93-95

slave server  373
source code standards

<?php ?> processor instruction  35
about  35
comments  35

functions  35
indenting  35
spaces around operators  35
spacing, in control structures  35
variables  35

SQL injection
about  378
avoiding  378

st() function  351
static queries  364
store.info file  346
stream_mkdir() function  321
stream_open() function  323
stream_write() function  321
stream wrapper

about  313, 319
creating  320-323

stylesheets
attaching, to render arrays  102
creating, for RTL languages  104-106

submit function  136
subsystems, Drupal

blocks  20
code testing  20
comments  18
entities  19
fields  19
files  18
Forms API  19
menus  17
nodes  17
themes  16
users  18

system_element_info() function  101
system_settings_form() function  138, 139

T
t() function  

about  39, 97, 201, 351
features  40, 41

table, theme hook  93
task

about  348
altering  354, 355
creating  349-353



[ 393 ]

TDD  26
technologies, Drupal

about  8
CSS  10
database API  10
databases  9
HTML  10
JavaScript  10
MySQL  9
operating system  11
PHP  9
PHP Data Objects library  9
PostgreSQL  9
RSS (Really Simple Syndication)  10
web server  10
XML (eXtensible Markup Language)  10
XML-RPC  10

template_ prefix
preprocess function, defining  109-113

template_preprocess() function  75
template files

about  70-72, 114
creating  115, 116
preprocess functions  72

temporary file storage  315
test, creating

about  50
test case, writing  51

test case
patterns  51, 52
setting up  54
writing  51

TestDrivenDevelopment. See  TDD
test method

writing  55-58
text

tokens, implementing in  147, 148
text filters

about  358
example  358

theme  16
theme() function  47
theme_item_list() function  67, 101
theme_table() function  204
theme_username function  69
theme engines  66

theme functions
about  66, 67
operations  82, 83
preprocess functions  68, 69
theme_item_list() function  67
theme overrides  69

theme hooks
about  63 
file_link  92
html_tag  92
image  92
image_style  92
item_list  93
links  93
more_link  93
pager  93
progress_bar  93
registering  107
table  93
user_list  93
user_picture  93
username  93

theme hook suggestions  83, 84
theme overrides

about  69, 70
bartik_preprocess_username() function  70

theme registry
about  85
hook_theme  86-88
hook_theme_registry_alter  88, 89
variable default values  85, 86

theme system  12, 16
theming  62
token

about  146
implementing, in text  147, 148

token_replace() function  146
transaction  372
Twitpic  320
twitpic_image_munge() function  327
Twitpic module  313
Twitpic website

URL  313



[ 394 ]

U
unit test  49
update queries  370
use-ajax class  307
user_access() function

about  212, 217, 221, 242
example  222
permissions, asserting  212, 213
using  230

user_list, theme hook  93
user_picture, theme hook  93
user_role_change_permissions() function  

228
user_role_delete() function  228
user_role_save() function  228
user_warn.info file

creating  120
user_warn.module file

creating  120
user_warn_form_submit() function  136
user access system

versus node access system  242
user account

verifying  213-216
User block  284, 285
username, theme hook  93
users system  18
User Warn module

about  119
creating  120
features  119

V
validate function  136
variable_get() function  133, 134
variable_set() function  133, 357
variables

passing, from PHP to JavaScript  293
versus render element  108

W
watermark_effect() function  337
widget

about  184
complex widgets  194-198
declaring  191, 192
form callback  192, 194

widget_settings_form callback  194
wildcards

using, in menu paths  125

X
Xdebug  21

Z
Zend Debugger  21



Thank you for buying  
Drupal 7 Module Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Drupal 7
ISBN: 978-1-84951-286-2             Paperback: 416 pages

A comprehensive beginner’s guide to installing, 
configuring, and building a professional Drupal 7 
website

1.	 Set up, configure, and deploy a Drupal 7 
website 

2.	 Easily add exciting and powerful features 

3.	 Design and implement your website’s look  
and feel 

4.	 Promote, manage, and maintain your live 
website  

Drupal 6 Panels Cookbook
ISBN: 978-1-849511-18-6           Paperback: 220 pages

Over 40 recipes to harness the power of Panels for 
building attractive Drupal websites

1.	 Build complex site layouts quickly with panels 

2.	 Combine Panels with other Drupal modules to 
create dynamic social media websites 

3.	 Get solutions to the most common ‘Panels’ 
problems 

4.	 A practical approach packed with real-world 
examples to enrich understanding 

5.	 Part of Packt’s Cookbook series—each recipe is 
a carefully organized sequence of instructions 
to complete the task as efficiently as possible

 
 

Please check www.PacktPub.com for information on our titles



Drupal 6 Performance Tips
ISBN: 978-1-847195-84-5            Paperback: 240 pages

Learn how to maximize and optimize your Drupal 
framework using Drupal 6 best practice performance 
solutions and tools

1.	 Monitor the performance of your Drupal 
website and improve it 

2.	 Configure a Drupal multisite environment for 
best performance 

3.	 Lot of examples with clear explanations 

4.	 Choose and use the best Drupal modules for 
improving your site’s performance  

Drupal E-commerce  
with Ubercart 2.x
ISBN: 978-1-847199-20-1            Paperback: 300 pages

Build, administer, and customize an online store 
using Drupal with Ubercart

1.	 Create a powerful e-shop using the award-
winning CMS Drupal and the robust e-
commerce module Ubercart

2.	 Create and manage the product catalog and 
insert products in manual or batch mode

3.	 Apply SEO (search engine optimization) 
to your e-shop and adopt turn-key internet 
marketing techniques 

4.	 Implement advanced techniques like cross-
selling, product comparison, coupon codes, and 
segmented pricing

 

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Developing for Drupal 7
	Introducing Drupal (for developers)
	Technologies that drive Drupal
	PHP
	Databases and MySQL
	HTML, CSS, and JavaScript
	Other technologies
	The web server
	The Operating System


	Drupal architecture
	Drupal core libraries
	Drupal hooks
	Drupal core modules
	The database
	The theme system

	Drupal's major subsystems
	Themes
	Menus
	Nodes
	Files
	Users
	Comments
	Fields and entities
	Forms API
	Installation Profiles
	Simple test
	Blocks
	Other subsystems

	Tools for developing Drupal code
	Version control with Git and CVS
	The book's code and Git

	The API site and coding standards
	Developer-oriented modules
	The developer module
	Drush (the Drupal shell)
	Coder


	Summary

	Chapter 2: Creating Your First Module
	Our goal: a module with a block
	Creating a new module
	Module names
	Where does our module go?
	Creating the module directory
	Writing the .info file
	Creating a module file
	Source code standards
	Doxygen-style doc blocks
	The help hook
	The t() function and translations


	Working with the Block API
	The block info hook
	The block view hook
	The first module in action

	Writing automated tests
	Creating a test
	Starting out
	Writing a test case
	The basic pattern
	The getInfo() method
	Setting up the test case
	Writing a test method


	Summary

	Chapter 3: Drupal's Theme Layer
	Business logic versus presentation logic
	Data granularity
	Theme engines
	Two ways to theme
	Theme functions
	Preprocess functions
	Theme overrides

	Template files
	The preprocess zoo


	Render elements
	Render properties
	hook_element_info
	hook_page_alter()

	The power of theme()
	Theme hook suggestions

	Theme registry
	Variable default values
	hook_theme
	hook_theme_registry_alter

	What else?
	Summary

	Chapter 4: Theming a Module
	Reusing a default theme implementation
	Drupal blocks revisited
	Theming a Drupal block
	Render element and a theme hook suggestion
	Creating a pre_render function
	Attaching CSS to render arrays
	RTL languages

	Steps to build a default theme implementation
	hook_theme() implementations
	Variables versus render element
	Preprocess functions
	Template files

	Summary

	Chapter 5: Building an Admin Interface
	The User Warn module
	Starting our module
	The Drupal menu system
	Defining a page callback with hook_menu
	Using wildcards in menu paths

	Form API
	Using drupal_get_form()
	Building a form callback function
	Managing persistent data
	Form submission process
	A shortcut for system settings
	A shortcut for confirmation forms

	Sending mail with drupal_mail() and hook_mail()
	Calling drupal_mail()
	Implementing hook_mail()

	The token system
	What are tokens?
	Implementing tokens in your text

	Summary

	Chapter 6: Working with Content
	Why create your own entities
	The goal
	Bundles
	The Schema API
	Declaring our entity
	The entity declaration
	The entity controller

	Entity management
	Managing artwork types
	Adding artworks
	Adding new artwork
	Validation callback
	Submit callback
	Saving your artwork
	Handling revisions

	Viewing artworks
	Editing an artwork
	Deleting an artwork

	Summary

	Chapter 7: Creating New Fields
	Our goal: a "dimensions" field
	How Field API works
	Creating our new field type
	Declaring the field
	Defining the field structure
	Defining empty
	Field settings
	Field validation

	Exposing fields to the Form API with widgets
	Declaring a widget
	Simple widget forms
	Complex widgets

	Using formatters to display our field
	Declaring a formatter
	Single-value formatters
	Complex formatters

	Managing non-Field fields
	Finding entities and fields
	Summary

	Chapter 8: Drupal Permissions and Security
	Using user_access() to assert permissions
	Checking the proper user account
	Using hook_permission()
	Defining your module's permissions
	Writing hook_permission()

	Declaring your own access functions
	Responding when access is denied
	Enabling permissions programmatically
	Defining roles programmatically
	Securing forms in Drupal
	The Forms API
	Disabling form elements
	Passing secure data via forms
	Running access checks on forms

	Handling AJAX callbacks securely
	Using AJAX in forms
	Using AJAX in other contexts

	Summary

	Chapter 9: Node Access
	Node Access compared to user_access() and other permission checks
	How Drupal grants node permissions
	The node_access() function
	The access whitelist
	Caching the result for performance
	Invoking hook_node_access()
	Access to a user's own nodes
	Invoking the node access API

	hook_node_access() compared to {node_access}

	Using hook_node_access()
	A sample access control module
	A second access control module
	View operations and access control modules

	When to write a node access module
	The {node_access} table and its role 
	{node_access} table schema explained
	Defining your module's access rules

	Creating the role access module
	Using hook_node_access_records()
	Using hook_node_grants()
	Security considerations
	Rebuilding the {node_access} table

	Modifying the behavior of other modules
	Using hook_node_grants_alter()
	Using hook_node_access_records_alter()

	Testing and debugging your module
	Using Devel Node Access
	Using hook_node_access_explain()
	Using the Devel Node Access by user block


	Summary

	Chapter 10: JavaScript in Drupal
	JavaScript inside Drupal
	Adding JavaScript
	Adding JavaScript and CSS files to .info files
	Using drupal_add_js()
	Adding JavaScript files
	Adding CSS files
	Passing variables from PHP to JavaScript
	Adding inline JavaScript
	Adding inline CSS

	Using the Library API
	Defining a library with hook_library
	Altering information in hook_library

	Using renderable arrays

	Altering JavaScript
	Altering CSS

	Drupal specific JavaScript
	Themeable presentation
	Translatable strings
	Behaviors

	AJAX helpers
	Adding AJAX to forms
	AJAX automatically applied
	AJAX commands
	ajax_command_after
	ajax_command_alert
	ajax_command_append
	ajax_command_before
	ajax_command_changed
	ajax_command_css
	ajax_command_data
	ajax_command_html
	ajax_command_prepend
	ajax_command_remove
	ajax_command_replace
	ajax_command_restripe
	ajax_command_settings


	Summary

	Chapter 11: Working with Files and Images
	The Twitpic and watermark modules
	Files in Drupal
	File API
	Stream wrappers
	Creating a stream wrapper

	Images in Drupal
	Image API
	Image Styles
	Creating image effects
	Creating image styles from a module

	Summary

	Chapter 12: Installation Profiles
	Introducing installation profiles
	Drupal distributions
	Setting up a distribution
	Standard and minimal profiles
	Creating a profile directory
	Profile modules and themes

	Creating profiles
	Enabling modules
	The install task system
	Choosing an install task or using hook_install
	Anatomy of an install task
	Creating a task
	Altering tasks
	Configuring blocks
	Variable settings
	Text filters
	Code placement

	Running the installer from the command line
	Summary

	Appendix A: Database Access
	Basic queries
	Result objects
	Dynamic queries
	Insert queries
	Update queries
	Delete queries
	Merge queries
	Advanced subjects
	Transactions
	Slave servers

	Summary

	Appendix B: Security
	Thinking securely
	Filtering versus escaping
	Filtering
	Escaping HTML
	SQL injection

	Node access control
	Handling insecure code
	Staying up to date
	Summary

	Index



