

Drupal 7 Views
Cookbook

Over 50 recipes to master the creation of views using
the Drupal Views 3 module

J. Ayen Green

BIRMINGHAM - MUMBAI

Drupal 7 Views Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 2230312

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-434-7

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Author
J. Ayen Green

Reviewers
Dave Hall

Dlair Kadhem

Deepak Vohra

Acquisition Editor
Usha Iyer

Lead Technical Editor
Meeta Rajani

Technical Editors
Mehreen Shaikh

Azharuddin Sheikh

Copy Editors
Leonard D'Silva

Aaron Rosario

Neha Shetty

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

J. Ayen Green (@accidentalcoder, theAccidentalCoder.com) has developed
software since inventing the abacus, created websites since [insert name du jour] created
the Web, and has been a Drupaler somewhat longer than his current D.O. UID (try settling on
an ID when your real name is Dries Webchick). He is a writer and columnist of sorts, a poet
of metered sorts, husband, father, friend, and a rascal (in the nicest possible way). When not
plugged in, Green enjoys nature, dogs, horses, and other critters, riding his Harley, kayaking,
spicy food, the arts, and other cultures. He and his wife, Sofía-Aileen, reside in New York City.

This was my third title for Packt, yet was a unique experience. If I may be
allowed to make a resolution outside of New Year's, it is to never start a
book about software that is alpha (as were both Drupal 7 and Views 3
during my first draft) or undergoing a UI change (as was Views 3 during
my second draft, which, out of necessity, then became a new first draft).
Despite the pitfalls, I had unending support from my publisher. I thank
those responsible for a ride smoother than it might have been: Chaitanya
Apte , Meeta Rajani, Mehreen Shaikh, and Neha Mallik, and the rest of
the editorial staff, Rebecca Sawant and Shubhanjan Chatterjee, project
coordinators, and all those who will have provided the production services
after this Acknowledgment was written.

My technical reviewers showed patience and endurance beyond the
normal call of duty.

My wife, Sofia-Aileen, weathered this project and my curmudgeon-like
orneriness with cheery aplomb. Thanks for knowing what I need before I do.

My thanks to Dries Buytaert for Drupal, to Angie Byron for getting Drupal
7 out the door as quickly and as humanly possible, and especially a hardy
thank you to Earl Miles, a.k.a merlinofchaos, for Views and his kind and
patient assistance for the several times I was at wit's end, as well as the
team that brought the new UI to life.

About the Reviewers

Dave Hall has worked as an open source consultant and advocate, specializing in web
applications, for over a decade. He is currently working as an Architect and Lead Developer
for enterprise clients pushing the boundaries of what is possible with Drupal.

Dave has a keen interest in performance, scalability, and security. In 2009, he designed,
deployed, and maintained more than 2000 production Drupal 6 sites for a single client.

Dave has contributed to numerous open source projects, including Drupal core,
phpGroupWare, StatusNet, and PEAR.

Dlair Kadhem immigrated to the United Kingdom in 1996 having fled war-torn Iraq to
seek a better life. In 2005, he went on to graduate with a degree in Electronics Systems
Engineering from the University of Essex. Upon completing his degree, he decided to further
explore the world of computing, specializing in online services and web applications.

Dlair always had a fascination for creativity and technology. He first encountered computers
in 1997 at the age of 13. In the following year, he launched his first website using free web
space provided by Freeserve and went on to create ground-breaking online communities.

Dlair spent the early part of his career working in web design, online marketing, and software
development. Having gained valuable industry experience, Dlair founded his own business
in 2006 with the clear vision of bringing people and technology together through innovation
and open source technology. Some of his clients include the BBC, Bauer Publishing, Croydon
Council, Department of Health, Harrods, London College of Communication, NHS, and Red
Bee Media.

With a keen interest in the evolution of technology, Dlair is currently focused on the rapid
innovation taking place in the world of handheld devices and how they affect everyday life.
His goal is to build a revolutionary business to create and develop products and services
that will increase people's quality of living.

Deepak Vohra is a consultant and a principal member of the NuBean.com software
company. Deepak is a Sun Certified Java Programmer and Web Component Developer, and
has worked in the fields of XML and Java programming and J2EE for over five years. Deepak is
the co-author of the Apress book Pro XML Development with Java Technology and was the
technical reviewer for the O'Reilly book WebLogic: The Definitive Guide. Deepak was also the
technical reviewer for the Course Technology PTR book Ruby Programming for the Absolute
Beginner, and the technical editor for the Manning Publications book Prototype and
Scriptaculous in Action. Deepak is also the author of the Packt Publishing books JDBC 4.0
and Oracle JDeveloper for J2EE Development, Processing XML Documents with Oracle
JDeveloper 11g, and EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

This book is dedicated to my children, who will never read it, but will think it's cool,
nonetheless.

Table of Contents
Preface	 1
Chapter 1: Modifying Default Views	 7

Introduction	 7
Selecting recent comments for a specific node type	 8
Focusing on the Archive view	 10
Filtering the backlinks	 11
Changing the Frontpage view	 14
Selecting the Glossary view entries for a specific user	 17
Creating an Attached Menu for the Taxonomy Term view	 20
Reporting Tracker activity for a certain user role	 23

Chapter 2: Basic Custom Views	 27
Introduction	 27
Selecting all the nodes	 27
Creating a Paged block display	 30
Creating a Dynamic Links display block	 32
Creating a Random Ad block	 33
Using a View Content filter	 36
Providing a user view for administrators	 38
Winning that argument	 42
Using views to create a bulleted list	 44
Creating bulleted lists using multiple content types	 46

Chapter 3: Intermediate Custom Views	 49
Introduction	 49
Selecting node teasers based on types and contents	 50
Displaying a table of entity fields	 53
Sortable table with a header and footer	 55
Using AJAX for page changes	 58
Understanding relationships	 59

ii

Table of Contents

Grouping in a query	 62
Nodes within nodes	 65
Producing custom links	 67
Proving a negative with a filter and an argument	 69

Chapter 4: Creating Advanced Views	 73
Introduction	 73
Creating a view with multiple personalities	 74
Marketing bundle	 77
Filtering with 'or'	 81
Forming a dashboard with Page, Block, and Attachment displays	 85
Teaming two content lists	 89
Using related content: Adding depth to a term ID	 91
Using related content: Adding depth to a term	 93
Limiting visibility of content	 96

Chapter 5: Intermediate Custom Theming Views	 99
Introduction	 99
Changing the page template	 100
Creating and naming a view template	 101
Theming a field	 103
Theming a grid	 108
Theming a table	 111
Theming a row	 114
Theming rows	 117
Theming an RSS feed	 121
Theming a block	 124
Theming a view page	 127
Theming multiple displays	 130
Image styles 	 136

Chapter 6: Creating Views Programmatically 	 141
Introduction	 141
Programming a view	 142
Handling a view field	 152
Styling a view field	 157
Fine tuning the query	 160

Chapter 7: Views Administration	 163
Introduction	 163
Exporting a view	 163
Importing a view	 165
Bulk exporting views	 166
Cloning a view	 169

iii

Table of Contents

Appendix A: Installing Views	 171
Installing Views	 172

Appendix B: Entity Types and Fields	 175
Creating content type: Country	 175
Creating content type: Course	 176
Creating content type: Department	 178
Creating content type: Employee	 180
Creating content type: Extension	 181
Creating image style: Exhibit	 182
Creating image style: Exhibit_teaser	 183
Creating image style: Exhibit_block	 184
Creating content type: Gallery	 184
Creating content type: Home	 186
Creating content type: Ingredient	 188
Creating content type: Product	 189
Creating content type: Real Estate flier	 191
Creating content type: Sponsor	 192
Creating taxonomy tags	 193

Index	 195

iv

Table of Contents

Preface
Views is a contributed module that was originally written by Earl Miles, who is known as
merlinofchaos, or simply Merlin in the Drupal community. The module is maintained by
him and others in the Drupal community.

Views 1 was written during the Summer of Code in 2005, and was available for Drupal 4.6,
4.7, and for Drupal 5 in 2006. For those still running a Drupal 5 site, there is a Drupal 5 Views
Recipes book from Packt Publishing.

Views 2 was first released in 2008 for Drupal 6, and was a major improvement on an already
very useful module. There isn't a book with recipes on Views 2, but you can find many good
examples of using Views 2 in Drupal 6 Attachment Views from Packt Publishing.

Views 3 for Drupal 7 is still in beta as I write this introduction, but will be released before I get
to the appendix!

What is a view?
From a general perspective: You must have just installed Drupal and the default website it
creates. You have also added a few articles and assigned a descriptive term to each, that is,
a category. Now, you would like to present the visitors with a page containing articles of
a specific category. How do you do it? The short answer is...you can't...yet.

Alright, you decide to put that idea aside for now, and instead present all articles, but sorted
by their titles. How do you do it? The short answer, again, is...you can't...yet.

The fact is that of the laundry list of thousands of functions available with Drupal,
painstaking thoughts go into deciding which of them will be present "in core", that is, in
the code when first installed, before anything else is added. Generally, the philosophy is
that only the mission-critical functions should be present. Keeping the base platform light
and fast is preferable to bloating it with functionality that can, instead, be added via
contributed modules. Enter Views.

Preface

2

We will be exploring the capabilities of the Views module throughout the book, so for now,
here is a short, in-a-nutshell definition of what this module offers.

The Views module provides the capability, via a program code or the
included user interface submodule, to define the criteria by which to select
content, process it, manipulate it, and format its presentation. It is, at its
heart, a query generator with many additional functional layers.

Many would say that a fully functional Drupal site would be almost impossible to produce
without the use of the Views module, and I agree. Now, do not take that as a challenge. Of
course it would be possible to write custom modules in order to purposely accomplish a rich
site without using the Views module, but why bother?

From a MySQL perspective: If you are not familiar with MySQL, it stands for My Structured
Query Language and is the most used database with Drupal. The database contains Drupal's
settings as well as the content added to the website.

So, let us say that we have a table in our database, and it is called node, and in this table
we keep whatever content we have added to the website. If we want to retrieve all the content
from this table, the command given to MySQL would be:

SELECT * FROM node;

This would return all the data stored in that table, each piece of content being a row (a
record). If we wanted to retrieve only blog content, the command would be:

SELECT * FROM node WHERE node_type='blog';

If we want to sort the records by the title of the blog entries:

SELECT * FROM node WHERE node_type='blog' ORDER BY title;

Specifying that only three records are desired would be:

SELECT * FROM node WHERE node_type='blog' ORDER BY title LIMIT 0,3;

Finally, if there was another table, blog-topic, this table uses the same identifying value
as the node table, nid (such as a driver's license number), and if we want to return its data
along with the node data, we would relate the two records to each other, shown as follows:

SELECT * FROM node JOIN blog-topic ON node.nid=blog-topic.nid WHERE
node_type='blog' ORDER BY title LIMIT 0,3;

Preface

3

Views does all that for you, as well as gives you many options to format its output to suit
your needs.

The term View comes up in other places in computing, such as with SQL, but
in the context of Drupal, it almost always refers to a dynamic display created
with the Views module.

Views is a particularly versatile module, in terms of interactions with the developer, who will
use it in any or all of the following three ways:

ff Via the UI (user interface) for creating views that are editable by the admin or other
authorized users

ff From within a custom module, creating and/or invoking a view programmatically

ff Indirectly, using modules that themselves create programmatic views

Views offers many of the tools necessary for meeting your needs:

ff Template hints and model templates

ff Several types of default views

ff Various display types to meet the needs of the layout such as page, block,
and attachment

ff A number of output formats such as tabular, grid, and list

ff Hooks

ff Pluggable features such as handlers and formatters

ff Instantaneous AJAX previewing

It is no wonder that Views is consistently the most popularly downloaded module
at Drupal.org!

What this book covers
Chapter 1, Modifying Default Views, gives an introduction to the Views UI by modifying
some of the views that come with the module in order to make useful versions of them.

Chapter 2, Basic Custom Views, covers creating elementary views and how to get them to
provide the information you need.

Chapter 3, Intermediate Custom Views, goes beyond the basics to introduce concepts such
as presenting teasers for a specific type of content, adding a header and footer, using AJAX
for page changes, and producing custom links.

Chapter 4, Creating Advanced Views, covers advanced topics such as the use of multiple
displays, using dynamic filters with depth, and restricting access to Views.

Preface

4

Chapter 5, Intermediate Custom Theming Views, shows you the various ways to manipulate
the output of a view so that it has the look that you need.

Chapter 6, Creating Views Programmatically, shows how to create a view from within the
module code rather than using the UI.

Chapter 7, Views Administration, covers some of the tools for administering your
Views environment.

Appendix A, Installing Views, provides instructions for installing the Views module.

Appendix B, Entity Types and Fields, gives instructions for creating the various content
types and other Drupal elements used in the recipes.

What you need for this book
You will need a reasonably advanced computer and an Internet connection. All software
required to do the recipes can be freely obtained from drupal.org.

Who this book is for
This book is for developers or technically proficient users who are fairly comfortable with
the concepts behind websites and the Drupal environment.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "However, we do not want to use that argument,
because we will not be retrieving content based on the nid in the attachment, we will be
retrieving content based on tid."

A block of code is set as follows:

<style type="text/css">
#cc-container {
 width: 180px;
}
.cc-odd, .cc-even {
 padding: 6px;
 border: 4px solid black;
 width: 120px;
 position: relative;
 text-align: center;
}
.cc-odd {
 left: 0;

Preface

5

 background-color: #aaa;
}
.cc-even {
 left: 60px;
 background-color: #eee;
}
.cc-value {
 font-size: 36px;
}
</style>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<?php foreach ($rows as $id => $row): ?>
 <div class="cc-<?php echo ($ctr % 2) ? 'odd' : 'even'; ?>">
 <?php $ctr--; ?>
 <div class="cc-value"><?php echo $ctr; ?></div>

 <div class="<?php print $classes_array[$id]; ?>">

 <?php print $row; ?>
 </div>
 </div>
<?php endforeach; ?>

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: " Click on the Title link
in the Title box and change the title to Recent article comments, and then click on the
Update button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

Preface

6

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Modifying Default

Views

In this chapter, we will cover:

ff Selecting recent comments for a specific node type

ff Focusing on the Archive view

ff Filtering the backlinks

ff Changing the Frontpage view

ff Selecting the Glossary view entries for a specific user

ff Creating an Attached Menu for the Taxonomy Term view

ff Reporting Tracker activity for a certain user role

Introduction
The Views module comes with a number of useful predefined views. You can not only use
them, but also edit them to meet whatever special needs arise.

Since these views are ready to use the moment the module is enabled, the steps necessary
to make some changes to them are less than those needed to create new custom views, so
these views are a logical choice for our first chapter.

Modifying Default Views

8

Selecting recent comments for a
specific node type

The Recent Comments view provides a block containing comments, which links to a page
providing additional comment content. We will edit this view to enable us to display comments
for a specific content type.

Getting ready
1.	 Ensure that your site has at least two types of content (the default Page and Article

types are fine) and that you have access to each of these content types. Also, ensure
that the content you wish to use has comments.

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the recent comments view.

3.	 Click on the Clone link that now appears for the view.

4.	 Enter Article Comments Recent as the view name.

5.	 Enter Display comments for recent articles as the view description.

6.	 Click on the Next button.

7.	 Click on the Save button at the bottom of the page.

How to do it...
We will edit the clone that we have created, and make some modifications to it to provide
a new view. Carry out the following steps in order to accomplish this recipe:

1.	 Edit the recent view for article comments that we have created.

2.	 Click on the + link in the Filters box.

3.	 A dialog box titled Master: Add filters will open.

4.	 In the Groups select box, choose Node.

5.	 Scroll down to the Node: Type checkbox and check it; click on the Add button at
the bottom of the Add filters dialog box to reveal the configuration box for the filter.

6.	 Click on the checkbox next to the content type you want to select. In our case, we will
click on the one next to Article.

7.	 Make sure that Node is shown in the Relationship select box. Now, click on the
Update button.

8.	 Click on the Title link in the Title box and change the title to Recent article
comments, and then click on the Update button.

9.	 At the top of the page, select the Page display option.

Chapter 1

9

10.	 Click on Path in the Page settings block, change the path to article-comments-
recent, and click on the Update button.

11.	 At the top of the page, select the Block display option.

12.	 Click Admin in the Block settings block, change the Block admin description
to Recent article comments view, and click on the Update button.

13.	 Click on the Save button.

14.	 The output of our view can be viewed at article-comments-recent.

The following screenshot shows the Recent article comments view:

How it works...
Most of the views that you will create will probably be Node views—views that use nodes as
the primary source of data. This view uses a different entity type: comments. The relationship
that was already in place, links each selected comment to the node for which the comment
was made.

The original filter limits the selection of comments to those nodes that are published, unless
the user has admin capability, in which case all comments will be selected. We added another
filter, which further limits the selection of comments made on articles; therefore, even though
there was a piece of page content with a comment, it was not displayed. However, if we run the
original view (comment/recent), we see the result as not having added the additional filter:

There's more...
As you have seen, more than one filter can be applied to the selection of content. One
additional filter to consider is Comment: In moderation, which would limit the displayed
comments to those that have been approved or not, depending on the chosen setting.

Modifying Default Views

10

Focusing on the Archive view
The Monthly archive view displays a list of links that are the months in which the content was
published. The following screenshot shows the monthly archive view:

Each link leads to a page that presents teasers of each of the pieces of content published
that month. We're going to add a filter to the view so that only the user's content is considered
instead of the content of all users.

Getting ready
Carry out the following steps in order to get started:

1.	 Ensure that your site has content posted by more than one author
(for testing purposes).

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the Monthly archive view.

3.	 Click on the Clone link that now appears on the view, enter User archive as the view
name, enter Display a list of months that link to content for that month for the
current user as the view description, and click on the Next button.

How to do it...
We will edit the clone that we have created, and make some modifications to it to provide
a new view. Carry out the following steps in order to accomplish this recipe:

1.	 Click on the + Add link in the Filters box, and a dialog box titled Master: Add filters
will open.

2.	 Scroll down to User: Current and click on the checkbox, then click on the Add button.

3.	 Click on the Is the logged in user checkbox for a "yes", and then click on the
Update button.

Chapter 1

11

4.	 Click on the Title link in the Basic settings box, change the title to User archive,
and click on the Update button.

5.	 Select the Page display option.

6.	 Click on Path in the Page settings block, change the path to user-archive, and click
on the Update button.

7.	 Select the Block display option.

8.	 Click on the Admin in the Block settings block, change the Block admin description
to User archive list, and click on the Update button.

9.	 Click on the Save button.

10.	 The output of our view can be viewed at the user-archive link.

How it works...
This is an example of a Node view—a view that uses nodes as the source of the data. The
original filter limits the selection of comments to those nodes that are published, and produces
a links list of the months for which there was content published. We add another filter, which
further limits the selection to nodes created by the current user.

Filtering the backlinks
A backlink is a link on another page that points to the current page. When Drupal 7 indexes
content for searching, the links in the content that lead to other pages on the same site are
noted and stored in a database table for reference as backlinks.

The Backlinks view displays a list of nodes that contain links to the requested node. If no
node has been requested, all backlinks are listed. We're going to create another version of
this view, which will provide a teaser of the node along with links to the nodes that link to it.

Getting ready
Carry out the following steps in order to get started:

1.	 For testing purposes, ensure that there is at least one backlink in your content.

Modifying Default Views

12

2.	 From the Content list, select the node for which there will be a backlink. Take note
of its node ID by placing the mouse cursor over its name and looking at the link
information displayed, as shown in the following screenshot:

3.	 Select a piece of content in which you will add a link. In the body of that content, add
the link. In the preceding example, a link to Test Page 1 would be as follows:
link to Test Page 1

4.	 Run the cron command from the admin status report. Check the admin search
settings to ensure that 100% of your content has been indexed. If not, run the cron
command again. The following screenshot shows the indexing status:

5.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the Backlinks view. Click on the Clone link that now appears for the view.

6.	 Enter teasers_with_backlinks for the view name.

7.	 Enter Displays a list of nodes that link to the node, using the search backlinks
table as the view description.

8.	 Click on the Next button.

9.	 Click on the Save button at the bottom of the page.

Chapter 1

13

How to do it...
We will edit the clone we have created, and make some modifications to it to provide a new
view. Carry out the following steps in order to accomplish this recipe:

1.	 Edit the teasers_with_backlinks view that we have created.

2.	 Click on the HTML List link next to Format: in the Format settings box.

3.	 Scroll down to the Master: How should this view be styled configuration box and
select Unformatted, and then click on the Update button.

4.	 A subsequent configuration box, Master: Style options, opens. Click on the
Update button.

5.	 Select the Page display.

6.	 Click on the + icon in the Fields box.

7.	 Scroll down to the configuration box, select Fields from the selected box. Select
Fields: body, and click on the Add button.

8.	 In the subsequent configuration box, and clear the Label textbox, ensure that the
Formatter select box contains Summary or trimmed, and click on the Update button.

9.	 Click on the node/%/backlinks link for Path in the Page settings box, change the
URL to node/%/teasers-with-backlinks, and click on the Update button.

10.	 Click on the Tab: What links ... link for Menu in the Page settings box. Change the
Title textbox contents to A peek at what links here. Enter 99 in the Weight textbox
and click on the Update button.

11.	 Select Block display and click on the What links here link in the Block settings box.
Change the contents of the textbox to Teasers of what links here and click on the
Update button.

12.	 Click on the Save button.

13.	 We can view the altered node page by viewing the node that we know has other
content linking to it; the example here is node/4:

Modifying Default Views

14

14.	 Click on the link A peek at what links here (shown in the preceding screenshot) and
you will be shown a teaser for each of the pieces of content that link to the one you
were viewing, as shown in the following screenshot:

How it works...
This is an example of a Node view. The original view adds a tab to the node view, What
links here, which gives a list of other nodes that link to the node being viewed. We added
the node body as another field, which additionally displays a teaser for each of the nodes
containing backlinks.

Changing the Frontpage view
The composition of the front (home) page in Drupal can be themed to alter its appearance,
but the structure and sources of its content are pretty much determined for you. If you leave
things as they are, the content area of the front page will consist of whatever nodes you have
promoted, in any quantity up to the maximum that you set, and that's pretty much the extent
of your control.

We're going to create a new front page that resembles the default Frontpage view only that it
does display some content.

Getting ready
Carry out the following steps in order to get started:

Chapter 1

15

For this recipe, we're going to be using a custom content type: Gallery, the
details of which are given in Appendix B, Entity Types and Fields. Feel free to
duplicate it, or create a content type more meaningful to you, or just use one of
the existing content types. The content type also makes use of an image style so
that the image in each piece of content can be presented in a uniform manner.

1.	 Create two entries of the content type that you choose to use.

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the frontpage view.

3.	 Click on the Clone link that now appears for the view.

4.	 Enter alternate_frontpage for the view name, A different front page as the view
description, and click on the Next button.

5.	 Click on the Save button at the bottom of the page.

How to do it...
We will edit the clone we have created, and make some modifications to it to provide a new
view. Carry out the following steps in order to accomplish this recipe:

1.	 Edit the alternate_frontpage view that we have created.

2.	 Click on Paged, 10 items next to User pager in the Basic settings box, select Page
output, Mini pager, and click on the Update button.

3.	 Change Items per page to 1 and click on the Update button.

4.	 Click on the + icon in the Filters box.

5.	 Scroll down to the configuration box and select Node from the Group select box,
scroll down and check the Node: Type checkbox, and click on the Add button.

6.	 A new configuration box opens. Check the Gallery checkbox below Node type and
click on the Update button.

7.	 Click on the Save button.

8.	 Navigate to the admin Configuration page (admin/config) and click on
Site information.

9.	 In the textbox for Default front page, change node to frontpage and click on the
Save configuration button.

Modifying Default Views

16

10.	 Navigate to the site root to view the page, which is shown in the following screenshot:

11.	 Clicking the pager will load the next piece of content:

How it works...
The default version of the frontpage view is designed to provide precisely what the Drupal
front page does. We created a view that shows content only of the custom Gallery type,
composed primarily of an image, with one piece of content per page. Then we let Drupal
know that this new view should be used as our front page.

Chapter 1

17

Selecting the Glossary view entries for
a specific user

The Glossary view presents a list of all content organized by the first letter of the title. This is
a convenient view for site visitors that know the name of the content they are seeking, or who
simply want to browse. We're going to give the user the ability to browse the content created
by a specific author.

Getting ready
Carry out the following steps in order to get started:

1.	 Ensure that your site has content posted by more than one author
(for testing purposes).

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the Glossary view.

3.	 Click on the Clone link that now appears for the view.

4.	 Enter author_glossary for the view name.

5.	 Enter A list of all content, by letter, with author selection as the view description.

6.	 Click on the Next button.

7.	 Click on the Save button at the bottom of the page.

How to do it...
The Glossary view, and now the clone that we created, has three displays: the default display,
the page display that lists content, and an attachment display that lists each letter of the
alphabet for which there is content along with the number of nodes. We will make some
changes to the existing displays and create an additional one that will provide the author list.

Carry out the following steps in order to accomplish this recipe:

1.	 Edit the author_glossary view that we have created.

2.	 Click on the +Add link at the top of the page and select Attachment from the list.
Then select the new Attachment 2.

3.	 Click on the + icon in the Sort criteria box, check the User: Name checkbox, and click
on the Add button. A new configuration box will open. Select Sort ascending, click on
the Override button and click on the Update button.

4.	 In the Attachment settings dialog box, click on Before next to Position:, select After
in the configuration box, and click on the Update button.

Modifying Default Views

18

5.	 Click None next to Attach to: in the Attachment settings dialog box, check the Page
checkbox, and click on the Update button.

6.	 In the Fields box select each field one at a time other than User: Name, and in their
settings box click on the Remove button, taking care to first select Override in the
settings of the first field that you select.

7.	 Click None next to Attach to: in the Attachment settings dialog box, check the Page
checkbox in the configuration box, and click on the Update button.

8.	 Click on the link next to Query settings in the Other box, check the Distinct check
checkbox in the configuration box, and click on the Update button.

That is the work needed for the attachment itself. Now, we need to make a few minor changes
to the settings from the original view.

1.	 Select the Master display.

2.	 Click on the + icon in the Dynamic filters box, select User from the select box in the
configuration box, check the box next to User: Name, and click on the Add button.

3.	 In the subsequent configuration box,in the Title box, enter Content starting with %1
for %2 and click on the Update default display button.

4.	 Select the Page display.

5.	 Click on the glossary link next to Path: in the Page settings box, change the path to
author-glossary.

6.	 Click on the link next to Menu in the same box and change the title from Glossary to
Author Glossary.

7.	 Click on the Save button.

8.	 Navigate to the home page, and first invoke the view simply by clicking on the Author
Glossary link in the navigation menu. Notice the new attachment below the list of
content. Your screen will vary from the following screenshot, based on the authors
listed in your site:

Chapter 1

19

9.	 Then, click on the name of an author in the author attachment.

10.	 And finally, add /x to the end of the URL, where x is the first letter or word of a piece
of that author's content that is not his first piece, alphabetically, which in my case will
be author-glossary/b/j ayen green, as shown in the following screenshot:

Modifying Default Views

20

How it works...
We added a new attachment display to the existing view, giving it three displays. The first is
the page display, which is the section of the view containing the information about content.
The second is the original attachment, which appears first on the page, and is formatted
as a summary of the available titles using the first letter of the title, and giving a total for
each letter. The new attachment appears last, and contains the names of each author with
authored content on the site.

We specified that the new attachment would inherit two arguments from the page display
(which receives the arguments), those being the additional portions of the URL. The first
argument is the title of a piece of content, or 'all' to specify that all should be used.
The second argument is the name of an author, or is omitted entirely for all authors
to be selected.

The link produced for each author name links back to the same view, providing 'all' as
the title being searched (so, all titles) and the author's name. Thus, the page URL when
selected from the menu item appears as author_glossary with no arguments, in which case
all records are retrieved, and when an author link is clicked, author_glossary/all/
author_name, where all titles belonging to that author are retrieved. Finally, we entered
author_glossary/b/j ayen green so that all titles beginning with B and authored by J.
Ayen Green were retrieved.

There's more...
Attachment displays are a boon to the value of your views and your site. You can find several
examples of their power in my book on "Drupal 6 Attachment Views", Packt Publishing.

Creating an Attached Menu for the
Taxonomy Term view

It's nice to be able to add meaningful content to a view, such as content used as a menu; but
how do we do that without it being repeated with every record and still containing its own view
content? An Attachment view can be used for this.

Getting ready
Carry out the following steps in order to get started:

1.	 Ensure that some of your content has taxonomy terms assigned to it.

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the taxonomy_term view.

3.	 Click on the Clone link that now appears for the view.

Chapter 1

21

4.	 Enter taxonomy_term_menu for the view name.

5.	 Enter Access content via a taxonomy term menu as the view description.

6.	 Click on the Next button.

7.	 The view has two additional feeds that we do not need, so let's remove them.
Click on the tab for the Feed 1 display and then the Delete button. Do the same
for Feed 2 display.

The displays may remain visible until the view is saved in
the next step.

8.	 Click on the Save button at the bottom of the page.

How to do it...
We will be adding an attachment display that will be used as a menu to the existing view.
Carry out the following steps in order to accomplish this recipe:

1.	 Edit the taxonomy_term_menu view that we have created.

2.	 Click on the + Add button in the display list and add an Attachment display.

3.	 Click on the Content next to Show: in the Format checkbox, change the setting to
Fields, click on the Update and Override button, and then the Update button in the
subsequent configuration box.

4.	 Click on the + icon in the Fields box, scroll down to Taxonomy: All terms and check
the box, then click on the Add button.

5.	 In the subsequent settings box, clear the Label text field.

6.	 Check the Output this field as a link checkbox in the Rewriting section of the same
settings box, and enter taxonomy/term-menu/[tid-term] as the link path.

7.	 Check the Hide if empty checkbox in the Empty Field Behavior settings section.

8.	 In the Display type section, select Simple separator, enter | with a blank space
before and after it into the Separator textbox, clear the Link this field to its term
page checkbox, and click on the Update and Override button.

9.	 Click on the links for each of the two dynamic filters; click on the Override button (will
appear for just the first filter chosen) and then on the Remove button to remove both.

10.	 In the same way, click on the links for each of the Sort criteria. Click Override for the
first, and remove both. Then click on the icon to add a sort criterion and select the
Taxonomy: Term field. Click on the Update and Override button.

11.	 Ensure Ascending is selected in the subsequent settings box, and then click on the
Update button.

Modifying Default Views

22

Those changes took care of the data requirements for the new Attachment display. Now, we
need to make some changes to the structural parts of it before we finish.

1.	 Click on the settings gear icon next to Paged, 10 items in the Basic settings box,
change the 10 to 0, and click on the Update and Override button.

2.	 Click on the Title link in the Title box and for the title, enter Terms. Then click on the
Update and Override button.

3.	 Click on the Content next to Show: in the Format box, change the setting to Fields,
click on the Update and Override button, and then the Update button in the
subsequent configuration box.

4.	 In the Attachment settings box, click on the Yes link next to Inherit arguments and
change the setting to No, then click on the Update button.

5.	 Click on the None link next to Attach to in the Attachment settings box. Check the
box for Page and then click on the Update button.

6.	 Almost done now. The original view had dynamic filters that we have removed. We
need to add a new one now.

7.	 Click on the Page 1 button to change to the Page display.

8.	 Click on the + link for Dynamic filters, check the box for Taxonomy: Term, then click
on the Update and Override button.

9.	 Click on the Save button and navigate to taxonomy/term-menu to see the results,
as shown in the following screenshot:

Chapter 1

23

How it works...
Content can have taxonomy terms, often known as "tags" associated with it. We took a view
that uses a node's taxonomy in a different way and edited it to present the terms associated
with published nodes as a menu from which we can choose one as a filter. Most of the work we
did was removing settings we would not need or adding new ones. The three primary changes
were adding the attachment display to use as a menu, changing the dynamic filter for the page
display to be the taxonomy term that we selected via its link, and setting the term to output in
the attachment display as a link pointing back to our view along with the term name appended.

Drupal treats additional information in a URL as arguments, so, for example,
if a page address is my/page and the URL is my/page/2/even, then
the values 2 and even are processed as arguments, or parameters, to be
passed to the page.

There's more...
The next few steps for a real site would be to theme the attachment display, perhaps add a
pager for both, and maybe to change the position setting for the attachment display to 'after'
rather than 'before', or even to have it appear side by side with the content.

Reporting Tracker activity for a certain
user role

The default Tracker view lists the posts created by users. We will create an exposed filter to
allow the admin to filter the view by user role. Filters require certain criteria to be met in order
for records to be selected. Often, the value of the filter is one that can remain constant, such
as requiring that content be published in order to be visible. There are times, however, when
you will want the ability to change the value that is filtered. Rather than having to edit the
view each time you want this value to change, you can simply elect to have the view provide
a widget with which the value can be supplied.

Getting ready
Carry out the following steps in order to get started:

1.	 Ensure that your site has content posted by more than one author, and that the
authors represent more than one role.

2.	 Navigate to the Views page (admin/structure/views) and click on the Enable
link for the Tracker view.

Modifying Default Views

24

3.	 Click on the Clone link that now appears on the view.

4.	 Enter tracker_role as the view name.

5.	 Enter Shows all new activity on system by role as the view description.

6.	 Click on the Next button.

7.	 Click on the Save button at the bottom of the page.

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Edit the tracker_role view that we have created.

2.	 Click on the + icon in the Filters box.

3.	 Check the User: Roles checkbox and click on the Add button.

4.	 A new configuration box will open. Click on the Expose button, uncheck the
Force single checkbox if it is checked, then click on the Update button.

5.	 Select the Page display.

6.	 Click the tracker next to Path: in the Page settings box, change the path to
tracker_role and click on the Update button.

7.	 Click Normal: Recent next to Menu: in the Page settings box. Change the
Title to Recent posts with selectable role and click on the Update button.

8.	 Click on the link for the current Dynamic filters and then the Remove button.

9.	 Click on the + link in the Dynamic filters box, check the box for User: roles, click
on the Update default display, and then the Update button in the subsequent
configuration box.

10.	 Click on the Save button.

11.	 Navigate to tracker_role and you will see the exposed filter, as shown in the
following screenshot, which you can use to choose to see nodes created by
users of a specific role:

Chapter 1

25

How it works...
We changed the Dynamic filter for the view to use the author's role rather than the original
setting. We also created an attachment display and configured it to provide a list of user roles.
Because this is a node view and not a user view, the information will be coming from content
records and not user records, which means that the list will only contain roles for which
content exists. In choosing the role in the exposed filter, its rid (role ID) that gets passed in
the URL back to the view, which will then list only the content that has been created by a user
with that role.

2
Basic Custom Views

In this chapter, we will cover:

ff Selecting all the nodes

ff Creating a Paged block display

ff Creating a Dynamic Links display block

ff Creating a Random Ad block

ff Using a View Content filter

ff Providing a user view for administrators

ff Winning that argument

ff Using Views to create a bulleted list

ff Creating bulleted lists using multiple content types

Introduction
In this chapter we are going to begin creating custom views. We will be working with simple
examples, which you can then alter, expand on, or combine to suit your own needs.

Selecting all the nodes
Normally, you will want to select only published nodes, because you only want users to see
nodes that have been published. However, as an admin, you could very well want to view
unpublished nodes as well. Fortunately, there is a way to account for both requirements
using a filter made just for this job.

Basic Custom Views

28

Getting ready
Ensure that your site has both published and unpublished content.

How to do it...
Carry out the following steps on the Views List page in order to accomplish this recipe:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Click on the +Add new view link. Enter Browse all nodes as the View name. Check
the Description box and enter Browse all content if admin, all published if not.

3.	 Enter Browse content as the Page title. In the Display format select boxes, select
Unformatted list, teasers, without links, and without comments, respectively.

4.	 Check the Create a menu link checkbox, select the Main menu, enter Browse
content as the menu text, and then click on the Continue and edit button.

Carry out the following steps on the Views Edit page:

1.	 Click on the Add link in the Filter Criteria panel, check the box next to Content
Published or Admin, click on the Add and configure filter criteria button, and
click on the Apply button in the subsequent configuration box.

2.	 Click on the Save button at the top of the screen.

3.	 Navigate to the front page.

4.	 Click on the Browse content menu tab while logged in as the admin—the
unpublished nodes will typically show as pink unless this has been overridden
in your theme. This is shown in the following screenshot:

Chapter 2

29

5.	 Now, log out and click on the Browse content link again. You are now seeing this
view as a site visitor would, and only the published nodes are shown:

How it works...
By default, a node view will select all available nodes, with no filtering at all. It will sort them
starting from the most recent one. Also, a node view will default to show selected fields rather
than the entire node. We changed our view to select all nodes if the user, who is selecting the
view, is the admin, but only published nodes in other cases. We then changed the style of the
output to present the nodes as teasers instead of fields, and finally, we created a page display,
assigned a path to it (/browse), and added it to the site's main menu.

There's more...
The main concept to take away from this view is the use of a filter. There are many criteria on
which a view can be filtered, and we will use several criteria throughout the book. Also, more
than one filter can be applied to the same display. For example, in addition to the filter we
added, we could have also required the node to have been promoted to the front page, and
even selected a specific node type.

Basic Custom Views

30

Creating a Paged block display
The output presented by a view is typically seen in the content area of the page, but views
are also capable of creating displays that appear as blocks in any selectable region of your
theme. We are going to create a block that provides a paged display of content for a specific
content type.

Block displays
The next few recipes make use of block displays. The block displays of
views are not necessarily any different than manually constructed blocks
in appearance. The difference is that their content is dynamic. Technically,
the block does not exist until the page is created (an exception being that if
caching is used, the block does exist in cache). At that point, the data for it
is retrieved from the database, and the block is then rendered.

Getting ready
This recipe uses a custom content type, Sponsor, the details of which are in Appendix B,
Entity Types and Fields. We will create a few nodes of this content type.

How to do it...
Carry out the following steps on the Views List page in order to accomplish this recipe:

1.	 Navigate to the Views List (admin/structure/views). Click on the +Add new view
link. Enter Sponsors as the View name. Check the Description box and enter Views
related to Event sponsors. Check the box for Create a block, enter Our Sponsor… as
the Block title.

2.	 In the Display format select boxes, select unformatted list, teasers, without links,
and without comments, respectively. Now, click on the Continue and edit button.

That creates the view, and now we need the view to do something, so on the View Edit page:
carry out the following steps

1.	 Click on the Add link in the Filter Criteria panel; check the box next to Content Type
and the one next to Content Published or Admin. Click on the Add and configure
filter criteria button, check the box for Sponsor, click on the Apply button, and click it
again for the Content Published or Admin configuration box.

2.	 Click Paged, 10 items next to Use pager: in the Pager box. Select Paged output,
mini pager in the configuration box, set the pager number to 1, and click on the
Update and continue button.

Chapter 2

31

3.	 Click on the Save button.

4.	 Navigate to the Blocks Admin page (admin/structure/block).

5.	 Scroll down to Sponsor ad in the Disabled section.

6.	 Select the Right sidebar from the select box.

7.	 Click on the Save blocks button.

8.	 Navigate to the front page to view the block, which should look similar to the
following screenshot:

How it works...
We have created a node view, and limited its selection to the Sponsor content type nodes that
are published (or all nodes, in the case of the user being an admin). We set the maximum
record to 1, which will first show the most recent node of that type.

We changed the pager number to 1, because it is likely that the content area
will be using pager 0, and each pager on a page must have a unique number.

We changed the row type to node, so that we will receive a teaser display of the one node
shown. We specified that one record be shown at a time, with a mini pager below it for
navigation. We assigned the block to the right sidebar. If there are 10 nodes that meet our
criteria, each will be shown in turn as the pager is clicked.

Using Override
When making a settings change on a display other than the Master display,
decide whether the change should affect all displays or only the display
being edited. If you want to make changes only to the display being edited,
be sure to click on the Override button if it is present before adding or
updating the display.

Basic Custom Views

32

Creating a Dynamic Links display block
Views are capable of creating displays that appear as blocks in any selectable region
of your theme. We are going to create a block that provides a dynamic list of links for
a specific content type.

Getting ready
This recipe uses a custom content type, Sponsor, the details of which are present in
Appendix B, Entity Types and Fields. We will create a few nodes of this content type.

How to do it...

This recipe is based on the view created in the previous recipe.

Carry out the following steps on the Views List page in order to accomplish this recipe:

1.	 Navigate to the Views List (admin/structure/views).

2.	 Click on the Edit link for the Sponsors view.

Carry out the following steps on the View Edit page:

1.	 Click on the + Add link next to the Block display button at the top of the page.

2.	 Click on the link besides Admin and enter Sponsor Links Block as the block name
in the text box that appears.

3.	 Click on the Add link in the Filter Criteria panel, check the box next to Content Type
and the one next to Content Published or Admin. Click on the Add and configure
filter criteria button, check the box for Sponsor, and click on the Apply button. Click
it again for the Content Published or Admin configuration box.

4.	 Click Paged, 10 items next to Use pager: in the Pager box, select Specified number
of items in the configuration box, change the number of items to 5, set the offset to
1, and click on the Update and continue button.

5.	 Click on the Save button and navigate to the Blocks Admin page (admin/
structure/block).

6.	 Scroll down to the Sponsor links block in the Disabled section. Select the Right
sidebar from the select box and click on the Save blocks button.

Chapter 2

33

7.	 Navigate to the front page to view the block, as shown in the following screenshot:

How it works...
We used the node view that we had created in the preceding recipe. We also created an
additional block display and limited its selection to the Sponsor content type nodes that are
already published (or all the nodes if the user is admin). We set the maximum records to be
shown as 5, which will be the most recent nodes of that type. We then set the offset to 1.
The reason for this is that the Sponsor ad block from the preceding recipe will display the
most recent sponsor node, so it does not need to be included; the offset setting will have
views skip one record and start the list with the second most recent sponsor.

Creating a Random Ad block
Anyone who has spent time on the web has seen advertisements, usually in the form of
banners. In a Drupal site, an ad is typically in a block, which is mostly a region of the screen
other than the main content area. Adding content to a block manually results in a static ad,
which could be all that is required, but if dynamic ads are needed, creating a view with a
block display is the way to go. We are going to create a block that presents an ad for a
randomly-selected product and display it in the content area.

Getting ready
This recipe uses a custom content type, Product, the details of which are in Appendix B, Entity
Types and Fields. Create at least one node of this content type, or more if you want to see the
random selection at work.

Basic Custom Views

34

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Navigate to the Views List page (admin/structure/views). Click on the +Add
new view link, and enter Product ads as the View name.

2.	 Check the Description box and enter Random product ad block.

3.	 Select Content from the Show list and select the type to be Product.

4.	 Check the box for Create a block.

5.	 In the Display format select boxes, select unformatted list, teasers, without links,
and without comments respectively. Set the Items per page to 1 and click on the
Continue and edit button.

That creates the view, and now we just need to add a few settings:

1.	 Click on the Add link in the Sort criteria box and select Global: Random.

2.	 Click on the Add and configure sort criteria button.

3.	 Click on the Apply button and save the changes.

4.	 Navigate to the Blocks Admin page (admin/structure/block).

5.	 Scroll down to Random ad in the Disabled section, select Content from the select
box, and click on the Save blocks button.

6.	 Navigate to the front page to view the block, as shown in the following screenshot:

Chapter 2

35

How it works...
We created a node view, and limited its selection to Product content type nodes. We set the
sort option to random, which means that Drupal will randomly select a record for use. We set
the maximum records to 1, so that only one product is shown. We specified that the format
should be a node teaser, so we see the title, description, price, and image. At that point, if we
had created a page display then the view would have been displayed on that page. Instead,
we created a block display and assigned the block to the content area so that it shows along
with the main content.

There's more...
In Chapter 5, Intermediate Custom Theming Views, we will cover the Theming a view page
recipe. The current format of this view cries out for theming, such as making the price larger
and floating the text next to the image.

Basic Custom Views

36

Using a View Content filter
Often, the quantity of content can be overwhelming to navigate, when browsing through it
page by page. Filtering allows the content selection to be reduced using specific criteria.
We will create a view that allows the user to filter the content.

Getting ready
This recipe uses a custom content type, Home, the details of which are in Appendix B, Entity
Types and Fields. We will create at least two nodes of this content type, each with a different
zip code.

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Navigate to the Views List (admin/structure/views).

2.	 Click on the +Add new view link.

3.	 Enter Homes for sale as the View name.

4.	 Check the Description box and enter Homes for sale as the description in the text
box that appears.

5.	 Select Content from the Show list and select the type to be Home.

6.	 In the Display format select boxes, select unformatted list, teasers, with links, and
without comments respectively, and then click on the Continue and edit button.

Having created the view, we need to add a few settings:

1.	 Click on the Add link next to Fields.

2.	 Check the box next to Fields: field_zip_code. Click on the Add and configure
fields button.

3.	 In the configuration box for field_zip_code, click on the Expose Filter button.
Ensure that the checkbox for Required is not checked, check the Expose the
operator checkbox, change the Label to Zip code, and then click on the OK button.

4.	 Click None next to Title, enter Homes for sale in the textbox, and click on the
Update button.

5.	 Click None next to Path: in the Page settings section, enter homes in the textbox,
and click on the Update button.

6.	 Click on the Save button and navigate to homes.

Chapter 2

37

7.	 We can select Is not empty from the Zip code filter select box and click on the Apply
button, and receive all records. Alternatively, we can specify a zip code using another
filter, such as Is equal to to limit the display, as shown in the following screenshot:

How it works...
A view is essentially one or several SQL statements, in terms of the data acquisition.
In effect, a filter results in an equivalent WHERE clause being added to the SQL statement,
to gather a subset of the available data. So, what we have done is created a view that gathers
all the nodes. We reduced the number of nodes that the view will receive from the database
by specifying that the nodes must be of the Home content type. Finally, we provided the
means to select a focused subset of those records by allowing the user to specify a zip code
and exposing the filter. By unlocking the operator in the filter, the user is free to request, for
example, a specific zip code, zip codes greater than a value, all zip codes not equal to another
value, or every zip code.

Basic Custom Views

38

Providing a user view for administrators
Not every view needs to contain data visible to the general public. The user permissions
functionality of views does not natively provide the granularity to allow only certain views to be
seen. There is a way to do it, and it is quite simple. We will create a view that shows user data,
and limits access to it to just the administrators.

How to do it...
Carry out the following steps on the Views List page in order to accomplish this recipe:

1.	 Navigate to the Views List (admin/structure/views), click on the +Add new view
link, and enter Users as the View name.

2.	 Check the Description box and enter User info as the description in the text box
that appears.

3.	 Select Users from the Show list and set sorted by to Title.

4.	 Enter General user info for the Page title, admin/reports/general-user-info
as the path, and in the Display format select boxes, select unformatted list, fields,
without links, and without comments respectively, and then click on the Continue
and edit button.

We have created the view framework, and will now configure its settings to select the
required information.

1.	 Check the box for the Create a menu link, select Management from the Menu
select box, enter General user info in the Menu label textbox, and then click on
the Continue and edit button.

2.	 Click on the Add link in the Fields box, check the boxes for User: Active, User:
Created date, User: E-mail, User: Edit link, User: Language, User: Last login, User:
Name, and User: Roles. Then click on the Add and configure button.

3.	 In the User: Active configuration box ensure All displays is selected at the top
besides the For link, check the box for Create a label, and click on the OK button.
Do the same for the User: Created date and User: E-mail fields, In the User: Edit
link box, ensure All displays is selected at the top besides the For link, clear the
Create a label textbox, enter Edit user in the Text to display textbox, and click on
the OK button.

4.	 In the User: Language box ensure All displays is selected at the top, beside For,
clear the Create a label textbox, enter Edit user in the Text to display textbox and
click on the OK button. Do the same for User: Name and User: Roles.

5.	 In the User: Last login box ensure All displays is selected from the select box at the
top beside the For link, and click on the OK button. Do the same for User: Name and
User: Roles.

Chapter 2

39

6.	 Click on the fields reorder icon (up and down arrows), drag Name to the top, E-mail
under Name, Created date directly above Last login, Edit link to the bottom, and
click on the Apply button.

7.	 Click on the + icon in the Sort criteria box, check the box next to User: Name, and
click on the Add button.

8.	 Click on the Not set next to Access: link in the Page settings box, click on the Role
radio button, click on the Administrator radio button, and click on the Update button.

9.	 Click on the Analyze button. The Results box should indicate that there is nothing to
report. Now, click on the OK button.

10.	 Click on the Save button.

11.	 Navigate to the new report either by selecting it from the Admin menu, in which case
it will display as an overlay, or by entering the URL (admin/reports/general-
user-info). Try logging out and accessing it too. The report will look similar to the
following screenshot:

Basic Custom Views

40

How it works...
We started by creating a user view, rather than a content view as we have been doing. We did
not set a filter, because in the case of a user view there are no content types to be concerned
with and we wanted to retrieve all user records. We selected several fields from the user
record and sorted them in a sensible order. We gave the view a path and assigned it to the
Management menu. Finally, we specified that access to the view will be limited only to users
with the administrator role. Three out of all the fields will be links without our having to do
anything special to make them so; these are the Edit link, the User name link (a link to the
user record), and the E-mail address link (a mailto: link).

There's more...
There is another method available for restricting access, and that is to select Permission
instead of Role as the access setting. That choice provides a select box that lists the existing
permissions from which the user can choose the permissions that are needed to access the
view. However, there is no 'Add new permission' choice offered, and hence the usefulness
depends on whether an existing permission already applies. Instead of selecting the
administrator role, we could have selected the Access all Views permission. Usually, this is
restricted to admins, but not necessarily, so the downside of using this would be that if the
permissions were ever given to users other than administrators, then the view would no longer
be restricted to administrators. On the other hand, having selected a role in the view means
that administering the access to the view must be done in the view rather than through the
permission system.

The output leaves much to be desired, aesthetically. In fact, with there being no spacing
between user records, the very utility of the display is lessened. We will be learning about
using a table format in the next chapter. Using that here would be an immediate improvement
on the default output. In Chapter 5, Intermediate Custom Theming Views, we will cover the
Theming a view page recipe, which is yet another way to improve the aesthetics. Here, our
method will be making a couple of quick edits to give the view more utility.

The site theme already has a CSS file, and we could make the changes directly to it, but if we
do that, the next time the theme has an update, our changes will be overwritten, so we will
add a CSS file instead.

I am using the Seven theme that comes with Drupal 7. We will open the file seven.info in
its directory (themes/seven). Make the following changes in the seven.info file.

Below the last line:

stylesheets[screen][] = style.css

Add the following lines of code:

stylesheets[screen][] = overrides.css

Chapter 2

41

Now, open a new file and enter the following into it:

.page-admin-reports-general-user-info .views-row
{
 margin-bottom: 6px;
}
.page-admin-reports-general-user-info .views-row-odd
{
 background-color: #eee;
}

Save the file as overrides.css in the same theme folder. Clear the cache
(admin/config/development/performance) and return to the report.
Now the report is much easier to read, as shown in the following screenshot:

Basic Custom Views

42

Winning that argument
The node ID is a value that is unique to each piece of node content; in combination with
a URL it provides a direct path to a node. But what if we want a query where the selection
criteria changes rather than a link to a specific node? The answer to this is dynamic fiters
(arguments). We will create a view that can interpret links containing a dynamic filter.

Getting ready
This recipe uses a custom content type, Home, the details of which are in Appendix B,
Entity Types and Fields. We will create at least two nodes of this content type, each having
a different zip code.

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Navigate to the Views List (admin/structure/views).

2.	 Click on the +Add new view link.

3.	 Enter Homes links as the View name.

4.	 Check the Description box and enter Homes for sale as the description in the text
box that appears.

5.	 Select Content from the Show list and set sorted by to Title.

6.	 Enter Homes for sale for the Page title, zip/% as the Path, and in the Display format
select boxes, select unformatted list, teasers, without links, and without comments
respectively, and then click on the Continue and edit button.

We will now define the criteria for selecting records, in general.

1.	 Click on the Add link in the Filter Criteria panel, check the boxes next to Node:
Published and Node: Type, then click on the Add and configure filter criteria button.

2.	 Click on the radio button for Yes in the configuration box that opens for Node:
Published and click on the Update button.

3.	 Check the box for Home in the configuration box for Node: Type and click on the
Update button.

4.	 Click on the Add link in the Dynamic filters box, check the box next to the Fields:
field_zip_code (field_zip_code) - value (note that there are two fields with similar
names), and click on the Apply and continue button.

Chapter 2

43

5.	 In the resulting configuration box, in the section titled WHEN THE FILTER IS IN
THE URL OR A DEFAULT IS PROVIDED, check the box for Override title and enter
Homes for sale in the %1 zip code. Click on the Apply button, and then click on the
Save button.

6.	 Navigate to zip/{xxxxx} (replace {xxxxx} with one of the zip codes in your
sample data). A screen similar to the following screenshot will appear:

How it works...
We created a basic content view, but instead of controlling the selection of data with an
exposed filter, through which a user provides the filtering value, we used a dynamic filter,
which allows the URL to provide the filter. The end result is the same in both cases, a URI
value becoming a WHERE clause in the SQL that retrieves the data, but with this method the
selection comes from links without user intervention.

Basic Custom Views

44

There's more...
The decision to use a dynamic filter or an exposed filter, in this case, would be based on the
intention. If it is to allow the user to select a zip code, we would instead have used an exposed
filter. In our case, it is likely that there will be a list of locations serviced by the website, with
each being a clickable link that provides the zip code to the view. Dynamic filters can accept
more than one value, if configured. That way, if a location has more than one zip code, the URI
could be something like homes/12345+12346+12348. This recipe was a simple example of
using a single argument. The argument capabilities provided by views are quite sophisticated,
with the ability to use multiple arguments, default arguments, various argument validation
methods, and so on. Look for arguments to appear in subsequent recipes.

Using Views to create a bulleted list
There are a number of ways in which data can be presented with views. Sometimes the needs
are quite simple, as is the case in this recipe. We will create a view that produces a block with
a basic bulleted list.

The only requirement for this recipe is that there is published content available.

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Click on the +Add new view link.

3.	 Enter Content topics as the View name.

4.	 Check the Description box and enter Bulleted list of topics.

5.	 Select Content from the Show list and set sorted by to be Title.

6.	 Check the box for Create a block.

7.	 Enter For your interest as the Block title, and in the Display format select boxes,
select HTML list, titles, without links, and without comments respectively, and then
click on the Continue and edit button.

We have created the basic framework of our new view, and now need to establish the settings:

1.	 Click on the Add link in the Filters box, check the box next to Node: Published, and
click on the Apply and configure filters button.

2.	 In the subsequent configuration box, click on the radio button for Yes and click on the
Apply button.

3.	 Click on the Add link in the Sort criteria box, scroll down, and check the box next to
Global: Random. Click on the Configure sort criteria button.

Chapter 2

45

4.	 In the Fields box, click on the link for Node: Title, set the field to link to its content,
clear the Label textbox, and click on the Apply button.

5.	 Click None next to Admin: in the Block settings box, enter Contents bullet list as the
description, and click on the Apply button.

6.	 Click on the Analyze button. The results box should indicate that there is nothing to
report. Click on the OK button and then click on the Save button.

7.	 Navigate to the Blocks Admin page (admin/structure/block), scroll down to the
Disabled section, and set Content bullets list to Sidebar first. Now click on the Save
blocks button.

8.	 Navigate to Home to view the block, as shown in the following screenshot:

How it works...
We create a very simple content view block display, which selects all published nodes of
any type. We set the sort criteria to be random, so that any published node might appear on
the first page of the block. We select one field to be shown, the node title, and set it to be
displayed as a link to the node itself. The essential step for this recipe is setting the output
format to that of an HTML unordered list.

There's more...
You might not want the block to contain items already present on the front page, particularly if
the block only appears on the front page. In that case, an additional filter can be set for Node:
Promoted and set to only select records that are not promoted to the front page.

Basic Custom Views

46

Our list appears as a standard bulleted list because that is now the formatting for an unordered
list defined in the active theme. By changing the definition of the (unordered list) and
 (list item) tags in the theme CSS file, the bullets can be changed to another type, to
images, removed altogether, or the items displayed inline rather than on separate lines.

Creating bulleted lists using multiple
content types

There are a number of ways in which data can be presented with views. Sometimes the needs
are quite simple, as is the case in this recipe. We will create a view that produces a block with
a basic bulleted list. However, in this case we do not simply want one long list.
We will create a list grouped under headings.

Getting ready
This recipe only requires that there is published content available of more than one
content type.

How to do it...
Carry out the following steps in order to accomplish this recipe:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Click on the +Add new view link.

3.	 Enter Grouped content topics as the View name.

4.	 Check the Description box and enter Bulleted list of topics.

5.	 Select Content from the Show list.

6.	 Check the box for Create a block.

7.	 Enter For your interest as the Block title, and in the Display format select box, select
HTML list, titles, without links, and without comments respectively, then click on
the Continue and edit button.

We have created the basic framework of our new view, and now need to establish the settings:

1.	 Click on the Add link in the in the Filters box, check the box next to Node: Published,
and click on the Apply and configure filters button.

2.	 In the subsequent configuration box, click on the radio button for Yes and the
Apply button.

3.	 Click on the Add link in the in the Fields box and check the boxes for Node: Type
and Node: Title, then click on the Apply and configure fields button.

Chapter 2

47

4.	 In the configuration box for Node: Title, clear the Label box and make sure it is set to
link to its content, then click Apply.

5.	 In the Node: Type configuration box check the box to Exclude from display and click
on the OK button.

6.	 Click on the Add link in the in the Sort criteria box, scroll down and check
the checkbox next to Node: Type, and click on the Apply and configure sort
criteria button.

7.	 Do the same again but check the box for Global: Random.

8.	 Click on the Unformatted link in the Style settings box, change the formatting to
Table, and click Apply and continue. Set Group by to Type and click OK.

9.	 Click None next to Admin: in the Block settings box, enter Grouped contents bullet
list as the description, and click on the Apply button.

10.	 Click on No next to Use grouping: in the Advanced settings box. Check the Group by
checkbox, and click on the OK button.

11.	 Click on the Save button.

12.	 Navigate to the Blocks Admin page (admin/structure/block), scroll down to the
Disabled section and set Grouped content bullets list to Sidebar first, and then click
on the Save blocks button.

13.	 Navigate to Home to view the block, as shown in the following screenshot:

Basic Custom Views

48

How it works...
In this recipe, we essentially created the same view that we did previously, except for a few
changes. We specified that the primary sort should be the content type. We also added Node:
Type as a field. We set it to be excluded from display, so it would not be listed in the table as
row data, but would still be available to be used as a heading. The most important change
was specifying that the table can be grouped by the content type, which in turn segregated the
output records.

3
Intermediate Custom

Views

In this chapter, we will cover:

ff Selecting node teasers based on types and contents

ff Displaying a table of entity fields

ff Sortable table with a header and footer

ff Using AJAX for page changes

ff Using relationships

ff Grouping in a query

ff Nodes within nodes

ff Producing custom links

ff Proving a negative with a flter and an argument

Introduction
In this chapter, we will continue creating custom views. We will learn how to make views more
dynamic and rich. The views will also be more complex than those which we created in the
previous chapter, making more use of the available Views' functionality.

Intermediate Custom Views

50

Selecting node teasers based on types and
contents

Sometimes, simply filtering by the content type is not sufficient. Filters can be combined to
provide more than one selection criteria. We can select based on metadata, such as content
type, and also on the content itself. In this recipe, we will select entries that are blog posts or
other content having the same topic.

Getting ready
There are a few things we will need to prepare before beginning this view:

ff If it is not already enabled, then enable the core Blog module at admin/modules

ff Edit the Blog content type (created by the blog module)

ff Click on the Manage fields tab

ff In the Add existing field section, create a field Tags as a Term reference using an
Autocomplete widget

ff In the subsequent configuration dialog, simply click on the Save button

ff Add a few blog posts using a small number of tags, and at least one other piece
of non-blog content with that tag term in the content title

For this example, we will be using the taxonomy term "food". Replace "food" in
the instructions with whichever tag you used in creating your content.

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link. Enter Blog posts as View and name, check the box for Description,
enter Subsets of blog posts as View description, and click on the Next button.

2.	 The Show options should be Content, Blog entry, and Newest first. In the Create a
page section, change the Page title to Food blog posts and the Path of blog-posts
to blog-posts/food. In the Display format select boxes, change with links to without
links. Click on the Continue and edit button.

3.	 At this point, we have defined the overall view, and now we can adjust
its settings.

Chapter 3

51

On the view's edit page:

1.	 Under the Page tab, click on the link next to Display name; at the top of the page,
change Page to Food and click on the Update button.

2.	 Click on the add link besides Filters Criteria. Scroll down and check the box next to
NodeContent: Title, and click on Add and configure filter criteria.

3.	 Click on the arrow next to the filters add link and select and/or.

At this point, all three filters are being evaluated as And conditions, which means that
all have to be true for a record to be selected. We want the filters for Content type and
the Content title to be the OR condition, meaning if either of them is true, the record
will be selected. In order to do this, we must reorganize the filters as follows.

4.	 Click on the Add new filter group link, drag the Content: Type and Content: Title
filters down to the new group area, and then change the And setting to its left to Or
and click on the Apply button.

5.	 In the NodeConfigure filter criterion: Content: Title configuration box, change the
Operator select box to Contains. Enter food in the Value textbox, and click on the
Apply button.

6.	 Click on No menu next to Menu in the Page settings box. Click on the radio button
next to Normal menu entry. Enter Food blog in the Title textbox and click on the
Apply button.

7	 Click on the Save button.

8.	 Click on the Analyze button at the top of the page.

9.	 From the Displays list, click on the arrow next to edit name and description. The
results box should indicate that there is nothing to report. Click on the Ok button.

10.	 Navigate to the menu editor (admin/structure/menu) and click on the list links
link for the navigation menu.

11.	 Disable the My blog link (further down the list), drag Food blog to be under Blogs,
and make sure that it has the same indentation as of the My blog entry. Enable
Blogs (the disabled notation next to Blogs will not change until it is saved) and click
on the Save configuration button. That portion of the menu list should now appear
as shown in the following screenshot:

Intermediate Custom Views

52

12.	 Navigate to the front page and click on the Food blog menu link, which will result in a
blog entry, as shown in the following screenshot:

How it works...
By default, a content view will select all available node content with no filtering at all. It will
sort, starting from the most recent.

We changed our view to filter based on the content type Blog, and also to filter on the content
title containing the word 'food'. This filtering would normally result only in Blog content with the
word 'food' in the title being selected. However, we gave the filters an OR relationship to each
other, so the selection became Blog content OR content with 'food' in the title. This results in
the article about fresh food being included because the word 'food' is present in its title, even
though it is not a blog entry.

Chapter 3

53

We assigned a path (mydomain.com/blog/food) to our page display and added it to the
site's navigation menu.

There's more...
The main concept to take away from this view is the use of filters with an OR relationship.
Any can be true, as opposed to in the AND relationship, where all the criteria needs to be true.
We will see the OR filters again later in this book.

Displaying a table of entity fields
It is common for the output of a view to be in the form of a node or a node teaser, whether as
part of a page or in a block. However, this is not the only format in which a view can present
data. Sometimes, a user is able to absorb the data more easily with a more recognizable
format, such as a table, and that is what we will create in this recipe.

Getting ready
ff This recipe uses a custom content type, Ingredient, the details of which are in

Appendix B, Entity Types and Fields

ff Create a few nodes of this content type

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the
+Add new view link. Enter shopping list as the View title, Shopping list as the View
name, check the box for Description, enter A list of bulk ingredients as the View
description, and click on the Next button. The Show options should be Content,
Ingredient, and Title.

2.	 In the Display format, select Table (the adjacent select boxes will disappear) and
click on the Continue and edit button.

At this point, we have defined the overall view, and now we can adjust its settings on
the view edit page, as follows.

3.	 Click on the add link, next to Fields. Check the boxes for Fields: Body, Fields:
Measure, and Fields: Quantity, and then click on the Add and configure button.

4.	 In the Configure field Fields: Body box, change the label from Body to Notes, then
click on the Apply and continue button.

Intermediate Custom Views

54

5.	 In the Configure field Fields: Measure box, change the label to Unit of measure and
click on the Apply and continue button.

6.	 In the Configure field Fields: Quantity box, just click on the Apply button without
making any changes.

7.	 Click on the arrow next to the filters add link and select sort. In the resulting window,
drag the quantity field to be above the measure field, and click on the Apply button.

8.	 Click on the Settings link next to Table in the Format section, select Right for the
Align setting for Quantity, and click on the Apply button.

9.	 Click on the Save button at the top of the page.

10.	 Across from the Displays list, click on the arrow next to edit name and description
and select Analyze.

11.	 The results box should indicate that there is nothing to report. Click on the Ok button.

12.	 Navigate to /shopping-list to see the view:

How it works...
The table format style exposes the view fields in HTML table format. Remember to select the
fields, because the table format option cannot be saved unless at least one field has been
selected for the view.

There's more...
We took the default options for the table style. One tremendous benefit of using this styling
is that when editing the style options for the table, each of the field columns has a checkbox
that, when checked, makes that column sortable by clicking on its title. For example, if you
have a Price field in your data, and you set that checkbox for sortable, the column title
Price will be a clickable link, which when clicked, will sort the data by price. We will do this
in the next recipe.

Chapter 3

55

Sortable table with a header and footer
It might seem like the only text in a view display can be the title, fields, and their headings, if
any, but there is no such limitation. Two forms of text that can be added to views are a header
and footer. We will create a view that uses both.

Getting ready
ff This recipe uses a custom content type, Product, the details of which are in

Appendix B, Entity Types and Fields.

ff Create a few nodes of this content type

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link.

2.	 Enter Product list as the View title name, check the box for Description, enter A list
of products for sale as the View description, and click on the Next button. The Show
options should be Content, Product, and Title.

3.	 In the Display format, select Table (the adjacent select boxes will disappear).

4.	 Click on the Continue and edit button.

At this point, we have defined the overall view and now we can adjust its settings on
the view edit page as follows.

5.	 Click on the add link next to Fields, check the boxes for Fields: Body, Fields: Product
image, and Fields: Product price, and then click the Add and configure button.

6.	 In the Configure field Fields: Body box, select Summary or Trimmed in the
Formatter select box, change 600 to 200 in Trim length, change the label to Product
description, click on the Rewrite Results link, and check the box for Strip HTML
tags. Then click on the Apply and continue button.

7.	 In the Configure field Fields: Product image box, clear the Create a label checkbox,
select thumbnail from the Image style select box, and then click on the Apply and
continue button.

8.	 In the Configure field Fields: Product price box, change the label to Price, then click
on the Apply button.

9.	 Click on the link for Content: Title in the Fields section, check the box for Create a
link, enter Product as the title, and then click on the Apply button.

Intermediate Custom Views

56

10.	 Click on the arrow next to the filters add link and select sort. In the resulting window,
drag the product image field to be above the title field, and click on the Apply button.

So far, we have made general adjustments to the settings. Now we will do the things
that make this recipe different from the previous one:

11.	 Click on the Settings link next to Table in the Format section, check the Sortable box
for Product and for Price, click on the radio button to make Product the default sort
item, select Right for the Align setting for Price, and click on the Apply button.

12.	 Click on the add link for Header, check the box for Global: Text area, then click on
the Add and configure button.

13.	 Enter Below is a list of all products currently for sale. Click on the
column heading for Product or Price to sort the list based on that field. Click
the column heading once will sort from lowest to highest. Click a second time
will sort from highest to lowest. as the header text and click on the Apply
button.

14.	 Click on the add link for Footer, check the box for Global: Text area, then click on the
Add and configure button.

15.	 Enter Below is a list of all products currently for sale. Click on the column
heading for Product or Price to sort the list based on that field. Click the column
heading once will sort from lowest to highest. Click a second time will sort from
highest to lowest. as the header text and click on the Apply button.

16.	 Click on the Save button at the top of the page.

17.	 From the Displays list, click on the arrow next to edit name and description and
select Analyze.

18.	 The results box should indicate that there is nothing to report. Click on the OK button.

19.	 Navigate to /product-list to see the view:

Chapter 3

57

How it works...
Items in the table include a product image with a preset of thumbnails. We created a basic
field-driven content view, and used a table for the display style: the size, the product name as
a link to the node content, a trimmed version of the product description stripped of all HTML,
and the product price. We reordered the fields to show the image first. We configured the
table to sort initially by the product name, and made the product name and price columns
selectable as sorting keys by clicking on the applicable column heading. We added a header
with some formatting and a footer.

There's more...
The widget for creating a header or footer allows HTML to be entered, and, depending on the
permissions granted by the admin, to select from a number of input formats. Thus, there are
many possibilities, including having an image present with either. There is an option to show
or suppress headers or footers if there is no content to show. There is also a way to use a view
as the contents of the header or footer, for those cases where the text needs to be dynamic.

Intermediate Custom Views

58

Using AJAX for page changes
In the normal scheme of things, changing pages with a pager results in the entire web page
being reloaded. This can be annoying for the site visitor, particularly if the page loads result in
advertisements being loaded from remote sites, which often causes a delay. Paging through
20 pages of output can be irksome, and more so if the paging is being done in a block
rather than the main content area. Fortunately, there is a way to make the experience more
enjoyable for the user, and that is by using AJAX for the page changes.

Getting ready
This recipe uses any node of any content type that defines field_image and contains an
uploaded image.

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the
+Add new view link. Enter Photo gallery as the View title name, check the box for
Description, enter Gallery of images transitioned via AJAX as the View description,
and click on the Next button.

2.	 The Show options should be Content, All, and Newest first.

3.	 Clear the checkbox for Create a page.

4.	 Check the box for Create a block.

5.	 Change the selection in the Display format of the select box from titles (linked)
to fields.

6.	 Change Items per page to 1.

7.	 Click on the Continue and edit button.

At this point, we have defined the overall view and now we can adjust its settings
on the view edit page, as follows.

8.	 Click on the add button next to Filter Criteria, check the box for Fields: Image
(field_image) - fid, and click on the Add and configure filter criteria button.

9.	 In the Configure filter criterion box, change Operator to Is not empty (NOT NULL)
and click on the Apply button.

10.	 Click on the add link next to Fields, check the boxes for Fields: Image, and click
on the Add and configure button.

11.	 In the configuration box, select the Image style of thumbnail, clear the Create
a label checkbox, and click on the Apply button.

Chapter 3

59

12.	 Click on the Update button.

13.	 If the advanced configuration items are hidden, click on the Advanced link to reveal
them. Click on No next to Use AJAX, Yes in the configuration box, then click on the
Apply button.

14.	 Click on None next to Block name: in the Block settings box. Enter AJAX gallery as
the Block admin description, and click on the Apply button.

15.	 Click on the Save button.

16.	 Navigate to admin/structure/block, scroll down to the AJAX gallery listing,
select a region for it to appear in (I used Sidebar first, but regions will vary from
theme to theme), and click on the Save blocks button. Navigate to the home page to
see the view. Using the pager to change the page will result in an AJAX page change,
as shown in the following screenshot:

How it works...
We created a content view with a block display that selects any published node in which there
is an uploaded image. We did this by specifying that the ID of field_image cannot be null. The
field name could be different for you, based on the content type(s) you decide to use. We set
the pager to allow one row per page, which means one image per page, as the image is the
only field we will display. The key in this recipe is specifying the use of AJAX, which then uses
that service to transit the images without reloading the page with each change.

Understanding relationships
A typical view will select information for each row from one data source, such as a node that
meets the criteria of whatever filtering is in place. How do we handle a situation where the
data for each row is not all in one place, where some of the data needs to come from another
node? Enter the relationship, the widget in views that allows us to relate one data source to
another. We will create a view that lists college courses from one content type, and draws the
department name from another.

Intermediate Custom Views

60

Getting ready
ff This recipe uses two custom content types: Course and Department, the details

of which are in Appendix B, Entity Types and Fields.

ff Create a few nodes of each content type

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click the +Add
new view link, enter Course list as the View name, check the box for Description,
enter A list of courses as the View description, and click the Next button. The Show
options should be Content, Course, and Title.

2.	 In the Page title box, enter Course list in the Display format and select Table (the
adjacent select boxes will disappear). Click on the Continue and edit button.

At this point, we have defined the overall view, and now we can adjust its settings on
the view's edit page.

3.	 Click the Content: Title link in the Fields section, change the Label from Title to
Course, then click the Update button.

4.	 Click on the add link next to Fields, check the boxes for Fields: Course credits and
Fields: Course number, and click on the Add and configure fields button.

5.	 In the Configure field Fields: Course credits overlay, click on the Apply and
continue button.

6.	 In the Configure field Fields: Course number overlay, click the Apply button.

Now we will create the relationship that links the selected Course node to a
Department node.

7.	 Click the Advanced link to reveal the advanced settings.

8.	 Click the add link beside Relationships, check the box for Fields: Department
(field_department_ref) – nid, and click the Add and configure relationships button.
Then click the Apply button.

9.	 Click the add link next to Fields, check the box for Content: Title, and click the Add
and configure fields button.

10.	 In the Configure field Content: Title overlay change the label from Title to
Department, click the More link, change the Relationship setting to field_
department_ref, and click the Apply button.

11.	 Click the Settings link in the Format section and click the radio button for Default
sort for Course. Then, click the Apply button.

Chapter 3

61

12.	 Click the None link for Path in the Page Settings section, change the path to
course-list, and click the Update button.

13.	 Click the Save button at the top of the page.

14.	 Navigate to /course-list to see the view:

How it works...
We created a node view that displays the fields in a specific content type, Course. We selected
the table style to display the data. We wanted to display the department name along with
the course, but the department name is contained in another content type Department
rather than Course. The Course content type contains the field Department that holds a node
reference, a pointer to the applicable Department node.

Therefore, we needed a way to access the content of the Department node that is referred to
from the Course node, and we did that by establishing a relationship between the two. Then,
when we chose the Content: Title field for the second time, we specified the field it uses in
the relationship, giving it the Department title rather than the Course title.

Intermediate Custom Views

62

There's more...
A relationship, in SQL parlance, is a join. Thus, when we establish a relationship between
Course and Department using the department node reference (its nid) in the course node,
the resulting SQL fragment would be as follows:

LEFT JOIN department ON department.nid = course.department_ref

In addition, the field that we display will be selected as department.title instead of course.
title, because we identify it as using the department relationship. What this means is that we
are not limited to one relationship, but can, if we need, have several.

Why use another content type?
Why do that instead of simply embedding the department name in the course
record? Because if we did that, and the name of a department changes, we
would need to change it in each course record for that department. So, why
not define a select field in the course record, and enter the department names
as the allowed values from which to choose? In this way, if the name of the
department changes, it only has to be changed once, in the select's available
values. This is because the field holds the select value index, which would
remain the same. That would be acceptable, but our department content
type contains the department phone number, Chairman's name, and degree
programs, and not just the department name—information useful for other
views—so all of that information would need to be duplicated as well.

Grouping in a query
If you are familiar with spreadsheets or reports, then you must be familiar with the concept
of grouping and segregating data items by a higher-level value, such as students in a class.
We will create a view that lists departments and the college courses within them.

Getting ready
ff This recipe uses two custom content types: Course and Department, the details

of which are in Appendix B, Entity types and Fields.

ff Create a few nodes of each content type

Chapter 3

63

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link. Enter department_Enter Department course_list as the View name,
check the box for Description, enter A list of courses as the View description, and
click on the Next button.

2.	 The Show options should be Content, Course, and Title. In the Page title box, enter
Department course list. In the Display format, select Table (the adjacent select
boxes will disappear). Click on the Continue and edit button.

At this point, we have defined the overall view and now we can adjust its settings on
the view edit page, as follows.

3.	 Click on the Content: Title link in the Fields section, change the Label from Title to
Course, and then click on the Update button.

4.	 Click on the add link next to Fields, check the boxes for Fields: Course credits and
Fields: Course number, and then click on the Add and configure fields button.

5.	 In the Configure field Fields: Course credits overlay, click on the Apply and
continue button.

6.	 In the Configure field Fields: Course number overlay, click on the Apply button.

Now we will create the relationship that links the selected Course node to a
Department node as follows.

7.	 Click on the Advanced link to reveal the advanced settings.

8.	 Click on the add link besides Relationships, check the box for Fields: Department
(field_department_ref) – nid, and click on the Add and configure relationships
button. Then click the Apply button.

9.	 Click on the add link next to Fields, check the box for Content: Title, and click the
Add and configure fields button.

10.	 In the Configure field Content: Title overlay, change the label from Title to
Department, check the box to Exclude from display, click on the More link, change
the Relationship setting to field_department_ref, and click the Apply button.

11.	 Click the Settings link in the Format section and click the radio button for Default
sort for the department field. Choose that same field for the Grouping field, and then
click on the Apply button.

12.	 Click on the None link for Path in the Page Settings section, change the path to
department-course-list, and click on the Update button.

Intermediate Custom Views

64

13.	 Click on the Save button at the top of the page.

14.	 Navigate to /department-course-list to see the view:

How it works...
We created a node view that displays the fields in two content types: Course and Department.
We selected the table style to display the data. We wanted to display the department
information along with the course, but the department name is contained in another content
type. The Course content type contains a node reference to the applicable Department node,
but the actual string containing the name of that department is not present in the Course
content, but is the title of the Department node itself.

Chapter 3

65

Therefore, we needed a way to access the content of the Department node that is referred to
from the Course node, and we did that by establishing a relationship between the two. That
would have simply given us a list of courses, but we wanted the list to be courses within each
department, so we elected to group the records by department.

Nodes within nodes
We can think of catalogs, real estate listings and the like, as containers of similar content.
For example, real estate listings may have some introductory text and other information that
appears once within the page, and then a series of like-formatted home listings.

While we can replicate this with a view, the replication is not persistent, in terms of each page
containing the same information reliably, and sometimes we need it to be. It is possible to do
this by using a content type. The content type can contain the unique information, as well as
node references and pointers, which point to the home listing data. This recipe allows us to
create such a pairing.

Getting ready
ff This recipe uses two custom content types: Home and Real Estate flier, the details

of which are in Appendix B, Entity Types and Fields.

ff Create some nodes of each content type

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click the +Add
new view link and click the +Add new view link. Enter Real estate_ flier as the View
title, name, check the box for Description, enter Weekly real estate deals as the
View description, and click on the Next button.

2.	 The Show options should be Content, Real Estate flier, and Newest first.

3.	 Change teasers to fields in Display format, and click on the Continue and
edit button.

At this point, we have defined the overall view and now we can adjust its settings
on the view edit page as follows.

4.	 Click on the add link next to Fields, check the boxes for Fields: Body and Fields:
Property, and click on the Add and configure fields button.

5.	 In the Configure field Fields: Body overlay, clear the Create a label checkbox and
click on the Apply and continue button.

Intermediate Custom Views

66

6.	 In the Fields: Property configuration box, clear the Create a label textbox, select
Rendered node from the Formatter select box, and click on the Apply button.

7.	 Click on the add button in the Header box, check the box for Global: Text area, and
click on the Add and configure button.

8.	 Enter <h1>FIGMENT REALTY</h1> in the textarea, select Full HTML from the Text
format select box, and click on the Apply button.

9.	 Click on the Save button at the top of the page.

10.	 Navigate to /real-estate-flier to see the view:

Chapter 3

67

How it works...
We created a somewhat standard node view, except that the node content type that we
selected, Real Estate flier, contains a field that itself contains multiple node references.
This means that this field in the Real Estate flier contains an array of node IDs, each one
being the ID of a node of the type Home. In this way, we created a flier that contains any
number of real-estate entries, the inclusion of which is based solely on what we specifically
desire to include, rather than selection criteria that can be expressed in a filter setting.

There's more...
We specified that the entire node should be displayed for each home. We could have specified
that a teaser be shown instead. However, if we wanted to print the flier, each home would be
a text excerpt with a "Read more" link, which would have little value in print. We could have
created two displays: one for print and one for online, with the former showing the complete
node and the latter a teaser.

Producing custom links
It is common to see a teaser for a node, a link as the title of the node, or an image link in the
teaser, or a "Read more" link to the full node itself. This can be easily accomplished in a view
by checking the box for Link this field to its node in the settings box for any field. Sometimes,
though, we want to provide a link to a view instead of a node, or to a page callback for a
custom module, or perhaps even to another site altogether. We will create a view that creates
custom links.

Getting ready
This recipe uses the content types listed in Appendix B, Entity Types and Fields.

If you have not already done so, create a node for at least some of the content types

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the
+Add new view link. Enter Custom node_links as the View title, check the box for
Description, enter An index of site content, with each entry being a custom link
as the View description, and click on the Next button.

2.	 The Show options should be Content, Real Estate flier, and Newest first. Change
teasers to fields in Display format. In the Page section, change Display format to
Unformatted list of Titles, and click on the Continue and edit button.

Intermediate Custom Views

68

At this point, we have defined the overall view and now we can adjust its settings on
the view edit page as follows.

3.	 Click on the add button next to Fields, check the boxes for Content: Nid and Content:
Type, and click on the Add and configure fields button.

4.	 In both configuration overlays, clear the Link this field to the original piece of
content checkbox, the Create a label checkbox, check the Exclude from display
checkbox, and click on the Apply and continue button.

5.	 Click on the arrow next to the add button in the Fields section and select Sort, drag
the Title field to the bottom of the list, and click on the Apply button.

6.	 Click on the Content: Title field link, uncheck the Link this field to the original piece
of content checkbox, click on the Rewrite Results link, and check the Rewrite the
output of this field and Output this field as a link boxes.

7.	 In the textarea that appears, enter [title] ([type] node: [nid]).

8.	 In the Link path textbox, enter myview/[nid], and then click on the Apply button.

9.	 Click on the Save button at the top of the page.

10.	 Navigate to custom-node-links to see the view:

How it works...
We created a node view that selects all published nodes. We chose to include the fields
for the nid and the node type, but specified that their value should not be displayed.
The reason for this is that we wanted their values available to be used as replacement
tags elsewhere.

We then reordered the fields, because replacement tags were not available to be used
unless the field that they come from has already been defined. As we wanted both the
node type and nid values available to the node title field, it had to come last.

Chapter 3

69

Finally, we rewrote the output value of the title field to include the node type and nid in the
link text, and changed the link value to point to a view, with the nid as an argument.

Proving a negative with a filter and an
argument

In most of the content sites, the user will view only the published content. However, there is
often unpublished content present; for example, the content that is in process, waiting to be
edited, waiting for its date or season to come around, and so on.

Users with the permission to edit the content often get to it by navigating to that content's
display and clicking on the Edit tab. If the content is unpublished, there is usually no way to
get to it from the frontend; however, you can navigate to it from the admin content list.

It would be nice if users with permissions to create the content could access their own
unpublished content in an easy manner, and they can! We will build a view that provides
the user with a block that lists their unpublished content, and even allows them to filter
dynamically on the content type.

Getting ready
ff This recipe uses nodes of any content type, including those listed in Appendix B,

Entity Types and Fields.

ff Ensure that there are some unpublished nodes present

How to do it...
On the Views List page:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link. Enter Unpublished content as the View name and click on the Next
button. The Show options should be Content, All, and Newest first. Clear the Create
a page checkbox, check the Create a block box, and click on the Continue and
edit button.

At this point, we have defined the overall view and now we can adjust its settings
on the view edit page, as follows.

2.	 Click on the add button next to Fields, check the boxes for Content: Nid and Content:
Type, and click on the Add and configure fields button.

Intermediate Custom Views

70

3.	 In both configuration overlays, clear the Link this field to the original piece of
content checkbox, the Create a label checkbox, check the Exclude from display
checkbox, and click on the Apply and continue button.

4.	 Click on the arrow next to the add button in the Fields section and select Sort, drag
the Title field to the bottom of the list, and click on the Apply button.

5.	 Click on the Content: Title field link, uncheck the Link this field to the original piece
of content checkbox, click on the Rewrite Results link, and check the Rewrite the
output of this field and Output this field as a link boxes.

6.	 In the text area that appears, enter [title] ([type] node: [nid]).

7.	 In the Link path textbox, enter myview/[nid], and then click on the Apply button.

8.	 Click on the Save button at the top of the page.

9.	 Navigate to custom-node-links to see the view.

10.	 Click on None next to Block name, in the Block settings box. Enter Your unpublished
content in the textbox, and click on the Apply button.

11.	 Click on Content: Published in the Filters box. Change Yes to No and click on the
Apply button. Click on the + icon in the Filters box, check the box next to Node:
Type, the box next to User: Current, and click on the Add and configure field
criteria button.

12.	 Check the button Expose this filter, the Is one of radio button, the Select all
checkbox in Content types, the operator box Remember selections and Allow
multiple selections, clear the Force single checkbox, and click on the Apply button.

13.	 Click on the Yes radio button for Is the logged in user? and click on the
Update button.

14.	 Click on the + icon in the Fields box, check the box next to Node: Edit link, and click
on the Apply and configure fields button.

15.	 Check the Edit link settings box, clear the checkbox for creating a label, click on the
Rewrite Results link, check the Rewrite the output of this field box, enter Edit in the
textbox that appears, check the Output this field as a link box, enter [edit_node] in
the textbox that appears, and click on the Apply button.

16.	 Click on the Settings link next to Fields in the Format area, check both the Inline
fields boxes, and click on the Apply button.

17.	 Click on the Save button.

18.	 Navigate to the blocks admin page (admin/structure/block), scroll down to
Your unpublished content in the Disabled section, select a region for the block
(I am using Second sidebar) from the select box, and click on the Save
blocks button.

Chapter 3

71

19.	 Navigate to the front page to view the block:

How it works...
We created a node view by adding a block display to an existing view, and set it to select the
unpublished content. We added the content type as a filter with specific values selected, but
exposed the filter for the user to make a selection. We also specified that the content must
belong to the current user. The default setting for the title is to be a link to its content, and we
added an edit link and specified its title. In this way, the user can select to click on the title
and view the node, or click on the edit link and edit the node.

4
Creating Advanced

Views

In this chapter, we will cover:

ff Creating a view with multiple personalities

ff Marketing bundle

ff Filtering with 'or'

ff Forming a dashboard with Page, Block, and Attachment displays

ff Teaming two content lists

ff Using related content: Adding depth to a term ID

ff Using related content: Adding depth to a term

ff Limiting visibility of content

Introduction
In this chapter, we will explore the capability of views that can provide multiple displays,
sometimes simultaneously. Right out-of-the-box views can create page, block, attachment,
and RSS displays, and with displays being pluggable, contributed modules can add to that list.
This chapter introduces the basics of using multiple displays, with further capabilities using
theming presented in Chapter 5, Intermediate Custom Theming Views. The book, Drupal 6
Attachment Views, by Packt Publishing delves further into this topic.

Creating Advanced Views

74

Creating a view with multiple personalities
It might seem that given the challenge of presenting different content types in different ways,
there are two choices—create a separate view for each or write code in a module or template
file. Depending on the need, the latter might be a reasonable option, but if all that is required
are minor differences in node selection, sort order, or the fields to be presented, there is a
better alternative available.

We are going to create a view, where most of the work is done in an umbrella fashion. That is,
the core of the view will serve as a template. Then, we will create a display containing minor
variances for each content type instead of having to create a view for each type.

Getting ready
We will be using the Blog entry and Home content types. Carry out the following steps in order
to get started:

1.	 Enable the Blog module if you have not done so.
2.	 Refer to Appendix B, Entity Types and Fields, for details on the Home content type.
3.	 Create some entries for each content type.

How to do it...
Carry out the following steps in order to complete the recipe:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link. Enter Chameleon as the View name, check the box for Description,
enter View title and Content type displays as the View description, and click on
the Next button.

2.	 The Show options should be Content, All, and Title.
3.	 In the Create a page section, change the Page title from Chameleon to Blog entries,

and the Path to content/blog-entries.
4.	 In the Display format change Teasers to Titles (linked) (the adjacent select boxes

will disappear).
5.	 Click on the Continue and edit button.

At this point we have defined most of the information for one display, and now we can adjust
its settings on the View Edit page:

1.	 Click on the Page link next to the Display name and change the name to Blogs.
Then click on the Apply button.

2.	 Click on the Add link next to Fields, check the boxes for Content: Post date,
and click on the Add and configure button.

Chapter 4

75

3.	 In the Configure field Content: Post date box, change the label from Post date to
Posted, and then click on the Apply button.

4.	 Click on the Settings link next to Fields in the Format section, check the box for each
field listed beneath the Inline fields, and click on the Apply button.

5.	 Click on the Add link in the Sort Criteria section, check the box for Content:
Post date, and click on the Add and configure sort criteria button. Select Sort
descending and click on the Apply button. Click on the arrow next to Sort Criteria
add link and select Sort in the resulting window. Drag the Content: Title field to be
below Content: Post date and click on the Apply button.

6.	 Click on the Add link in the Filters section. Check the box for Content: Type and click
on the Add and configure filter criteria button.

7.	 Check the box for Content: type and click on the Apply button.

8.	 That completes the Blog display, but this view will have more than one display.
Now we will create the Homes display.

9.	 Click on the Add page button next to the Page button in the Displays section
at the top.

10.	 Click on the Page link next to Display name and change the name to Homes. Then
click on the Apply button.

11.	 Click Blog entries next to Title, change All displays to This page (override), enter
Homes as the title, and click on the Apply button.

12.	 Click blog-entries next to Path: in the Page settings box. Enter content/homes as
the path, and click on the Update button.

13.	 Click on the Content type (=Blog entry) link in the Filters section, change All
displays to This page (override), uncheck the box for Blog entry, check the box for
Home, and click on the Apply button.

14.	 Click on the Content: Post date link in the Fields section, change the select box to
This display (override) and click on the Remove button.

15.	 Click on the add link in the Fields box, check the boxes for Fields: Image and Fields:
Price, and click on the Apply and continue button.

16.	 Change the select box setting to This display (override), clear the Create a label
checkbox, select Content from the Link image to select box, medium from the
Formatter select box, and click on the Apply and continue button.

17.	 Clear the checkbox for Create a label, change the Thousand marker to Comma,
the Scale from 2 to 0, and click on the Apply button.

Creating Advanced Views

76

18.	 Click on the add link in the Sort criteria box, check the box next to the Fields:
Product price, and click on the Apply and configure sort criteria button. Change
the override setting to This display (override) and click on the Apply button.

19.	 Click on the other two sort field links and then their Remove buttons.

20.	 Click on the Save button at the top of the page.

21.	 Navigate to the /content/blog-entries to see the following screenshot:

22.	 Navigate to the /content/homes to see the following screenshot:

Chapter 4

77

How it works...
We created a content view, and then created two page displays within it, one for each of
the blog entry and home content types. Each display has its own filters, sort criteria, field
selection, and title.

There's more...
There is more than one way to accomplish the results we see here. We could have created a
template for each node type, and one view display that selects records based on an argument.
Templates are discussed in the next chapter. The decision should be based on whether
there are likely to be changes to the view later on, and who is going to be maintaining it; if a
developer or themer will be maintaining it, then perhaps a template is the way to go, but if
an editor with little or no programming experience is going to do so, then this method could
be better.

A variation on this would be to create each display as a block instead of a page, and to assign
each to the content area on the front page. If you are doing so, and if you are using a pager
for each, remember that every pager must have its own ID number, so be sure to change the
pager number setting for each.

Marketing bundle
Each view's display type has its own strengths. They can be combined in different ways
to create a set of related displays to fulfill a single purpose. In this recipe, we will create a
marketing bundle. We will use a page display for a sales presence landing page, a block
display for an ad, and an RSS feed with which customers can stay updated about new content.

Getting ready
We will be using the Product content type (refer to Appendix B, Entity Types and Fields,
for details). At least one product node will be needed in order to get started with the recipe.

How to do it...
Carry out the following steps in order to complete this recipe:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link.

Creating Advanced Views

78

2.	 We will first enter some settings to create a page. Enter Marketing bundle as the
View name, check the box for Description, enter Landing page, ad and RSS feed
as the View description. The Show options should be Content, Product, and Title.
In the Page title box enter Greenberg Design Accessories U.S. Brings You the Best
Bargains!. Enter bargains in the Path box. For Display format select Grid, and Fields
(the other two select boxes will disappear). Change the Items per page to 3.

3.	 Next, we will enter the settings to create a block. Check the box for Create a block.
For the block title enter Another Great Greenberg Design Accessories U.S. Product.
Change titles (linked) to fields in Display format and Items per page to 1. Click on
the Continue and edit button.

At this point we have defined the overall view, and now we can adjust its settings on the view
edit page:

1.	 Click on the Settings link next to Grid and change Columns from 4 to 3. Click on the
add link next to Fields, check the boxes for Content: Product image and click on the
Add and configure button. In the Configure field Fields: Product image box, change
the For select box from All displays to This page (override), clear the Create a label
checkbox, select medium from the Image style select box, select Content in the Link
image to select box, then click on the Apply and continue button.

2.	 Click on the link for Content: Title in the Fields section, clear the box for Create a
link, click on the Rewrite Results link to open the dialog, check the box for Rewrite
the output of this field, enter <h2>[title]</h2> in the text box, then click on the
Apply button.

3.	 Click on the add link in the Header box. click on the Global: Text area checkbox,
click on the Add and configure button, change the setting in the For box from All
displays to This page (override), enter <big>The liquidation area of Greenberg
Design Accessories U.S. is where you can find amazing bargains in leftover and
discontinued products.</big> in the large text box, select Full HTML from the Text
format select box, and click on the Apply button.

4.	 Click on the add link in the Footer box, click on the Global: Text area checkbox in the
settings box that opens, click on the Add and configure button, change the setting
in the For box from All displays to This page (override), enter <small>Greenberg
Design Accessories U.S. is a division of Acme Holding Corp</small> in the large
text box, select Full HTML from the Text format select box, and click on the Apply
button.

Chapter 4

79

That takes care of the page display. Next we will make further adjustments to the
block display:

1.	 Click on the Block button in the Displays section. Click on the link for Post date in the
Sort criteria box, change the select box from All displays to This block (override) , and
click on the Remove button.

2.	 Click on the add link in the Sort criteria box, check the box for Global: Random, click
on the Add and configure sort criteria button, change the select box setting from All
displays to This block (override), and click on the Apply button.

3.	 Click on the Content: Title link in the Fields section, change the select box setting to
This block (override), and click on the Remove button.

4.	 Click on the Content: Product image link in the Fields section, change the select box
setting to This block (override), change the Image style to Thumbnail, and click on
the Apply button.

5.	 The final step is to create the RSS feed.

6.	 Click on the +Add button in the Displays section and click on the Feed link. Click
None next to Path: in the Feed settings box, enter greenbergdesignaccessories/
feed as the path, and click on the Apply button.

7.	 Click on the title in the Title box, change the select box setting to This feed (override),
enter The Newest Bargains from Greenberg Design Accessories U.S. in the text box,
and click on the Apply button.

8.	 Click on the Settings link next to RSS Feed in the Format section, select Title only
from the Display type select box, and click on the Apply button.

9.	 Click on the Global: Random link next to Sort criteria, change the select box setting
to This feed (override), and click on the Remove button.

10.	 Click on the add link for Sort Criteria, check the box for Content: Post date, and click
on the Add and configure sort criteria button. Change the select box setting to This
feed (override) and choose Sort descending.

11.	 Click on the Save button.

12.	 Navigate to the Block Admin page (admin/structure/block), find Marketing
bundle ad in the Disabled section, and change the select box setting to Sidebar first.
Then click on the Save blocks button.

Creating Advanced Views

80

13.	 Navigate to the home page to see the block shown in the following screenshot:

14.	 Navigate to the RSS feed (greenbergdesignaccessories/feed), which appears
as shown in the following screenshot:

15.	 Navigate to the landing page (bargains), which appears as in the
following screenshot:

Chapter 4

81

How it works...
We created a node view that selects nodes of the Product content type. We then built three
displays, a block that can be used as an advertisement, a RSS feed that can be used to allows
users to subscribe and keep current with the site, and a landing page that can be used, for
example, when the user clicks on an ad on another site. The main idea behind this view is that
each display can have its own settings with regards to fields, sort criteria, and even the filter
settings, though we used the same filter throughout this example.

Filtering with 'or'
Filtering is the way to control record selection in a view, whether through contextual filters or
regular filters (there is no contrasting term for the latter, but when they are exposed for the
user to choose a filtering value, they, too, become contextual).

It is possible, and typical, to use two or more filters in conjunction, such as requiring that content
be a specific type and be published, or more precisely, that content be of a certain type and be
published. When the two filters are put into effect, if either requirement is not met, the content
will not be selected. Hence, if the content is published but is the wrong type, or is the correct
type but is unpublished, it will not be selected. This is fine, if it is the requirement.

Let us use an analogy: buying shoes. Filtering such as this is the equivalent of asking the
sales clerk for shoes that are size 8 and casual and leather. You want all three requirements
to be met. However, you could also ask for shoes that are size 8 and are either casual or
leather. In other words, they must be your size, but aside from that, they will be acceptable if
they are casual, leather, or both.

In the previous example, the requirements can be written as:

size = 8 and (style = casual or material = leather)

In prior versions of views, having 'or' filters was problematic, at best, but Views 3 makes it
easy, and in this recipe we will create a view that uses them.

Creating Advanced Views

82

Getting ready
The following will be needed for this recipe:

1.	 One node of the Ingredient content type (refer to Appendix B, Entity Types and Fields,
for details).

2.	 One node of a different content type, with the word 'food' somewhere in the content
or title.

How to do it...
On the View List page carry out the following steps in order to complete this recipe:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link. Enter Food topics as the View name, check the box for Description,
enter Content that is a recipe or has 'food' in the title as the View description, and
click on the Next button. The Show options should be Content, All, and Title.

2.	 In the Create a page section, on the Display format line, change the without
comments to with comments. Check the box for Include an RSS feed, and
change the path from food-topics.xml to food-topics/feed. Click on the
Continue and edit button.

At this point we have defined most of the information for one display, and now we can adjust
its settings on the View Edit page:

1.	 Click on the add link in the Filters section, check the box for Content: Title,
Content: Type, Fields: Body (body) - value, and click on the Add and configure
filter criteria button.

2.	 In the Content: Title configuration dialog, change the Operator selection
to Contains, enter Food in the Value textbox, and click on the Apply and
continue button.

3.	 In the Content: Type configuration dialog check the box for the Ingredient content
type, then click on the Apply and continue button.

4.	 In the Field: Body configuration dialog, change the Operator selection to Contains,
enter Food in the Value textbox, and click on the Apply button.

Chapter 4

83

5.	 Click on the down arrow next to the add link in the Filter Criteria section, and click on
the and/or link.

6.	 Click on the + Create new filter group link and drag the criteria aside from the one
for Content: Published to the next group at the bottom. Change the lower operator to
Or, and then click on the Apply button.

7.	 Click on the Save button at the top of the page.

8.	 Now, navigate to the food-topics page to see the following screenshot:

Creating Advanced Views

84

9.	 Navigate to the food-topics/feed to see the following screenshot:

How it works...
We accomplished two things in this recipe, the creation of a compound filter and a feed.
We changed the path of the feed only for personal preference; the original path would
have been fine.

We created the compound filter to accommodate all/any logic, where connecting rules with
'or' is the same as stating that 'any' of them can be true, while connecting them with 'and' is
the same as stating that 'all' of them must be true. We put the filters in two groups, with 'and'
between them, resulting in the following rule:

Chapter 4

85

ff Published AND (Ingredient node OR title contains 'food' OR body contains 'food')

Another way of reading this is:

ff Content must be published, and one or more of the conditions (type=ingredient,
body contains 'food', title contains 'food') must be true.

Forming a dashboard with Page, Block, and
Attachment displays

You have probably used desktop applications where the screen is divided into two or more
areas, each of them working in conjunction with the other. It is possible to achieve the
same functionality on your web page. We will use a page display and attachment display,
arguments, and relationships to create sections that work together to give more form and
function to a view.

Getting ready
We will be using the Employee and Extension content types (refer to Appendix B, Entity Types
and Fields, for details). Create at least two of each to get started with the recipe.

How to do it...
On the View List page, carry out the following steps in order to complete this recipe:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link.

2.	 We will first enter the settings to create a page:

Enter Employee extensions as the View name, check the box for Description, enter
Employee information and extensions as the View description. Change the entry in
the Path box to employees. For Display format change Teasers to Fields (the other
two select boxes will disappear). Click on the Continue and edit button.

At this point let's complete the page, which will display the employee information:

1.	 Click on the add link next to Fields, check the boxes for Content: Department (there
are two; select the one that appears in employee content type), Content: Employee
ID, and Content: Position, and click on the Add and configure button.

2.	 For each of the configured boxes that follow for each of the three fields, simply click
on the Apply and continue button for the first two, and the Apply button for the third.

Creating Advanced Views

86

3.	 Click on the link for Content: Title in the Fields section, clear the box for Link this
field to the original piece of content, click on the Rewrite Results link to open the
dialog, check the box for Rewrite the output of this field, enter <h2>[title]</h2> in
the text box, and then click on the Apply button.

4.	 Click on the add link for Filter Criteria, check the box for Content: Type, click on the
Add and configure filter criteria button, check the box for Employee, and click on
the Apply button.

5.	 Click on the Advanced link to reveal the advanced criteria.

6.	 Click on the add link for Contextual Filters, check the boxes for Fields: Department
(field_employee_dept) – value and Fields: Employee ID (field_employee_id) –
value, and click on the Add and configure contextual filters button.

7.	 Select This page at the top of the first configuration box that appears, and click on
the Apply and continue button.

8.	 On the second configuration box that appears click on the Apply button.

9.	 Click on the add link for Relationships, check the box for Fields: Extension
(field_extension) – nid, and click on the Add and configure relationships button.

10.	 In the subsequent configuration screen change the selection in the For select box to
This page (override), then click on the Apply button.

11.	 Click on the add link for Fields again, check the box for Content: Extension, and click
on the Apply and configure button.

12.	 Change the Relationship selection from Do not use a relationship to
field_extension, change the Formatter setting to Title (no link) and click
on the Apply button.

That takes care of the page display. Next, we will create the block display that will display
the departments:

1.	 Check the button to +Add a display and select Block. Click None next to Title,
ensure that This block (override) is selected in the For select box, and click on
the Apply button.

2.	 Click on the add link next to Fields, check the boxes for Content: Department and
Content: Title, and click on the Add and configure fields button. In the configuration
box for Content: Department, uncheck the Create a label checkbox, check the box
for Exclude from display, and click on the Apply and continue button.

Chapter 4

87

3.	 In the configuration box that follows, select This block from the select box at the
top, uncheck both the Create a label and the Link this field to the original piece of
content checkboxes, click on the Rewrite Results link, and check the box for Output
this field as a link. Enter employee/[field_employee_dept] as the path, and click on
the Apply button.

4.	 Click on the add link for Filter Criteria, check the box for Content: Type, click on the
Add and configure filter criteria button, check the box for Department, and click on
the Apply button.

The final step is to create the Attachment display that lists employees:

1.	 Click on the +Add button in the Displays section and click on the Attachment link.

2.	 Click on the add link next to Fields, check the boxes for Content: Employee ID and
Content: Title, and click on the Add and configure fields button.

3.	 Click on the Not defined link for Attach to in the Attachment Settings box, select
Page, and click on the Apply button.

4.	 In the configuration box for Content: Employee ID, uncheck the Create a label
checkbox, check the box for Exclude from display, and click on the Apply and
continue button.

5.	 In the configuration box that follows, select This block from the select box at the top,
and uncheck both the Create a label and the Link this field to the original piece of
content checkboxes.

6.	 Click on the Rewrite Results link and check the box for Output this field as a link.
Enter employee/all/[field_employee_id] and click on the Apply button.

7.	 Click on the add link for Sort Criteria, check the box for Content: Title, and click on
the Add and configure sort criteria button.

8.	 Change the select box setting to This attachment (override) and click on the
Apply button.

9.	 Click on the Save button.

10.	 Navigate to the Block Admin page (Admin | Structure | Block), find employee_
extensions in the Disabled section, and change the select box setting to Sidebar
first. Then click on the Save blocks button.

11.	 Click on the Configure link, and in the section for Show block on specific pages,
select Only the listed pages and enter employee* in the textbox.

Creating Advanced Views

88

12.	 Navigate to /employee to see the components that we have created (this is the
page which displays employee information). It will look like the following screenshot:

The block, which displays a list of departments, looks similar to the following screenshot:

The attachment, which displays a list of employees, looks similar to the following screenshot:

How it works...
You could very well be wondering about the application of this recipe until you give it a
closer look. If you hover the mouse over a link in the Department list, and then a link in the
Employee list, you will see that both link to the employee path, with a slight difference,
which is that the department link will be of the form of employee/department, while the
employee link will be of the form employee/all/employee.

Chapter 4

89

There are a few things going on in this view that are worth mentioning. The page display
determines which employee's information should be included in the list based on the
arguments passed in the URL. The first argument specifies which department the employee(s)
should be part of, or all, which means all values will be used. The second argument
specifies the employee ID, or, if it is not present, all employees. We set the configuration of
the department title and employee name to be a link back to the employee page with the
appropriate arguments, so that when a department name or employee name are clicked, the
page display of our view is invoked with the applicable arguments.

The other item worth noting is the employee extension. It is actually a separate content type,
and so a separate table in the database. So, we retrieved the extension by establishing a
relationship between the employee table and the extension table, which in turn creates a
table join in the query.

There's more...
There are two further things that should be done to this view. It certainly needs formatting,
and in this case view templates would probably be the ideal choice. Also, it is likely that
this view should be restricted, so it should be determined which role(s) will be enabled to
view its content.

Teaming two content lists
Sometimes you might want to split one set of records into two different displays; for example,
a list of contacts where business contacts appear in one display and personal contacts in
another. There is a trick for doing that and not having the same content in both. In this
recipe, we will create a top ten list, but have the top three in one display and the remaining
in another display.

Getting ready
We will be using the Country content type (refer to Appendix B, Entity Types and Fields, for
details) in order to get started with the recipe.

How to do it...
On the View List page, carry out the following steps in order to complete this recipe:

1.	 Navigate to the Views List page (admin/structure/views) and click on the +Add
new view link.

Creating Advanced Views

90

We will first enter the settings to create a page:

1.	 Enter Top 10 as the View name, check the box for Description, and enter Top 10
Country list as the View description. Change the Show type to Country. Change the
entry in the Path box to top-10. For Display format change Teasers to Titles (the
other two select boxes will disappear). Click on the Continue and edit button.

2.	 Click on the link for Content: Title, select This page (override), click on the link for
Style Settings, check the box for Wrap field in HTML, change the HTML element to
H2, and click on the Apply button.

3.	 Click on the link for Post date under Sort criteria and then the Remove button.

4.	 Click on the add link in Sort criteria, check the box for Fields: Area (field_country_
area), and click on the Add and configure sort criteria button.

5.	 Select Sort descending and click on the Apply button. Click on the link for Use
pager, change the setting to Display a specified number of records, and click
on the Apply button.

6.	 Change the number of Records to display to 3 and click on the Apply button.

That takes care of the page display. Next, we will create the attachment display:

1.	 Check the button to +Add a display and select Attachment. Click on the 10 items
link for Items to display in the Pager section. Change Items to display to 7 and
Offset to 3, then click on the Apply button. Click on the Not defined link for Attach
to in the Attachment settings box, check the box for Page, then click on the link for
Before, and change it to After. Then click on the Apply button.

2.	 Click on the Save button.

3.	 Navigate to /top-10 and you will see the following screen:

Chapter 4

91

How it works...
The key to this recipe is the ability to specify an offset. For example, suppose you have
content that is artwork and you have a place on the home page where you always display
the most recent piece. On another page, you want to display other pieces, but not the one
that is showcased on the home page. In that case, the selection would be given an offset
of 1, presuming that the sort order is the same for both selections, otherwise an offset
is meaningless.

The reason we made the appearance of the text for the top three different than that of
the others was merely to provide a visual cue. Normally, CSS would be used to provide a
demarcation between the two displays, and is beyond the scope of this recipe. If there were
no differences in the appearance of the text, then the two lists—top three items and the
remaining seven items—would have looked like just one list of 10 entries.

Using related content: Adding depth to a
term ID

Give your visitors a useful site and they will come back. One thing that makes a content
site more useful is providing the user with bonus content that is related to the content
being viewed. In this recipe, we will create a display that shows a piece of content, and
an attachment display that presents a list of links for related content.

Getting ready
We will be using the article content type in order to get started with the recipe. You need to do
the following in order to get started with the recipe:

1.	 Create the taxonomy terms for this recipe, as shown in Appendix B, Entity Types
and Fields.

2.	 Create a small article for each of the terms.

How to do it...
On the Views List page carry out the following steps in order to complete this recipe:

1.	 Navigate to the views list (Admin | Structure | Views) and click on the +Add new
view link. Enter Related content as the View name, check the box for Description,
enter Use term ID and depth to provide related content as the View description.
Change the Show type to Article, Teasers to Full node, Items per page to 1, and
click on the Continue and edit button.

Creating Advanced Views

92

On the View Edit page:

1.	 Click on Related content next to Title, clear the textbox and click on the
Apply button.

2.	 Click on the link for Post date under Sort criteria and then click on the
Remove button.

3.	 Click on the Advanced link to reveal the advanced settings.

4.	 Click on the add button for Contextual filters, check the box for Content: Nid,
and click on the Add and configure contextual filters button.

5.	 Select This page (override) from the select box and click on the Apply button.

That takes care of the page display. Next, we will create the attachment display:

1.	 Check the button to +Add a display and select Attachment.
2.	 Click on the link for Post date under Sort criteria and then the Remove button.
3.	 Click on the Advanced link to reveal the advanced settings.
4.	 Click on the add button for Contextual filters, check the boxes for Global: Null and

Taxonomy: Term ID (with depth), then click on the Add and configure contextual
filters button.

5.	 In the configure box for Global: Null, select This attachment (override) from the
select box, and click on the Apply button.

6.	 In the configure box for Taxonomy: Term ID (with depth) select a depth of 2 and click
on the Apply button.

7.	 Click on the Not defined link for Attach to in the Attachment settings box, check the
box for Page, then click on the link for Before and change it to After and click on the
Apply button.

8.	 Click Before next to Attachment position in Attachment settings, select After
instead of Before, and click on the Apply button.

9.	 The URL for this view will contain two arguments, the nid of the content to display
and the tid (term ID) of the term to relate content to. In my case, the URL is
related-content/92/24; yours can be different.

What NID and TID do I use?
The easiest way to determine a node's ID (nid) or term's ID (tid) is to go to
the admin screen that lists nodes (admin/content) or terms (admin/
structure/taxonomy/your_vocabulary_name), find the node or
term, hover your mouse over its edit link, and look at the URL that appears
at the bottom left of the screen for the number.

Chapter 4

93

How it works...
The secrets of this recipe are inherited arguments (contextual filters) and taxonomy
term depth.

The contextual filter defined in the page display is then passed to the attachment display.
However, we do not want to use that argument, because we will not be retrieving content
based on the nid (node ID) in the attachment, but we will be retrieving content based on the
tid (term ID). So, we have to do something with that argument so that it will not be used. It's
going to be in the URL, but we can 'tell' the attachment that the argument is something other
than it really is, and what we have told the attachment is that the argument is null, and thus it
is ignored.

The second argument is the term ID. You might notice that we have not defined a second
argument on the page display. Drupal allows you to put as much extra information in the URL
as you would like, and any arguments that are not defined are merely passed on and ignored.
So, the second argument is passed to the attachment without the page caring about it.

If we were to merely retrieve content that had the same tid as the node we requested, we
would only have that node to show (or others with the same tag, if any). However, our contextual
filter allowed us to define depth. We could have defined it as 0, meaning leave the choice as
the tid that was supplied as an argument. We could also have defined it as negative, so that
-1 would include the term's parent, -2 its grandparent, and so on. We defined it as 2, so that
children and grandchildren terms would be included.

Using related content: Adding depth to a
term

This recipe is almost identical to the previous one, with an interesting twist. We are going
to force views to allow us to specify the desired content by providing a taxonomy term, as
opposed to the term's ID. If you have done the preceding recipe then you can jump right into
the How to do it... section.

Creating Advanced Views

94

Getting ready
We will be using the Article content type. Carry out the following steps in order to get started:

1.	 Create the taxonomy terms for this recipe, as shown in Appendix B, Entity Types
and Fields.

2.	 Create a small article for each of the terms.

How to do it...
On the View List page carry out the following steps in order to complete this recipe:

1.	 Navigate to the views list (admin/structure/views) and click on the +Add new
view link. Enter Related content 2 as the View name, check the box for Description,
and enter Use term ID and depth to provide related content as the View
description. Change the Show type to Article, Teasers to Full node, Items per page
to 1, and click on the Continue and edit button.

On the view edit page:

1.	 Click Related content next to Title, clear the text box and click on the Apply button.

2.	 Click on the link for Post date under Sort criteria and then click on the
Remove button.

3.	 Click on the Advanced link to reveal the advanced settings.

4.	 Click on the add button for Contextual filters, check the box for Content: Nid, and
click on the Add and configure contextual filters button.

5.	 Select This page (override) from the select box and click on the Apply button.

That takes care of the Page display. Next we will create the Attachment display:

1.	 Check the button to +Add a display and select Attachment.

2.	 Click on the link for Post date under Sort criteria and then the Remove button.

3.	 Click on the Advanced link to reveal the advanced settings.

4.	 Click on the add button for Contextual filters, check the boxes for Global: Null,
Taxonomy: Term ID (with depth), and Taxonomy: Term ID depth modifier, then
click on the Add and configure contextual filters button.

5.	 In the configure box for Global: Null, select This attachment (override) from the
select box, and click on the Apply button.

6.	 In the configure box for Taxonomy: Term ID (with depth), select a depth of 0 and click
on the Apply button.

7.	 In the configure box for Taxonomy: Term Depth click on the Apply button.

Chapter 4

95

8.	 Click on the Not defined link for Attach to in the Attachment settings box, check the
box for Page, then click on the link for Before and change it to After and click on the
Apply button.

9.	 Click Before next to Attachment position in attachment settings, select After instead
of Before, and click on the Apply button.

10.	 The URL for this view will contain three arguments, the nid of the content to display,
the tid of the term to relate content to, and the amount of generations preceding
the term (negative) or following the term (positive) to include. In my case the URL is
related-content2/98/21/-1; yours is likely to be different. The following screen
will appear:

How it works...
The secrets of this recipe are inherited arguments (contextual filters) and taxonomy term
depth modifier.

The contextual filter defined in the page display is then passed to the attachment display.
However, we do not want to use that argument, because we will not be retrieving content
based on the nid in the attachment, we will be retrieving content based on tid. Hence, we
have to do something with that argument so that it will not be used. It's going to be in the
URL, but we can tell the attachment that it is something other than it is, and what we told the
attachment is that the argument is null, and thus it is ignored.

The second argument is the term ID. You might notice that we have not defined a second
argument on the page display. Drupal allows you to put as much extra information in the URL
as you would like, and any arguments that are not defined are merely passed on and ignored.
So, the second argument is passed to the attachment without the page caring about it.

The third argument is a modifier, to change the depth setting for selecting taxonomy terms.
We could have defined it as 0, meaning leave the choice as whichever tid we supplied as an
argument. However, we defined it as -1, so that the term's parent is included.

Creating Advanced Views

96

Limiting visibility of content
In this recipe, we're going to create a block that lists the titles of content created by the
current user, and a main display to allow viewing selected content. An example of the usage
for this is similar to a site where each user has their own page, like on Facebook.

How to do it...
On the View List page carry out the following steps in order to complete this recipe:

1.	 Navigate to the views list (admin/structure/views) and click on the +Add new
view link. Enter Limited visibility as the View name, check the box for Description,
and enter Present the user's content as the View description. The Show options
should be Content and Article. For Display format, select Unformatted list and full
posts, without links, and without comments.

2.	 Next, we will enter the settings to create a block. Check the box for Create a block,
and click on the Continue and edit button.

At this point we have defined the overall view, and now we can adjust its settings on the View
Edit page:

1.	 Click on the Advanced link to reveal the advanced settings.

2.	 Click on the add button for Contextual filters, check the box for Content: Nid, and
then click on the Add and configure contextual filters button.

3.	 In the configure box, select This block (override) from the select box and click on the
Apply button.

That takes care of the page display. Next, we will make further adjustments to the
Block display:

1.	 Click on the Block button in the Displays section. Click on the add link for Fields,
check the box for Content: Nid, and click on the Apply and configure fields button.

2.	 In the Content: Nid configuration box, clear the checkbox for the label, check the box
to exclude it from display, and click on the Apply button.

3.	 Click on the arrow next to the Add button in Fields and select Sort. Then rearrange
the fields to put Nid first.

4.	 Click on the link for Content: Title, clear the Label textbox and the box for Output this
field as a link, click on the link to Rewrite output, check the box of Output the field
as a link, enter limited-visibility/[nid] in the Link path textbox, and click
on the Update button.

Chapter 4

97

5.	 Click on the add link for Filters, check the box for User: Current, and click Add and
configure filters. Select Is the current user and click Apply.

6.	 Save the view.

7.	 Navigate to the Block Admin page (admin/structure/block), find
limited_visibility: Block in the Disabled section, and change the select box
setting to Sidebar first. Then click on the Save blocks button.

8.	 Navigate to the home page to see the block shown in the following screenshot.
Clicking any link will display that content:

How it works...
We created a block display that creates a list of titles of the content created by the current
user and displays those titles as links to a path with an argument of the ID of that content.

Next, we created a page display that will present a piece of content based on the ID that is
passed in the URL, the ID that we appended the link within the block display.

We could have simply chosen to have each title displayed as a link to its node instead of
outputting it as a link to limited-visibility/id, but then clicking a title would bring
up the node page for that node instead of using the display we created. In this example,
it wouldn't make much of a difference, but it would if we choose to format the display in a
certain way or change the output in some other way to make it different from the node page.

5
Intermediate Custom

Theming Views

In this chapter, we will cover:

ff Changing the page template

ff Creating and naming a view template

ff Theming a field

ff Theming a grid

ff Theming a table

ff Theming a row

ff Theming rows

ff Theming an RSS feed

ff Theming a block

ff Theming a view page

ff Theming multiple displays

ff Image styles

Introduction
For anything one needs accomplished in Drupal, there is usually more than one way to do so,
and asking a room full of Drupalers to identify the best way will result in many opinions. This is
also true with templates.

Intermediate Custom Theming Views

100

One can accomplish things in the overall template processing file, template.php, in more
specific template files, or even in pre-processing files. In some cases, formatting can be
accomplished through CSS, whether inline or as part of a CSS file. In this chapter, we will
learn to use templates to better format our views.

If you are using a theme that will be receiving updates from a theme
developer or Drupal, you will want to create a sub-theme rather than
modify the files of the theme itself; otherwise, your changes will likely be
overwritten during any future update. See the article Sub-theme structure
and inheritance at http://drupal.org/node/225125.
The code examples in this chapter use images available for download at
http://packtpub.com or at http://theaccidentalcoder.
com/content/d7-views-recipes/resources.

Changing the page template
Templates are available for various formatting needs such as nodes and views. However, the
template at the top of the heap, is the page template. In this recipe, we will change the page
template in a small way to illustrate how it is done, by moving the footer to the top of the page.

Getting ready
The template file we will be changing is the page.tpl.php in the recipes theme, a sub-
theme in sites/all/themes/recipes.

How to do it...
In a text editor of your choice, do the following:

1.	 Edit the page template file page.tpl.php (sites/all/themes/recipes/
templates).

2.	 Around line 59, find the following line of code:
<?php print render($page['footer']); ?>

Downloading the example code
You can download the example code fles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the fles e-mailed directly to you.

We are going to cut this line and paste it just before the following code at about

Chapter 5

101

line 56:
<?php print render($page['content']); ?>

3.	 Save the file and navigate to the front page to find the Powered by Drupal line from
the footer, which is now at the top of the content section. If this is the first time
you are using this theme, you will need to clear the caches (admin/settings/
performance), enable the theme, and make it the default theme (admin/
appearance).

How it works...
A template is simply a file that results in HTML, but uses variables to allow dynamic elements
on the page. The page template in Drupal has sections for the regions that are defined in the
theme, such as the header, content area, footer, and sidebars. We simply moved the section
for the footer from below the main content area to above it.

Creating and naming a view template
The view template is used to make changes to the overall layout of a view, as opposed to a
display, table, grid, row, or field within the view. We are going to create a view template from
the default template, give a view a title and subtitle, and change the color of its background.

Getting ready
The view that we will be using is course_list from Chapter 3, Intermediate Custom Views.

How to do it...
Carry out the following steps in order to complete this recipe:

1.	 Edit the course_list view (admin/structure/views/edit/course_list).

2.	 Click on the Information link next to Theme: in the Other pane.

3.	 In the Theming information overlay, ensure that the theme you are using is selected
in the select box and then copy the most specific (right-most) filename from the
Display output line, which, in our case, is views-view--course-list--page-1.
tpl.php.

4.	 Copy the views-view.tpl.php file from the theme directory of the Views module
(sites/all/modules/views/theme) to the directory in your theme that contains
template files, such as page.tpl.php (sites/all/themes/recipes), and
rename it as views-view--course-list--page-1.tpl.php.

Intermediate Custom Theming Views

102

Note that in places the filename has one hyphen and in other places two.
There is a purpose to this and care must be taken to have the correct
amount, when typing the name yourself.

5.	 Edit the new file, views-view--course-list--page-1.tpl.php. Around line
56, look for the following code-line:
<?php if ($rows): ?>

Immediately prior to that line, add the following:
<h2>Courses from the D7 Views Recipes University</h2>
<h3>As of <?php echo format_date(time(),

 'custom', 'd F,Y');?></h3>

So that the lines, after the copy-paste, read as follows:
<h2>Courses from the D7 Views Recipes University</h2>
<h3>as of <?php echo format_date(time(),
 'custom', 'd F,Y'));?></h3>
<?php if ($rows): ?>

6.	 Save the file and clear the caches. As this is a new template file (admin/config/
development/performance), navigate to the view (courses) to see the
resulting headings:

How it works...
We selected the most specific file available for a template. Take a look at the other filenames
in the Display outline list. If we had to choose one, we would be dropping the view name,
which would then have the file applied to all views. Dropping the display would have it applied
to all current and future displays within our view, or both, which would then impact all the
displays of all views.

Chapter 5

103

Having selected the appropriate file, by copying the template model from the files available
and renaming it, we made the changes to it and applied them. We inserted two titles, and in
one, we used a snippet of PHP code to display a formatted date.

There's more...
Inserting HTML and PHP directly into the template file is not always the best approach, but it
is the best one that we can use here, as we are creating recipes that can be quickly executed.
If 'theming' is new to you, one topic to investigate is that of using the template.php file
to create variables that can be referred to from within templates, rather than creating them
inside a template or using long strings of inline code. It is "the Drupal way" and is a good
coding practice to try and keep business logic and presentation logic separated. This means
it is very difficult to debug a page where the code can appear anywhere, including within the
template that describes the appearance of the page.

Theming a field
Sometimes we want a view to present data from more than one type of content, but doing so
doesn't mean that all content types should be presented equally. We could want additional
information in some cases, less in others, or, as is the case in this recipe, the same data
processed differently.

We are going to create a simple view that displays teasers from all published nodes and
create a theme that allows us to create and display the node title links in varying ways,
based on the content type.

Getting ready
This view will need at least one node of the content types Article, Country, Course, Employee,
and Extension (details are given in Appendix B, Entity Types and Fields), and one node from
any of the other content types.

How to do it...
Carry out the following steps in order to create the view:

1.	 Navigate to the Views list (admin/structure/views), click on the +Add new view
link, enter Themed links as the view title and Links themed based on the content
type as the view description, and then click on the Next button.

2.	 In the Display format section, change the Teasers drop-down to Fields, Items per
page to 25, and click on the Continue & edit button.

Intermediate Custom Theming Views

104

3.	 Click on the + icon in the Fields box, check the box next to Content: Nid, Content:
Path, and Content: Type, and then click on the Add and configure button.

4.	 In the configuration box for Node: Nid, clear the Create a label box and click on the
Apply and continue button.

5.	 In the configuration box for Node: Path, clear the Create a label box and click on the
Apply and continue button.

6.	 In the configuration box for Node: Type, clear the Create a label box and click on the
Apply button.

7.	 Click on the Advanced link and then the Information link next to Theme: in the
Other pane.

8.	 Scroll down and copy the rightmost filename from the Row style output line,
views-view-fields--themed-links--page.tpl.php.

9.	 Click on the Save button.

Now, create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-fields.tpl.php and save it into the directory
of the theme you are using (sites/all/themes/your_theme) that contains
template files, naming it views-view-fields--themed-links--page.tpl.php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 22 for the following code line:
<?php foreach ($fields as $id => $field): ?>

4.	 Immediately prior to this line, add the following code:

<?php
 global $base_url;
 $path = $base_url . '/' .
 file_stream_wrapper_get_instance_by_scheme('public')->
 getDirectoryPath() . '/';
 switch ($fields['type']->content) {
 case 'Article':
 $fields['title']->content = "<img src='$path/article.png'
 /> content . "'>" .
 $fields['title']->content . "";
 break;
 case 'Country':

Chapter 5

105

 $fields['title']->content = "<img src='$path/country.png'
 /> " . $fields['title']->content;
 break;
 case 'Course':
 $fields['title']->content .= "
 <a href='http://myschool.edu/courses/?course=" .
 $fields['nid']->content . "'><small>(more info)
 </small>";
 break;
 case 'Extension':
 $fields['title']->content = "<a href='" . $fields['path']
 ->content . "'>" . $fields['title']->content .
 " ";
 break;
 case 'Employee':
 $fields['title']->content = "<a href='" . $fields['path']
 ->content . "'><img src='$path/employee.png' border='0'
 /> " . $fields['title']->content . "";
 break;
 default:
 break;
 }
 unset($fields['path']);
 unset($fields['nid']);
 unset($fields['type']);
?>

What happened to file_directory_path()?
In Drupal 6, there was a function that returned the path to the files directory
relative to the Drupal directory. That function was file_directory_
path(). In Drupal 7, to obtain the path, use file_stream_wrapper_
get_instance_by_scheme('public')->getDirectoryPath().

Intermediate Custom Theming Views

106

5.	 Save the file and navigate to themed-links to see the output, as shown in the
following screenshot:

The titles listed and their order could very well vary in your case, as they
are being listed in the order in which they were created.

How it works...
The view itself is fairly straightforward. We are selecting all published nodes and are selecting
the fields that we will need later for our theme logic, despite the fact that only the title field will
be visible.

Chapter 5

107

The reason we did not elect to hide the other fields from being displayed by checking the
appropriate box in the field's configuration box is that we want the content of the field
available to us in the $fields array in the template and it would not be otherwise. We would
still have access to it, but in a more convoluted way.

When selecting and creating the file to use for the template, the reason we used the fields-
level template instead of field level is that we needed all of the selected fields available at the
same time. The fields-level makes each row, node in this case, available as an array of fields,
where if we had used the field level, only the individual field would have been visible.

Inside the fields template, each row is processed in a loop, with each field in the row being
displayed. We needed to alter the contents of the row before it was printed, so we placed our
code before the loop began.

In our code, we changed the value of the title field based on the content type. The switch
statement was set up to process the specific content types in which we are interested, but
leave the others (default:) untouched.

The following is a summary of the content types and what we did with each title:

Article A document icon, followed by the title linking to the node
Country A globe icon, followed by the node title
Course The node title, followed by a (more info) link, including the nid, to

an external site
Employee Both an employee icon and the title as it links to the node
Extension The title as a link to the node, followed by an icon

Having made the changes to the title field, we no longer had any use for the node ID (nid),
path, or content type fields, so we unset them, thereby leaving the row loop to find only one
field in each row to display, that is, our updated title.

There's more...
Any of the changes we made to the title could have been done individually via the field
settings in the views UI, but when needed to account for several different content types
and formats, that option is no longer viable.

While you may never have a need to make the same kind of changes that we did here,
this method of changing variables within a template can be used to change any selected
field or fields.

Intermediate Custom Theming Views

108

Theming a grid
One of the presentation types available in a view is the grid. There is a default styling defined
for a grid, but you may want the style to be something other than the default. In this recipe, we
will alter the formatting of a grid.

Getting ready
We are going to use the same view as the Theming a field recipe, but create a new display for
it. We will create a table that classifies nodes by content type.

If you have not tried that recipe yet, follow the Getting ready section and steps 1-9 of the How
to do it... section from it, at this point.

How to do it...
On the View List page, navigate to the Views List (admin/structure/views) and click on
the Edit link for the themed_links view.

Carry out the following steps in order to create a new view display:

Note that in the following steps, references to Page 1 assume that this is
the first page display you have added to the themed_links view. If not, the
page number might be different in steps 2, 11, and 13.

1.	 Click on the +Add button in the Displays section at the top and select Page as the
display type.

2.	 Click on the new Page 1 link next to Display name, enter Grid Page as the new
name, and then click on the Apply button.

3.	 Click on the Themed links link next to Title, select This page (override), change the
title to Themed grid, and click on the Apply button.

4.	 Click None next to Path: in the Page settings pane, enter themed-grid as the path,
and click on the Apply button.

5.	 Click on the link for Content: Nid in the Fields box, select This page (override) from
the select box, and then click on the Remove button.

6.	 Click on the link for Content: Path in the Fields box, select This page (override) from
the select box, and then click on the Remove button.

7.	 Click on the + icon in the Fields box, check the box next to Content: Body, and click
on the Add and configure button.

Chapter 5

109

8.	 In the configuration box for Content: Body, select This page (override), clear the
Create a label box, select Summary or trimmed in the Formatter select box, enter
100 for the Trim length, and click on the Apply and continue button.

9.	 Click on the Unformatted list link next to Format: in the Format pane, select This
page (override) from the select box, click on the Grid radio button, and then on the
Apply button.

10.	 In the Grid Page: Style options pane, enter content-type-[type] in Row class, change
the Number of columns to 3, and then click on the Apply button.

11.	 Click on the Information link next to Theme: in the Other pane and copy the
rightmost filename from the Style output line, that is, views-view-table--
themed-links--page-1.tpl.php.

12.	 Click on the Save button.

Now create the template.

13.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-grid.tpl.php and save it into the directory
of the theme you are using (sites/all/themes/your_theme) that contains
template files, naming it views-view-grid--themed-links—page-1.tpl.php.

14.	 Clear your caches (admin/config/development/performance).

15.	 Edit this new file and look around line 20 for the following:
<td class="<?php print $col
 umn_classes[$row_number][$column_number]; ?>">

16.	 Immediately prior to this line, add the following:
<?php print $row_number * 3 + $column_number; ?>

17.	 Save the file.

18.	 Edit the CSS file for your theme. In my case, it is called style.css.

19.	 Add the following code lines to the file:
td.content-type-Article {background-color: #ffc0ff}
td.content-type-Blog entry {background-color: #c0c0ff}
td.content-type-Country {background-color: #c0ffc0}
td.content-type-Course {background-color: #ffffc0}
td.content-type-Department {background-color: #ffc0c0}
td.content-type-Destination {background-color: #ffedc1}
td.content-type-Employee {background-color: #c1ffdb}
td.content-type-Extension {background-color: #dcc1ff}
td.content-type-Gallery {background-color: #dcc472}
td.content-type-Home {background-color: #cadc72}
td.content-type-Ingredient {background-color: #eebabb}
td.content-type-Product {background-color: #dff6f7}

Intermediate Custom Theming Views

110

td.content-type-Real estate flier {background-color: #f3eeeb}
td.content-type-Sponsor {background-color: #edebf3}
td.content-type-Basic page {background-color: #ffffff}

20.	 Save the file and navigate to themed-grid to see the following output:

How it works...
The view selects all published nodes. We created a new page display that shows the title and
a teaser from each as a grid cell.

We used a replacement tag [type] as part of the class name for the cell, so that cells can
be themed by their content type. In conjunction with this, we added entries to the CSS file to
provide a different background color for cells of each content type.

We also created a local copy of the grid template file and edited it to insert a cell number at
the top of each cell.

Chapter 5

111

Theming a table
Using the Style settings in the Views UI, we can elect to have a view output as table data using
an HTML table. Our options, however, as to how the table is structured, are limited. We can
overcome these limitations by theming the table output.

Getting ready
We are going to use the same view as the Theming a field recipe, but create a new display for
it. We will create a table that classifies nodes by content type.

If you have not tried that recipe yet, go to the Getting ready section and follow steps 1-9 of the
How to do it... section from it at this point.

How to do it...
On the View List page:

Navigate to the Views List (admin/structure/views) and click on the Edit link for the
themed_links view.

1.	 Create a new view display:

Note that in the following steps, references to Page 1 assume that this
is the first page display you have added to the themed_links view. If not,
the page number might be different in steps 2, 10, and 12.

2.	 Click on the +Add button in the Displays section at the top and select Page as the
display type.

3.	 Click on the new Page 2 link next to Name, enter Table Page as the new name, and
then click on the Apply button.

4.	 Click on the Themed links link next to Title, select This page (override), change the
title to Themed table, and click on the Apply button.

5.	 Click on None next to Path: in the Page settings pane, enter themed-table as the
path, and click on the Apply button.

6.	 Click on the link for Content: Post date (desc) in the Sort criteria box, select This
page (override) from the select box, and then click on the Remove button.

7.	 Click on the link for Content: Nid in the Fields box, select This page (override) from
the select box, and then click on the Remove button.

Intermediate Custom Theming Views

112

8.	 Click on the link for Content: Path in the Fields box, select This page (override)
from the select box, and then click on the Remove button.

9.	 Click on the Unformatted list link next to Format: in the Format pane, select This
page (override) from the select box, click on the Table radio button, and then on the
Apply button.

10.	 In the Table Page: Style options pane, check both Sortable checkboxes and the
Default Sort radio button for Content: Title, and then click on the Apply button.

11.	 Click on the Information link next to Theme: in the Other pane and copy the
rightmost filename from the Style output line, that is, views-view-table--themed-
links--page-2.tpl.php.

12.	 Click on the Save button.

Now create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-table.tpl.php and save it into the directory
of the theme you are using (sites/all/themes/your_theme) that contains
template files, naming it views-view-table--themed-links--page-2.tpl.
php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 20 for the following line of code:
<table class="<?php print $class; ?>">

4.	 Immediately prior to this line, add the following code snippet:
<?php
$header['title'] = 'Title';
$header['Article'] = 'Article';
$header['Country'] = 'Country';
$header['Course'] = 'Course';
$header['Employee'] = 'Employee';
$header['Extension'] = 'Extension';
$header['Other'] = 'Other';
$fields['Article'] = 'type';
$fields['Country'] = 'type';
$fields['Course'] = 'type';
$fields['Employee'] = 'type';
$fields['Extension'] = 'type';
$fields['Other'] = 'type';

foreach ($rows as $count => $row) {
 $rows[$count]['Article'] = ' ';
 $rows[$count]['Country'] = ' ';
 $rows[$count]['Course'] = ' ';
 $rows[$count]['Employee'] = ' ';
 $rows[$count]['Extension'] = ' ';

Chapter 5

113

 $rows[$count]['Other'] = ' ';
 $type = (in_array($row['type'],array
 ('Article','Country','Course','Employee','Extension'))) ?
 $row['type'] : 'Other';
 $rows[$count][$type] = ($type == 'Other') ?
 $rows[$count]['type'] : 'X';
 unset($rows[$count]['type']);
}
unset($header['type']);
?>

5.	 Save the file, and then navigate to themed-table to view something similar to the
following screenshot:

Intermediate Custom Theming Views

114

How it works...
The view selects all published nodes. We created a new page display that formats two fields
from each node, the title and content type, as an HTML table. We selected only those two
fields because the ultimate table is only meant to display the node title and some manner of
showing the content type.

Inside the Table template, there were three portions of the table that we needed to address.

The $header array contains a key for each column that is to have a heading. We added a
column to it for each of the several content types, and one catch-all column, titled 'Other', to
summarize the content of other types. We also reset the column heading for 'type' that was
there due to it being one of the fields we selected within the view. Had we not removed this
column heading, the column headings would have been misaligned, making the table data
appear to be incorrect.

The $fields array contains an entry for each field that is to be displayed, with the name of
the class to be used when displaying it. We added an entry for each of the columns we were
adding and ultimately removed the entry $fields['type'], as it would not be needed.

The most important of the three arrays that we manipulated was the $rows array. It contains a
key for each column of data to be displayed. We added a column for each of the specific content
types that would appear in the table as well as one for 'Other'. We then examined the content
type for the row. If the content type matched one of the specific content types (article, country,
course, employee, extension), we simply inserted an 'X' into the applicable column for that row.
If, however, the content type was other than one of those five, we put the name of the content
type into the 'Other' column for that row rather than an 'X' to make it more helpful.

Theming a row
In a record that is selected as a output in a view, there are rows present in the record and
often there is a need to format these rows. We will do that with a simple view to make each
stand out more than they would otherwise.

Getting ready
We are going to use the Country content type, the details of which are given in Appendix B,
Entity Types and Fields.

Chapter 5

115

How to do it...
Carry out the following steps in order to create the view:

1.	 Navigate to the Views List (admin/structure/views), click on the +Add new view
link, enter Country countdown as the view title, check the Description box, and enter
Themed country rows as the view description.

2.	 Select Country from the of type select box.

3.	 Change teasers to fields in the Display format section and click on the Continue and
edit button.

4.	 Click on the Add link in the Fields pane, check the box next to Content: Area, and
click on the Add and configure fields button.

5.	 In the configuration box for Content: Area, clear the Create a label textbox and click
on the Apply and continue button.

6.	 Click on the Add link in the Sort Criteria pane, check the box for Fields: field_
country_area, and click on the Apply and configure sort criteria button.

7.	 In the configuration overlay, click on the Apply button.

8.	 Click on the link in the Sort Criteria pane for Post date, select This page (override),
and click on the Remove button.

9.	 Click on the Information link next to Theme: in the Other pane and copy the
rightmost filename from the Row style output line, that is, views-view-fields--
country-countdown--default.tpl.php.

10.	 Click on the Save button.

Now, create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-fields.tpl.php and save it into the directory of the
theme you are using (sites/all/themes/your_theme) that contains template
files, naming it as views-view-fields--country-countdown--default.
tpl.php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 22 for the following line of code:
<?php foreach ($fields as $id => $field): ?>

4.	 Immediately prior to this line, add the following code:
<?php global $base_url; ?>

Intermediate Custom Theming Views

116

5.	 Then, after the last line in the file, add the following line:
<div style="margin: 6px"><img src="<?php echo $base_url . '/' .
 file_stream_wrapper_get_instance_by_scheme('public')->

 getDirectoryPath();?>/country.png" /></div>

6.	 Save the file and navigate to country-countdown to see output similar to the
following screenshot:

How it works...
The view selects nodes of the Country content type and uses the fields title (the country
name) and country_area (the size of the country). We sorted the countries from the
smallest to the largest.

Inside the Fields template, we added a graphical divider between each row.

Chapter 5

117

There's more...
There is more that we would like to do with this view, but those changes require us to be able
to compare each row to the next row. In this template, we receive one row at a time, and so
the template has no knowledge of the rows in bulk. However, the next recipe will address this.

Theming rows
This recipe is attached to the previous one to show the difference between theming a row and
theming many rows and because it is important to show how different templates can be used
in conjunction with each other.

We are going to make changes to the presentation of the view display and target rows based
on their relation to the other rows around them.

Getting ready
If you have not used the previous recipe, Theming a row, do so first.

How to do it...
Create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-unformatted.tpl.php and save it into
the directory of the theme you are using (sites/all/themes/your_theme)
that contains template files, naming it views-view-unformatted--country-
countdown--page.tpl.php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 10 for the following line of code:
<?php if (!empty($title)): ?>

4.	 Immediately prior to this line, add the following code:
<style type="text/css">
#cc-container {
 width: 180px;
}
.cc-odd, .cc-even {
 padding: 6px;
 border: 4px solid black;
 width: 120px;
 position: relative;
 text-align: center;

Intermediate Custom Theming Views

118

}
.cc-odd {
 left: 0;
 background-color: #aaa;
}
.cc-even {
 left: 60px;
 background-color: #eee;
}
.cc-value {
 font-size: 36px;
}
</style>
<?php $ctr = sizeof($rows) + 1; ?>

5.	 Find <?php foreach ($rows as $id => $row): ?> at around line 37 and insert
the following code line before it:
 <div id="cc-container">

6.	 Find <div class="<?php print $classes_array[$id]; ?>"> at around line
39 and insert the following lines before it:
 <div class="cc-<?php echo ($ctr % 2) ? 'odd' : 'even'; ?>">
 <?php $ctr--; ?>
 <div class="cc-value"><?php echo $ctr; ?></div>

7.	 Around line 45, find <?php endforeach; ?> and add </div> on both the line
before it and the line after it.

8.	 The resulting code is as follows:
<style type="text/css">
#cc-container {
 width: 180px;
}
.cc-odd, .cc-even {
 padding: 6px;
 border: 4px solid black;
 width: 120px;
 position: relative;
 text-align: center;
}

Chapter 5

119

.cc-odd {
 left: 0;
 background-color: #aaa;
}
.cc-even {
 left: 60px;
 background-color: #eee;
}
.cc-value {
 font-size: 36px;
}
</style>
<?php $ctr = sizeof($rows) + 1; ?>
<?php if (!empty($title)): ?>
 <h3><?php print $title; ?></h3>
<?php endif; ?>
 <div id="cc-container">
<?php foreach ($rows as $id => $row): ?>
 <div class="cc-<?php echo ($ctr % 2) ? 'odd' : 'even'; ?>">
 <?php $ctr--; ?>
 <div class="cc-value"><?php echo $ctr; ?></div>
 <div class="<?php print $classes_array[$id]; ?>">
 <?php print $row; ?>
 </div>
 </div>
<?php endforeach; ?>
</div>

Intermediate Custom Theming Views

120

9.	 Save the file and navigate to country-countdown to see output similar to the
following screenshot:

How it works...
We took an existing feed, in which each row is themed, and added a template file to theme
at the rows level, also known as the unformatted level. At the row (singular) level, a collection
of fields is available for the row currently being processed. At the rows (plural) level, the
collection of rows is available.

Chapter 5

121

We added code to the template file that counts down from the number of rows to 1, and styled
the output so that the countdown number would display in large text. We also classified each
row, based on the counter number, as odd or even by converting the countdown value to
binary and calling it even if 0 and odd if 1. We formatted it based on whether the row was odd
or even, one being to the right of the other and using a different background color for each.

There's more...
There is so much that can be done at this level. We could, for example, 'pluck' some of the
rows, summarize them, and display them in a callout.

We chose to embed a CSS stylesheet within the template file rather than add it to a CSS file.
Some would say that all CSS should be in the CSS file, if for no other reason than it is easier
for the next person downstream to find it. However, the specification does allow for embedded
styles, and if the style is not going to be used anywhere else, keeping it with the code for
which it is a unique style also makes sense.

Theming an RSS feed
RSS feeds are used to provide information to other sites about the available content on
your site. There are fewer view options for feed displays than for others, because there is an
expectation of the format on the receiving end. Still, some formatting can be done, and we will
do a little bit of it here while adding a logo to the feed.

Getting ready
We are going to use the Article content type, which is included with Drupal 7.

How to do it...
Carry out the following steps on the View List page (admin/structure/views):

1.	 Click on the + Add new view link, enter Articles as the view name, check the box
for Description, and enter Articles list as the view description.

2.	 In the Type select box of the Show line, select Article.

3.	 Remove the check from the box for Create a page and click on the Continue and
Edit button.

Now create the feed display:

1.	 Click on the Add Feed button to create a new display.

2.	 Click None next to Path: in the Feed settings panel, enter articles/feed as the path,
and click on the Apply button.

Intermediate Custom Theming Views

122

3.	 Click on the Information link next to Theme: in the Other panel and scroll down
and copy the rightmost filename from the Style output line, views-view- rss--
articles--feed-1.tpl.php, and click on the OK button.

4.	 Click on the Save button.

Now create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view- rss .tpl.php and save it into the directory
of the theme you are using (sites/all/themes/your_theme) that contains
template files, naming it views-view -rss--articles--feed-1.tpl.php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 10 for the following code line:
<?php print "<?xml"; ?> version="1.0" encoding="utf-8" <?php
 print "?>"; ?>

4.	 Immediately prior to this line, add the following code:
<?php global $base_url; ?>

5.	 Then, around line 14, look for :
<title><?php print $title; ?></title>

6.	 Insert the following immediately before it:
 

7.	 Save the file and navigate to articles/feed to see output similar to the
following screenshot:

Chapter 5

123

How it works...
We created a simple view that selects the article content and an RSS feed display for it. We
then copied the RSS feed template from the Views theme directory, named it so that it would
theme our particular view and display, and added XML to the template so our RSS feed page
would include a logo.

There's more...
There are a few changes that one can make to RSS feed templates, whether it is the one
we worked on or the one that formats the row items, because the RSS specification is XML
and only certain elements are defined such as the title and description. The specification
does define an image element at the page (channel) level, which is what we used to include
an image.

Intermediate Custom Theming Views

124

More creative changes can be made to an RSS feed, but to do so requires making changes
to the namespace, with which the XML elements are defined. This is outside the scope of this
book, but certainly worth investigating if you would like to include, for example, images with
your feed elements.

Theming a block
Blocks are ubiquitous in Drupal. With some, the content is inserted manually from the
administration panel, in some it is generated within a module, and with others the content
comes from a view.

We can theme blocks just like any other display. We will clone an existing block display that
lists recent content and make some changes to it via a template, so that it offers a Facebook
'Like' button for each listed content item.

Getting ready
We will be cloning the view from the final recipe (Creating bulleted lists using multiple content
types) in Chapter 2, Basic Custom Views, for this recipe.

How to do it...
Carry out the following steps on the view list page:

1.	 Navigate to Views List (admin/structure/views).

2.	 Click on the down arrow next to Edit for the Content topics view and click on the
Clone link.

3.	 Enter Content topics facebook and click on the Continue button.

4.	 Click on the edit view name/description link, enter Bulleted list of topics with
Facebook buttons as the description, and click on the Apply button.

5.	 Click on the Table link next to Format in the Format pane, click on the radio button
for Unformatted list, and click on the Apply button.

6.	 Click on the Apply button in the subsequent dialog.

7.	 Click Grouped contents... next to Block name in the Block settings panel, enter
Contents bullet list with Facebook buttons as the description, and click on the
Apply button.

8.	 Click on the link to add a new filter, check the box for Content: Type, and click on the
Add and configure filter criteria button.

9.	 Check the Article checkbox and click on the Apply button.

10.	 Click on the Content: Type (type) link in the Fields panel and click on the
Remove button.

Chapter 5

125

11.	 Click on the link to add a new field, check the boxes for Content: body and Content:
Path, and click on the Add and configure fields button.

12.	 In the Content: Body configuration box, clear the Create a label textbox, select the
Trimmed in the Formatter select box, set the trim length to 100, and click on the
Apply default button.

13.	 Click on the Save button.

14.	 Click on the Block tab and then on the Information link next to Theme: in the Other
box and scroll down and copy the rightmost filename from the Row style output line,
that is, views-view-fields--content-topics-facebook----block-1.
tpl.php.

Now create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view- fields.tpl.php and save it into the directory of the
theme you are using (sites/all/themes/your_theme) that contains template
files, naming it as views-view-fields--content-topics-facebook---
block-1.tpl.php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 20 for the following code line:
<?php foreach ($fields as $id => $field): ?>

4.	 Prior to this line, insert the following code:
<?php
$path = $fields['path']->content;
unset($fields['path']);
?>

5.	 Insert the following code as the final line in the file:
<iframe src="<?php print $path; ?>" scrolling="no"
 frameborder="0" allowTransparency="true" style="border:none;
 overflow:hidden; width:120px; height:px"></iframe>

6.	 Save the file.

7.	 Navigate to the Blocks Admin page (admin/content/block).

8.	 Scroll down to the Disabled section and set the Contents bullet list with Facebook
buttons to Sidebar first and click on the Save blocks button.

Intermediate Custom Theming Views

126

9.	 Navigate to Home to view the block, as shown in the following screenshot:

How it works...
We cloned an existing view that produces a bullet list of content titles. We added a field to the
selection to capture the node path and specified that only Articles were to be selected.

We copied the fields-level template from the Views theme folder to our theme folder and
renamed it so that it would override the formatting of the block from our new view. Inside our
template, we set a variable equal to the contents of the node path field and then removed that
field from the $fields collection so that it would not be printed in the block. We pasted a line
of code that creates an IFrame that is loaded from Facebook in the form of a 'Like' button, and
within that code snippet, we printed the contents of the field containing the node path, so that
each button refers to the proper node.

Note that the appearance of the IFrame is controlled by Facebook, so it
can look different from the preceding screenshot and will look different to
logged-in users than those not logged into Facebook.

Chapter 5

127

Theming a view page
Sometimes we will want to make changes to the entire view page display layout to give the
page a unique look. The highest level of view template allows us to do that. We will create a
view that displays items using a uniquely themed structure.

Getting ready
We are going to use the article list view from the Theming a RSS feed recipe.

How to do it...
Carry out the following steps on the View List page:

1.	 Navigate to the View List page (admin/structure/views).

2.	 Click on the Edit link for the articles list view.

Now create the page display:

1.	 Click on the Add page button.

2.	 Click on the Fields link next to Show: in the Format pane, click on the radio button
for Content, and then the Apply button.

3.	 Select This page (override) and Teasers in the subsequent configuration box and
then on the Apply button.

4.	 Click on the Paged, 10 items next to Items to display in the Pager pane, change the
10 to 3 in the Items per page textbox, put 1 in the Number of pages box, and click
on the Apply button.

5.	 Click None next to Path: in the Feed settings box, enter articles-list as the path,
and click on the Apply button.

6.	 Click on the Information link next to Theme: in the Style settings box and scroll down
and copy the rightmost filename from the Style output line, that is, views-view-
unformatted--articles--page-1.tpl.php.

7.	 Click on the Save button.

Now create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-unformatted.tpl.php and save it into the
directory of the theme you are using (sites/all/themes/your_theme) that
contains template files, naming it views-view-unformatted--articles--
page-1.tpl.php.

Intermediate Custom Theming Views

128

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 10 for the following line of code:
<?php if (!empty($title)): ?>

4.	 Insert the following code before it:
<style type="text/css">
.article-1 {
 background-color: #ffaaaa;
 font-size: 14pt;
 border: 4px solid black;
}
.article-2 {
 background-color: #aaffaa;
 font-size: 12pt;
 border: 4px solid black;
}
.article-3 {
 background-color: #aaaaff;
 font-size: 10pt;
 border: 4px solid black;
}
</style>

5.	 Around line 30, find the following code:
<?php //foreach ($rows as $id => $row): ?>
 <div class="<?php //print $classes_array[$id]; ?>">
 <?php //print $row; ?>
 </div>
<?php //endforeach; ?>

6.	 Replace those lines with the following code:
<table id="articles-table">
 <tr>
 <td rowspan="2" class="article-1"><?php print
 $rows[0];?></td>
 <td class="article-2"><?php print $rows[1];?></td>
 </tr>
 <tr>
 <td class="article-3"><?php print $rows[2];?></td>
 </tr>
</table>

Chapter 5

129

7.	 Save the file and navigate to articles-list to see a screen similar to the
following screenshot:

How it works...
We created a page display that selects three article nodes. We did not bother with verifying
the selection within the template for this exercise, being comfortably assured that there will be
at least three articles in our project site to draw from. We then modified the view template that
receives the selection rows as a collection and instead of looping through them and printing
each one the same as the last, we printed each individually with specific formatting in mind.

We used a stylesheet internal to the template rather than the CSS file. We also used a table
to format the three records rather than just CSS and <div>; the reason being that forcing the
left column (record 1 of 3) to be of the same height as the two stacked to its right using only
CSS requires CSS hacks beyond the scope of this book.

There's more...
This recipe showed how to manipulate a collection of rows within one display, but we can
do even more than that. We can have multiple displays in one view, all being displayed
simultaneously, and manipulate the data for them. We will do that in the next recipe.

Intermediate Custom Theming Views

130

Theming multiple displays
Having multiple displays displayed simultaneously allows us to use parts of the viewing area
for distinct but related displays and, if desired, interactive functionality, much like a desktop
application. This enables an enhanced user experience and increased value from your site.

In this recipe, we will have a display that lists available courses, another that lists
departments, which drives the course list, and a third display that provides course details.
This view will also make use of contextual filters. Information about the Course and
Department content types can be found in Appendix B, Entity Types and Fields.

How to do it...
Carry out the following steps on the View List page (admin/structure/views):

1.	 Click on the + Add new view link.

2.	 Enter Departments and courses as the view name, check the box for Description,
and enter Interactive course and department listing as the view description.

3.	 Change Sorted by to Title.

4.	 On the Display format line of the Create a page section, change Teasers to full
posts, change the Items per page to 1, and click on the Continue and edit button.

5.	 Click on the Add attachment button.

6.	 Click on the Attachment 2 link next to Display name:, change the name to
Department list, and click on the Apply button.

7.	 Click on the Add attachment button.

8.	 Click on the Attachment link next to Display name:, change the name to Course list,
and click on the Apply button.

Create the Course list attachment:

1.	 Click on the tab for Course list1.

2.	 Click on the Content link next to Show: in the Format section, change All displays
to This attachment (override), click on the Fields radio button, and click on the
Apply button.

3.	 Click on the Apply button on the subsequent Row style options screen.

4.	 Click on the link in the Fields pane to add a field, check the box for Content: Nid,
and click on the button for Add and configure fields.

5.	 Select This attachment (override), check the box for Exclude from display, and click
on the Apply button.

Chapter 5

131

6.	 In the Fields select box, select Rearrange, drag the Nid field before the Title field,
and click on the Apply button.

7.	 Click on the Content: Title link in the Fields pane, select This attachment
(override), and remove the check from the Link this field to the original piece
of content checkbox

8.	 Click on the Rewrite Results link to reveal its settings and check the Output this field
as a link checkbox.

9.	 In the Link path textbox, enter departments-and-courses/!1/[nid] and click on the
Apply button.

10.	 Click on the link in the Filter pane to add a new filter.
11.	 Check the box for Content: Type and click on the button for Add and configure filter

criteria, select This attachment (override), check the box for Course, and click on
the Apply button.

12.	 In the Attachment settings panel, click on the Not defined link next to Attach to,
check the box for Page, and click on the Apply button.

Always check to see which tab is highlighted before making an edit.
Sometimes saving an edit returns you to the first display.

13.	 Click on the link for Before next to Position:, change the setting to After, and click on
the Apply button.

Now create the Department list attachment:

1.	 Click on the tab for Department list2.

2.	 Click on the Content link next to Show: in the Format section, change All displays to
This attachment (override), click on the Fields radio button, and click on the Apply
button.

3.	 Click on the Apply button on the subsequent Row style options screen.

4.	 If the Fields pane does not already contain Content: Nid, click on the link in the
Fields pane to add a field, check the box for Content: Nid, and click on the button for
the Add and configure fields.

5.	 Select This attachment (override), check the box for Exclude from display, and click
on the Apply button.

6.	 In the Fields select box select Rearrange, drag the Nid field before the Title field and
click on the Apply button.

7.	 Click on the Content: Title link in the Fields pane, select This attachment (override),
and remove the check from Link this field to the original piece of content. Click on
the Rewrite Results link to reveal its settings and check the Output this field as a
link checkbox.

Intermediate Custom Theming Views

132

8.	 In the Link path text box, enter departments-and-courses/[nid] and click on the
Apply button.

9.	 In the Attachment settings panel, click on the Not defined link next to Attach to,
check the box for Page, and click on the Apply button.

10.	 Ensure that the position for the attachment is listed as Before rather than After.

11.	 Click on the link to add a relationship, check the box for Fields: Department (field_
department_ref) – nid, and click on the Add and configure relationships button.

12.	 Select This attachment (override) and click on the Apply button.

Now complete the page display:

1.	 Click on the Page tab.

2.	 Click on the link to add a new filter, check the box for Content: Type, and click on the
Add and configure filter criteria button.

3.	 Select This page (override), check the Course checkbox, and then click on the Apply
button.

4.	 Click on the Paged, 10 items next to Items to display in the Pager pane, change the
10 to 1 in the Items per page text box, put 1 in the Number of pages textbox, and
click on the Apply button.

5.	 Click None next to Path: in the Feed settings box, enter departments-and-courses
as the path, and click on the Apply button.

6.	 Click on the Advanced link, if the Advanced pane is not visible.

7.	 Click on the + Add link in the Contextual filters pane, check the box for Global: Null,
and click on the Apply and configure contextual filters button.

8.	 Select This page (override). Beneath When the filter value is NOT in the URL,
click on the radio button for Display contents of "No results found" and click on
the Apply button.

9.	 Click on the + Add link in the Contextual filters pane, check the box for Content: Nid,
and click on the Apply and configure contextual filters button.

10.	 Select This page (override). Beneath When the filter value is NOT in the URL,
click on the radio button for Display contents of "No results found" and click on
the Apply button.

11.	 Click on the + Add link for No results behavior, select Global: Text area, and click
on the Add button.

12.	 In the subsequent configuration pane, select This page (override), enter Select a
course as the Label, enter <h2>Please select a department and then a course</
h2> in the textbox, select Full HTML from the Text format select box, and click on the
Apply button.

Chapter 5

133

13.	 Click on the Information link next to Theme: in the Style settings box. Scroll down
and copy the rightmost filename from the Display output line, that is, views-view--
departments-and-courses--page.tpl.php.

14.	 Click on the Save button.

Now, create the template:

1.	 From the Views module theme directory (probably sites/all/modules/views/
theme), copy the file views-view-unformatted.tpl.php and save it into the directory
of the theme you are using (sites/all/themes/your_theme) that contains the
template files, naming it views-view-unformatted--articles--page-1.tpl.
php.

2.	 Clear your caches (admin/config/development/performance).

3.	 Edit this new file and look around line 52 for the following code:
 <?php if ($attachment_before): ?>
 <div class="attachment attachment-before">
 <?php print $attachment_before; ?>
 </div>
 <?php endif; ?>

4.	 Cut it and paste it around line 66, just before the following line of code:
<?php if ($attachment_after): ?>

5.	 On line 77, enter the following line of code:
<div style="clear:both"></div>

6.	 Edit your theme's CSS file (in my case, it is style.css) and add the following at the
bottom of the file:
page-departments-and-courses .attachment-before,
.page-departments-and-courses .attachment-after {
border: 2px solid black;
width: 46%;
min-height: 300px;
background-color: #eee;
float: left;
padding: 3px;
}

Intermediate Custom Theming Views

134

7.	 Save the file, clear your caches, and navigate to departments-and-courses,
which should look similar to the following screenshot:

8.	 Click on a department name:

Chapter 5

135

9.	 Click on any course for that department:

How it works...
The secret to this recipe is the use of Attachment displays to augment the normal content of
the Page display and moving data between the steps.

The first step is to display a list of departments in the first Attachment display, and to rewrite
the department titles as links back to the same page, departments-and-courses, but
containing an argument, which is the department node ID (nid) such as departments-
and-courses/32.

Intermediate Custom Theming Views

136

The second attachment display is to display a list of courses, but only those courses that belong
to the received department number. We again rewrite the output as links of the title, in this case,
the course title, but this time, we pass an additional argument, the nid of the course.

The page display provides the course details and uses the second passed argument
to identify which course to display.

We also configured the view to display a message when the view is requested without
any argument.

We edited the view template to move the previous attachment to appear after the content, and
then edited the CSS file to format the two attachments and have them appear side-by-side.

There's more...
For more information on using multiple displays, "Drupal 6 Attachment Views", Packt
Publishing at https://www.packtpub.com/drupal-6-attachment-views/book.

Image styles
There are many different venues in a website for images to be displayed from the same
source, but with a different appearance for each image. In Drupal 6, this was achieved via
a contributed module, ImageCache. That module has since been incorporated into Drupal
itself, and we will use that functionality to display images in three different sizes.

Getting ready
1.	 We are going to use the Gallery content type. If you have not already added it, you will

find the details in Appendix B, Entity Types and Fields.

2.	 You will need four pieces of gallery content.

3.	 There will be three image styles used, namely, Exhibit, Exhibit_teaser, and
Exhibit_block, the details of which are in Appendix B, Entity Types and Fields.

How to do it...
1.	 Navigate to the views list (admin/structure/views).

2.	 Click on the + Add new view link, enter Image styles as the view name, check the
Description box, enter Use image styles with view displays as the view description,
and change All to Gallery in Show content of type.

Chapter 5

137

3.	 In the Create a page section, change Teasers to Fields for the Display format and
change Items per page to 1.

4.	 Check the box to Create a block, change Titles (linked) to Fields for Display format,
change the Items to display to 1, and click on the Continue & edit button.

Now edit the page display:

1.	 Click on the add link in the Filters Criteria box, check the box next to Fields: Exhibit
image (field_exhibit_image) - fid, and click on the Add and configure filter criteria
button.

2.	 In the configuration box for Fields: Exhibit image (field_exhibit_image) - fid, select Is
not empty (NOT NULL) from the select box and click the Apply button.

3.	 Click on the add link next to Fields, check the box next to Content: Body, next to
Content: Exhibit image, and click on the Add and configure fields button.

4.	 In the Fields: body configuration box, change All displays to This page (override),
clear the Create a label checkbox, and click the Apply button.

5.	 In the Content: Exhibit image configuration box, clear the Create a label textbox,
select exhibit from the Image style select box, and click on the Apply button.

6.	 Click on the Full link next to Use pager: in the Pager pane, select This page
(override), change the selection to Display a specified number of items,
and click on the Apply button.

Now edit the block display:

1.	 Click on the Block tab in the Displays list at the top of the page.

2.	 Click on the add link next to Fields, check the box next to Content: Exhibit image,
and click on the Add and configure fields button.

3.	 In the Content: Exhibit image configuration box, select This block (override) from the
select box, clear the Create a label checkbox, select exhibit_block from the Image
style select box, select Content from the Link image to select box, and click on the
Apply button.

Intermediate Custom Theming Views

138

4.	 Click on the Full link next to Use pager: in the Pager pane, select This block
(override), change the selection to Display a specified number of items,
and click on the Apply button, as shown in the following screenshot:

5.	 Click on the 1 item link next to Use pager: in the Pager pane, change 0 to 1 in the
Offset field, change 0 to 1 in the Pager ID field, and click on the Apply button.

Now create the attachment display:

1.	 Click the + Add display button and click on the Attachment link.

2.	 In the Attachment settings pane, click Before next to Attachment position, click on
the radio button for After, and click on the Apply button.

3.	 Also in the Attachment settings pane, click Not defined next to Attach to, click on
the checkbox for Page, and click on the Apply button.

4.	 Click the Content: Exhibit image link in the Fields pane, select This attachment
(override) from the select box, clear the Create a label textbox, select exhibit_teaser
from the Image style select box, and click on the Apply button.

5.	 Click on the Full link next to Use pager: in the Pager pane, select This attachment
(override), change the selection to Display a specified number of items, and click on
the Apply button.

6.	 Click on 10 items next to Items to display: in the Pager pane, change Items to
display to 2 and Offset to 2, and then click on the Apply button.

7.	 Click the on Save button.

8.	 Navigate to admin/structure/block, find image_styles: Block in the Disabled
list, select a sidebar from the Region select box, click on the Save blocks button,
scroll up to the same entry, which is now in the section for the sidebar that you
selected, and click on its Configure link.

Chapter 5

139

9.	 Under Show block on specific pages, select Only the listed pages and enter
image-styles in the text area box, and then click on the Save block button.

10.	 Navigate to image-styles to see the view, as shown in the following screenshot:

Intermediate Custom Theming Views

140

How it works...
When an image style is created, that style is made available for any image field, including
wherever that image field is used in a view. We created three image styles of different sizes
and used each style in a different display in the same view.

One other thing we did was to set offsets in the paging pane for each display. The page display
chose the most recent image. The block had an offset of 1, so it chose the second most
recent image, and the attachment display with its offset of 2 ended up choosing the third and
fourth most recent images.

With the image style feature, there is no need to upload multiple images simply to have
different sizes. Just make sure to upload the largest size that you will use, because scaling it
down in size is fine.

6
Creating Views

Programmatically

In this chapter, we will cover:

ff Programming a view

ff Handling a view feld

ff Styling a view feld

ff Fine tuning the query

Introduction
In this chapter, we will switch from the admin user interface to code, creating a view within a
module and other examples of using code in conjunction with Drupal and Views architectures
to manipulate the content. These methods should only be considered if you are comfortable
with PHP and the Drupal architecture and API. The benefits of using code include more
granular control, as well as the ability to achieve behaviors otherwise unavailable. The
drawbacks are that the Views environment can be very complex, and one can easily break
the environment.

The differences between using the Views UI to create a view and doing it in a module is that
the UI does the coding for you and makes it more convenient to make changes to the view
afterwards. That said, the UI method does not make it easy to distribute a ready-made view,
nor does it make it facilitate tying such a view to other code.

Creating Views Programmatically

142

Programming a view
Creating a view with a module is a convenient way to have a predefined view available with
Drupal. As long as the module is installed and enabled, the view will be there to be used. If
you have never created a module in Drupal, or even never written a line of Drupal code, you
will still be able to create a simple view using this recipe.

Getting ready
Creating a module involves the creation of the following two files at a minimum:

ff An .info file that gives Drupal the information needed to add the module

ff A .module file that contains the PHP script

More complex modules will consist of more files, but those two are all we will need for now.

How to do it...
Carry out the following steps:

1.	 Create a new directory named _custom inside your contributed modules directory
(so, probably sites/all/modules/_custom).

2.	 Create a subdirectory inside that directory; we will name it d7vr (Drupal 7
Views Recipes).

3.	 Open a new file with your editor and add the following lines:
; $Id:
name = Programmatic Views
description = Provides supplementary resources such as
 programmatic views
package = D7 Views Recipes

version = "7.x-1.0"
core = "7.x"
php = 5.2

4.	 Save the file as d7vrpv.info.

5.	 Open a new file with your editor and add the following lines:

Feel free to download this code from the author's web site rather
than typing it at http://theaccidentalcoder.com/
content/drupal-7-views-cookbook.

Chapter 6

143

<?php
/**
 * Implements hook_views_api().
 */
function d7vrpv_views_api() {
 return array(
 'api' => 2,
 'path' => drupal_get_path('module', 'd7vrpv'),
);
}
/**
 * Implements hook_views_default_views().
 */
function d7vrpv_views_default_views() {
 return d7vrpv_list_all_nodes();
}
/**
 * Begin view
 */
function d7vrpv_list_all_nodes() {
 /*
 * View 'list_all_nodes'
 */
 $view = views_new_view();
 $view->name = 'list_all_nodes';
 $view->description = 'Provide a list of node titles,
 creation dates, owner and status';
 $view->tag = '';
 $view->view_php = '';
 $view->base_table = 'node';
 $view->is_cacheable = FALSE;
 $view->api_version = '3.0-alpha1';
 $view->disabled = FALSE; /* Edit this to true to make a
 default view disabled initially */

/* Display: Defaults */
 $handler = $view->new_display('default', 'Defaults', 'default');
 $handler->display->display_options['title'] = 'List All Nodes';
 $handler->display->display_options['access']['type'] = 'role';
 $handler->display->display_options['access']['role'] = array(
 '3' => '3',
);
 $handler->display->display_options['cache']['type'] = 'none';

Creating Views Programmatically

144

 $handler->display->display_options['exposed_form']['type'] =
 'basic';
 $handler->display->display_options['pager']['type'] = 'full';
 $handler->display->
 display_options['pager']['options']['items_per_page'] = '15';
 $handler->display->display_options['pager']['options']
 ['offset'] = '0';
 $handler->display->display_options['pager']['options']
 ['id'] = '0';
 $handler->display->display_options['style_plugin'] = 'table';
 $handler->display->display_options['style_options']
 ['columns'] = array(
 'title' => 'title',
 'type' => 'type',
 'created' => 'created',
 'name' => 'name',
 'status' => 'status',
);
 $handler->display->display_options['style_options']
 ['default'] = 'created';
 $handler->display->display_options['style_options']
 ['info'] = array(
 'title' => array(
 'sortable' => 1,
 'align' => 'views-align-left',
 'separator' => '',
),
 'type' => array(
 'sortable' => 1,
 'align' => 'views-align-left',
 'separator' => '',
),
 'created' => array(
 'sortable' => 1,
 'align' => 'views-align-left',
 'separator' => '',
),
 'name' => array(
 'sortable' => 1,
 'align' => 'views-align-left',
 'separator' => '',
),
 'status' => array(
 'sortable' => 1,
 'align' => 'views-align-left',

Chapter 6

145

 'separator' => '',
),
);
 $handler->display->display_options['style_options']
 ['override'] = 1;
 $handler->display->display_options['style_options']
 ['sticky'] = 0;
 $handler->display->display_options['style_options']
 ['order'] = 'desc';
 /* Header: Global: Text area */
 $handler->display->display_options['header']['area']
 ['id'] = 'area';
 $handler->display->display_options['header']['area']
 ['table'] = 'views';
 $handler->display->display_options['header']['area']
 ['field'] = 'area';
 $handler->display->display_options['header']['area']
 ['empty'] = TRUE;
 $handler->display->display_options['header']['area']
 ['content'] = '<h2>Following is a list of all non-page
 nodes.</h2>';
 $handler->display->display_options['header']['area']
 ['format'] = '3';
 /* Footer: Global: Text area */
 $handler->display->display_options['footer']['area']
 ['id'] = 'area';
 $handler->display->display_options['footer']['area']
 ['table'] = 'views';
 $handler->display->display_options['footer']['area']
 ['field'] = 'area';
 $handler->display->display_options['footer']['area']
 ['empty'] = TRUE;
 $handler->display->display_options['footer']['area']
 ['content'] = '<small>This view is brought to you courtesy
 of the D7 Views Recipes module</small>';
 $handler->display->display_options['footer']['area']
 ['format'] = '3';
 /* Field: Node: Title */
 $handler->display->display_options['fields']['title']
 ['id'] = 'title';
 $handler->display->display_options['fields']['title']
 ['table'] = 'node';
 $handler->display->display_options['fields']['title']
 ['field'] = 'title';
 $handler->display->
 display_options['fields']['title']['alter']['alter_text'] = 0;

Creating Views Programmatically

146

 $handler->display->
 display_options['fields']['title']['alter']['make_link'] = 0;
 $handler->display->
 display_options['fields']['title']['alter']['trim'] = 0;
 $handler->display->
 display_options['fields']['title']['alter']
 ['word_boundary'] = 1;
 $handler->display->
 display_options['fields']['title']['alter']['ellipsis'] = 1;
 $handler->display->
 display_options['fields']['title']['alter']['strip_tags'] = 0;
 $handler->display->
 display_options['fields']['title']['alter']['html'] = 0;
 $handler->display->
 display_options['fields']['title']['hide_empty'] = 0;
 $handler->display->
 display_options['fields']['title']['empty_zero'] = 0;
 $handler->display->
 display_options['fields']['title']['link_to_node'] = 0;
 /* Field: Node: Type */
 $handler->display->display_options['fields']['type']
 ['id'] = 'type';
 $handler->display->display_options['fields']['type']
 ['table'] = 'node';
 $handler->display->display_options['fields']['type']
 ['field'] = 'type';
 $handler->display->
 display_options['fields']['type']['alter']['alter_text'] = 0;
 $handler->display->
 display_options['fields']['type']['alter']['make_link'] = 0;
 $handler->display->
 display_options['fields']['type']['alter']['trim'] = 0;
 $handler->display->
 display_options['fields']['type']['alter']
 ['word_boundary'] = 1;
 $handler->display->
 display_options['fields']['type']['alter']['ellipsis'] = 1;
 $handler->display->
 display_options['fields']['type']['alter']['strip_tags'] = 0;
 $handler->display->
 display_options['fields']['type']['alter']['html'] = 0;
 $handler->display->
 display_options['fields']['type']['hide_empty'] = 0;
 $handler->display->
 display_options['fields']['type']['empty_zero'] = 0;
 $handler->display->
 display_options['fields']['type']['link_to_node'] = 0;

Chapter 6

147

 $handler->display->
 display_options['fields']['type']['machine_name'] = 0;
 /* Field: Node: Post date */
 $handler->display->display_options['fields']['created']
 ['id'] = 'created';
 $handler->display->display_options['fields']['created']
 ['table'] = 'node';
 $handler->display->display_options['fields']['created']
 ['field'] = 'created';
 $handler->display->
 display_options['fields']['created']['alter']
 ['alter_text'] = 0;
 $handler->display->
 display_options['fields']['created']['alter']
 ['make_link'] = 0;
 $handler->display->
 display_options['fields']['created']['alter']['trim'] = 0;
 $handler->display->
 display_options['fields']['created']['alter']
 ['word_boundary'] = 1;
 $handler->display->
 display_options['fields']['created']['alter']['ellipsis'] = 1;
 $handler->display->
 display_options['fields']['created']['alter']
 ['strip_tags'] = 0;
 $handler->display->
 display_options['fields']['created']['alter']['html'] = 0;
 $handler->display->
 display_options['fields']['created']['hide_empty'] = 0;
 $handler->display->
 display_options['fields']['created']['empty_zero'] = 0;
 $handler->display->
 display_options['fields']['created']['date_format'] =
 'custom';
 $handler->display->
 display_options['fields']['created']['custom_date_format'] =
 'Y-m-d';
 /* Field: User: Name */
 $handler->display->display_options['fields']['name']
 ['id'] = 'name';
 $handler->display->display_options['fields']['name']
 ['table'] = 'users';
 $handler->display->display_options['fields']['name']
 ['field'] = 'name';
 $handler->display->display_options['fields']['name']
 ['label'] = 'Author';

Creating Views Programmatically

148

 $handler->display->
 display_options['fields']['name']['alter']['alter_text'] = 0;
 $handler->display->
 display_options['fields']['name']['alter']['make_link'] = 0;
 $handler->display->
 display_options['fields']['name']['alter']['trim'] = 0;
 $handler->display->
 display_options['fields']['name']['alter']
 ['word_boundary'] = 1;
 $handler->display->
 display_options['fields']['name']['alter']['ellipsis'] = 1;
 $handler->display->
 display_options['fields']['name']['alter']['strip_tags'] = 0;
 $handler->display->
 display_options['fields']['name']['alter']['html'] = 0;
 $handler->display->
 display_options['fields']['name']['hide_empty'] = 0;
 $handler->display->
 display_options['fields']['name']['empty_zero'] = 0;
 $handler->display->
 display_options['fields']['name']['link_to_user'] = 0;
 $handler->display->
 display_options['fields']['name']['overwrite_anonymous'] = 0;
 /* Field: Node: Published */
 $handler->display->display_options['fields']['status']
 ['id'] = 'status';
 $handler->display->display_options['fields']['status']
 ['table'] = 'node';
 $handler->display->display_options['fields']['status']
 ['field'] = 'status';
 $handler->display->
 display_options['fields']['status']['alter']
 ['alter_text'] = 0;
 $handler->display->
 display_options['fields']['status']['alter']['make_link'] = 0;
 $handler->display->
 display_options['fields']['status']['alter']['trim'] = 0;
 $handler->display->
 display_options['fields']['status']['alter']
 ['word_boundary'] = 1;
 $handler->display->
 display_options['fields']['status']['alter']['ellipsis'] = 1;
 $handler->display->
 display_options['fields']['status']['alter']
 ['strip_tags'] = 0;
 $handler->display->
 display_options['fields']['status']['alter']['html'] = 0;

Chapter 6

149

 $handler->display->
 display_options['fields']['status']['hide_empty'] = 0;
 $handler->display->
 display_options['fields']['status']['empty_zero'] = 0;
 $handler->display->display_options['fields']['status']
 ['type'] = 'true-false';
 $handler->display->display_options['fields']['status']
 ['not'] = 0;
 /* Sort criterion: Node: Post date */
 $handler->display->display_options['sorts']['created']
 ['id'] = 'created';
 $handler->display->display_options['sorts']['created']
 ['table'] = 'node';
 $handler->display->display_options['sorts']['created']
 ['field'] = 'created';
 $handler->display->display_options['sorts']['created']
 ['order'] = 'DESC';
 /* Filter: Node: Type */
 $handler->display->display_options['filters']['type']
 ['id'] = 'type';
 $handler->display->display_options['filters']['type']
 ['table'] = 'node';
 $handler->display->display_options['filters']['type']
 ['field'] = 'type';
 $handler->display->
 display_options['filters']['type']['operator'] = 'not in';
 $handler->display->display_options['filters']['type']
 ['value'] = array(
 'page' => 'page',
);

/* Display: Page */
 $handler = $view->new_display('page', 'Page', 'page_1');
 $handler->display->display_options['path'] = 'list-all-nodes';
 $views[$view->name] = $view;

 return $views;
}
?>

6.	 Save the file as d7vrpv.module.

7.	 Navigate to the modules admin page at admin/modules.

Creating Views Programmatically

150

8.	 Scroll down to the new module and activate it, as shown in the following screenshot:

9.	 Navigate to the Views Admin page (admin/structure/views) to verify that the
view appears in the list:

10.	 Finally, navigate to list-all-nodes to see the view, as shown in the following screenshot:

Chapter 6

151

How it works...
The module we have just created could have many other features associated with it, beyond
simply a view, and enabling the module will make those features and the view available, while
disabling it will hide those same features and view.

When compiling the list of installed modules, Drupal looks first in its own modules directory
for .info files, and then in the site's modules directories. As can be deduced from the fact
that we put our .info file in a second-level directory of sites/all/modules and it was
found there, Drupal will traverse the modules directory tree looking for .info files.

We created a .info file that provided Drupal with the name and description of our module,
its version, the version of Drupal it is meant to work with, and a list of files used by the
module, in our case just one.

We saved the .info file as d7vrpv.info (Drupal 7 Views Recipes programmatic view);
the name of the directory in which the module files appear (d7vr) has no bearing on the
module itself.

The module file contains the code that will be executed, at least initially. Drupal does not
"call" the module code in an active way. Instead, there are events that occur during Drupal's
creation of a page, and modules can elect to register with Drupal to be notified of such events
when they occur, so that the module can provide the code to be executed at that time; for
example, you registering with a business to receive an e-mail in the event of a sale. Just like
you are free to act or not, but the sales go on regardless, so too Drupal continues whether or
not the module decides to do something when given the chance.

Our module 'hooks' the views_api and views_default_views events in order to
establish the fact that we do have a view to offer. The latter hook instructs the Views module
which function in our code executes our view: d7vrpv_list_all_nodes(). The first thing
it does is create a view object by calling a function provided by the Views module. Having
instantiated the new object, we then proceed to provide the information it needs, such as the
name of the view, its description, and all the information that we would have selected through
the Views UI had we used it. As we are specifying the view options in the code, we need to
provide the information that is needed by each handler of the view functionality.

The net effect of the code is that when we have cleared cache and enabled our module,
Drupal then includes it in its list of modules to poll during events. When we navigate to the
Views Admin page, an event occurs in which any module wishing to include a view in the list
on the admin screen does so, including ours. One of the things our module does is define a
path for the page display of our view, which is then used to establish a callback. When that
path, list-all-nodes, is requested, it results in the function in our module being invoked,
which in turn provides all the information necessary for our view to be rendered
and presented.

Creating Views Programmatically

152

There's more...
The details of the code provided to each handler are outside the scope of this book, but you
don't really need to understand it all in order to use it.

You can enable the Views Bulk Export module (it comes with Views), create a view using
the Views UI in admin, and choose to Bulk Export it. Give the exporter the name of your new
module and it will create a file and populate it with nearly all the code necessary for you.

Handling a view field
As you may have noticed in the preceding code that you typed or pasted, Views makes
tremendous use of handlers. What is a handler? It is simply a script that performs a special
task on one or more elements. Think of a house being built. The person who comes in to tape,
mud, and sand the wallboard is a handler.

In Views, one type of handler is the field handler, which handles any number of things,
from providing settings options in the field configuration dialog, to facilitating the field being
retrieved from the database if it is not part of the primary record, to rendering the data.
We will create a field handler in this recipe that will add to the display of a zip code a string
showing how many other nodes have the same zip code, and we will add some formatting
options to it in the next recipe.

Getting ready
A handler lives inside a module, so we will create one:

1.	 Create a directory in your contributed modules path for this module.

2.	 Open a new text file in your editor and paste the following code into it:
; $Id:
name = Zip Code Handler
description = Provides a view handler to format a field
 as a zip code
package = D7 Views Recipes
; Handler
files[] = d7vrzch_handler_field_zip_code.inc
files[] = d7vrzch_views.inc

version = "7.x-1.0"
core = "7.x"
php = 5.2

Chapter 6

153

3.	 Save the file as d7vrzch.info.

4.	 Create another text file and paste the following code into it:
<?php
/**
 * Implements hook_views_data_alter()
 */
function d7vrzch_field_views_data_alter(&$data, $field) {
 if (array_key_exists('field_data_field_zip_code', $data)) {
 $data['field_data_field_zip_code']['field_zip_code']
 ['field']['handler'] = 'd7vrzch_handler_field_zip_code';
 }
}

5.	 Save the file as d7vrzch.views.inc.

6.	 Create another text file and paste the following into it:
<?php
/**
 * Implements hook_views_api().
 */
function d7vrzch_views_api() {
 return array(
 'api' => 3,
 'path' => drupal_get_path('module', 'd7vrzch'),);
}

7.	 Save the file as d7vrzch.module.

How to do it...
1.	 Create another text file and paste the following into it:

<?php
// $Id: $

/**
 * Field handler to format a zip code.
 *
 * @ingroup views_field_handlers
 */
class d7vrzch_handler_field_zip_code extends
 views_handler_field_field
{
 function option_definition() {
 $options = parent::option_definition();

Creating Views Programmatically

154

 $options['display_zip_totals'] = array(
 'contains' => array(
 'display_zip_totals' => array('default' => FALSE),
)
);

 return $options;
 }

 /**
 * Provide a link to the page being visited.
 */
 function options_form(&$form, &$form_state) {
 parent::options_form($form, $form_state);
 $form['display_zip_totals'] = array(
 '#title' => t('Display Zip total'),
 '#description' => t('Appends in parentheses the number of
 nodes containing the same zip code'),
 '#type' => 'checkbox',
 '#default_value' => !empty($this->
 options['display_zip_totals']),
);
 }

 function pre_render(&$values) {
 if (isset($this->view->build_info['summary']) ||
 empty($values))
 {
 return parent::pre_render($values);
 }
 static $entity_type_map;

 if (!empty($values)) {
 // Cache the entity type map for repeat usage.
 if (empty($entity_type_map)) {
 $entity_type_map = db_query('SELECT etid, type FROM
 {field_config_entity_type}')->fetchAllKeyed();
 }

 // Create an array mapping the Views values to their
 object types.
 $objects_by_type = array();

 foreach ($values as $key => $object) {

Chapter 6

155

 // Derive the entity type. For some field types,
 etid might be empty.
 if (isset($object->{$this->aliases['etid']}) &&
 isset($entity_type_map[$object->{$this->
 aliases['etid']}]))
 {
 $entity_type = $entity_type_map[$object->{$this->
 aliases['etid']}];
 $entity_id = $object->{$this->field_alias};
 $objects_by_type[$entity_type][$key] = $entity_id;
 }
 }

 // Load the objects.
 foreach ($objects_by_type as $entity_type => $oids) {
 $objects = entity_load($entity_type, $oids);

 foreach ($oids as $key => $entity_id) {
 $values[$key]->_field_cache[$this->field_alias] = array(
 'entity_type' => $entity_type,
 'object' => $objects[$entity_id],
);
 }
 }
 }
 }

 function render($values) {
 $value = $values->_field_cache[$this->field_alias]
 ['object']->{$this->definition['field_name']}
 ['und'][0]['safe_value'];
 $newvalue = $value;

 if (!empty($this->options['display_zip_totals'])) {
 $result = db_query("SELECT count(*) AS recs FROM
 {field_data_field_zip_code} WHERE field_zip_code_value =
 :zip",array(':zip' => $value));
 foreach ($result as $item) {
 $newvalue .= ' (' . $item->recs . ')';
 }
 }

 return $newvalue;
 }

Creating Views Programmatically

156

2.	 Save the file as d7vrzch_handler_field_zip_code.inc.

3.	 Navigate to admin/build/modules and enable the new module, which shows as
the Zip Code Handler.

4.	 We will test the handler in a quick view. Navigate to admin/build/views.

5.	 Click on the + Add new view link, enter test as the View name, check the box for
description and enter Zip code handler test; clear the Create a page checkbox, and
click on the Continue & edit button.

6.	 On the Views edit page, click on the add link in the Filter Criteria pane, check the box
next to Content: Type, and click on the Add and configure filter criteria button.

7.	 In the Content: Type configuration box, select Home and click the Apply button.

8.	 Click on the add link next to Fields, check the box next to Content: Zip code, and
click on the Add and configure fields button.

9.	 Check the box at the bottom of the Content: Zip code configuration box titled Display
Zip total and click on the Apply button.

10.	 Click on the Save button and see the result of our custom handler in the Live preview:

How it works...
The Views field handler is simply a set of functions that provide support for populating and
formatting a field for Views, much in the way a printer driver does for the operating system. We
created a module in which our handler resides, and whenever that field is requested within a
view, our handler will be invoked. We also added a display option to the configuration options
for our field, which when selected, takes each zip code value to be displayed, determines how
many nodes have the same zip code, and appends the parenthesized total to the output.

The three functions, two in the views.inc file and one in the module file, are very important.
Their result is that our custom handler file will be used for field_zip_code instead of the
default handler used for entity text fields. In the next recipe, we will add zip code formatting
options to our custom handler.

Chapter 6

157

Styling a view field
In the preceding recipe, we created a module for a custom field handler for a zip code and a
small test view to see the result. In this recipe, we will add styling options to the handler to
offer the user a choice of output styles.

Getting ready
This recipe continues from what was created in the Handling a view field recipe. If you have
not yet tried that recipe, please do, so that you will have the module and view necessary
for this recipe.

Edit one of the home content types (or add a few if you have none). At least two of the nodes
should have the same zip code, and at least one should have a nine-digit zip code without a
hyphen, for example, 12345789.

How to do it...
Carry out the following steps:

1.	 Edit the file d7vrzch_handler_field_zip_code.inc and insert the following
highlighted code in the options_form() function:
 function options_form(&$form, &$form_state) {
 parent::options_form($form, $form_state);
 $form['display_zip_totals'] = array(
 '#title' => t('Display Zip total'),
 '#description' => t('Appends in parentheses the number
 of nodes containing the same zip code'),
 '#type' => 'checkbox',
 '#default_value' => !empty
 ($this->options['display_zip_totals']),
);
 $form['type'] = array(
 '#type' => 'select',
 '#title' => t('Formatter'),
 '#options' => array(
 t('Zip+4 or Zip'),
 t('Zip'),
 t('Alphanumeric')

Creating Views Programmatically

158

),
 '#default_value' => $this->options['type'],
);
 }

2.	 In the same file, just prior to the final }, insert the following code:
 function _make_zip($value, $zip_type=2) {
 // remove the hyphen if present
 $zip = explode('-', $value);
 switch ($zip_type) {
 case 0: // zip+4 or zip depending on size
 if (is_numeric($zip[0])) {
 $value = $zip[0];
 if (sizeof($zip) > 1) {
 if (is_numeric($zip[1])) {
 $value .= '-' . $zip[1];
 }
 }
 else {
 if (strlen($zip[0]) > 5) {
 $value = substr($zip[0],0,5);
 if (strlen($zip[0] == 9)) {
 $value .= '-' . substr($zip[0],5,4);
 }
 }
 }
 }
 break;
 case 1: // zip (trim to 5)
 if (is_numeric($zip[0]) && strlen($zip[0] >= 5)) {
 $value = substr($zip[0],0,5);
 }
 break;
 case 2: // no format change
 break;
 }
 return $value;
 }
 }

3.	 Save the file.

4.	 Navigate to admin/structure/views and edit the test view.

Chapter 6

159

5.	 Click on the link in the Fields box for Fields: field_zip_code, and at the bottom of the
configuration box, select Zip+4 or Zip from Formatter, clear the Display Zip total
checkbox, and click on the Apply button. This will provide a result as shown in the
following screenshot:

6.	 Click on the same field link once again, and this time select Zip from the
Formatter and click on the Apply button, resulting in the output shown in the
following screenshot:

How it works...
The Formatter select box in the field configuration screen is merely a form field that passes
along the selected value. The code we put in place created three options that are then fulfilled
by a formatting function. The first option displays the zip code as either Zip+4 (12345-6789)
or zip (12345), depending. If the zip code is numeric and either of the format xxxxxxxxx or of
xxxxx-xxxx, it will be displayed as Zip+4, if 5 digits, as a regular zip code. The second option is to
always display in a zip format, so that a longer zip code will be truncated to five digits. The third
option leaves the zip code unformatted, which would be good for alphanumeric postcodes.

Creating Views Programmatically

160

Fine tuning the query
The Views UI is a powerful query builder tool, in addition to its other functionalities, but
sometimes the SQL query generated by it is not precisely what you want it to be. In this recipe,
we will make a change to a view query.

Getting ready
This recipe continues from the test view and code created in the Handling a view field recipe.
If you have not yet tried that recipe, please do, so that you will have the module and view
necessary for this recipe.

How to do it...
Carry out the following steps:

1.	 Edit the module file d7vrzch.module and add the following code:
/**
 * Implements hook_views_query_alter
 */
function d7vrzch_views_query_alter(&$view, &$query) {
 if ($view->name == 'test') {
 $query->orderby[0]['field'] =
 'field_data_field_zip_code_node_entity_type';
 $query->orderby[0]['direction'] = 'ASC';
 }
}

2.	 Save the file.

3.	 Edit the test view to see the preview, as shown in the following screenshot:

Chapter 6

161

How it works…
The underlying query in a view is made available as a data structure at various points in
the view rendering process. We made use of a hook into the process and altered the query
structure to change the sort field.

Why would you want to do this instead of simply using the Views UI? The Views UI is good
for users to manipulate a view, given the applicable permissions, but those changes would
be persisted until the view was changed again. In addition, you may want aspects of the
underlying query to be handled dynamically, determined based on the data being queried, the
user doing the query, or other factors.

7
Views Administration

In this chapter, we will cover some basic administration, including:

ff Exporting a view

ff Importing a view

ff Bulk exporting views

ff Cloning a view

Introduction
When working with multiple views and/or sites, it can become quite tedious creating every
view from scratch. There are, however, ways to avoid this predicament. We will cover how to
copy views, whether to another view or another site.

Exporting a view
Exporting a single view can be done very easily, but might not be something you have tried.
Let's export one now. We will export a view that is installed with the Views module.

Getting ready
Navigate to the views list (admin/structure/views) and enable the teasers_with_
backlinks view if it is not already enabled.

Views Administration

164

How to do it...
Carry out the following steps:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Click on the down-arrow next to the Edit link for the teasers_with_backlinks view
and click on the Export link, as shown in the following screenshot:

3.	 A textarea box populated with the php code required to recreate the view will appear.
The first part of that code is shown in the following screenshot. Simply copy all the
text from the textbox, paste it into a file, and save it. The filename and extension are
of no importance; however, just be sure to remember what you name it and where
you put it:

How it works...
The export tool generates the code necessary to create the data structure that is created by
the settings chosen for your view in the Views UI.

Chapter 7

165

There's more...
If you are familiar with phpMyAdmin, the export will have looked familiar to you, as both tools
function in a similar fashion. Similar to the SQL tool, the export is often followed by an import.

Importing a view
The tool to import a view will typically be used when moving from or to another site. When
working within a site, the Clone function will typically be more useful. Still, importing is
typically quick and painless. Let's try one.

Getting ready
We will be using the export code from the previous recipe, so take a minute and execute that
recipe now if you have not yet done so.

How to do it...
Carry out the following steps:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Click on the + Import link.

3.	 Under the import dialog that opens, provide a new name for the view. This will be a
"machine name", meaning you should use lower-case letters, and underscore is the
only punctuation allowed.

Remember that the view's name appears in the export code. If
you are importing into a site where a view with that name already
exists, you must provide a new name to avoid a collision.

Views Administration

166

4.	 Paste the code to be imported into the Paste view code here textbox and click on the
Import button as shown in the following screenshot:

5.	 Now in the Views UI, remember to save your view!

How it works...
The import function takes the code that was exported and executes the php instructions,
which are equivalent to having created a new view through the UI and manually selecting
each of the view settings.

There's more...
Though simple, exporting and importing individual views is not the most efficient method
when you have many in one site that need to be migrated. In that situation, it is much better
to perform a bulk export, and that is the next recipe.

Bulk exporting views
One drawback of having views being stored in the database is that it makes it almost
impossible to version the views. Keeping it in the code can overcome that, and also result in
the code being executed more quickly. Not everyone is up to writing a view in the code though.

Chapter 7

167

Moving views from one site to another can seem a problem, as the views are kept in several
tables in the database. One can export each view, and then import it at the other site, but if
you have many views, it can quickly become tedious. Being able to export several views at one
time would be much better.

Views come with an Exporter module that resolves both of the preceding issues. It allows
views created in the Views UI to be exported to a module.

Getting ready
The Views Exporter module needs to be enabled in order to use this recipe.

How to do it...
Carry out the following steps:

1.	 Navigate to the Views List page (admin/structure/views) and click on the Bulk
Export tab, as shown in the following screenshot:

2.	 Select the views to be exported, as shown in the following screenshot:

Views Administration

168

3.	 Scroll down past the end of the file list and enter a name for the module in which you
will use the exported code, and then click on the Export button, as depicted in the
following screenshot:

4.	 The Views Exporter module will give you three windows of code. The first you will save
as my_module.info, the second as my_module.module, and the third as my_
module.views.inc, replacing each occurrence of my_module with the name you
provide for the module in step 4. The three files should be saved in a folder, typically
with the same name as the module, and that folder should be located in the same
directory used for custom modules on your site, probably sites/all/modules.

5.	 After saving the files, clear the cache (admin/config/development/
performance).

6.	 Enable the new module, and your views will be found in the Views UI list.

How it works...
There are two files needed to create a module: the .info file, which describes the module,
and the .module file, which contains the module code. The Views Exporter module creates
these files, as well as the file that contains the code for creating a programmatic view. The
reason you need to provide a module name is that this name is used in calls within the three
files, and so needs to be known prior to code generation.

There's more...
You will notice that with your newly-modularized views, the choice of Delete has been
removed from the views list in the admin panel and has been replaced with Disable. As the
view is no longer in the database, it cannot be deleted, but it can be disabled, even though
the module itself is enabled.

For whatever reason, there could be situations when you want the view to be residing in the
database again instead of in a module. The easiest way to do this is to clone the view, which,
once saved, will be a database-resident copy.

Chapter 7

169

Cloning a view
Sometimes, you will need to create a view that is similar to another. There is no reason to
create a new view and each setting within it systematically, when you can simply copy the
original view and then make whatever changes you need.

How to do it...
Carry out the following steps:

1.	 Navigate to the Views List page (admin/structure/views).

2.	 Select the view that you wish to clone and click on its clone link (on the Operations
drop-down)

3.	 The dialog that appears next is the same as when creating a view. Other than that,
the view type cannot be changed; it must be the same as the original view. Choose
a new name for the view, and change the description and/or tag(s) if you wish, and
click on the Next button.

4.	 When the UI appears, be sure to save the view; it is not permanent until you do so.

A
Installing Views

In this chapter, we will cover the installation of Views.

In Drupal 7, the manner in which modules are installed has been greatly simplified. They can
still be downloaded onto your computer and uploaded to your Drupal site as with Drupal 6,
though the module package no longer needs to be decompressed, but the easier way is to
simply provide the Drupal installer a URL for the module and let it do all the work.

Many people continue to have trouble getting the installer to function as
designed, including me. If it seems to simply 'sit there' without downloading
the module(s), switch to the manual method.

So, where do you obtain the URL? You can obtain it from the Drupal.org project site. Every
contributed add-on module for Drupal has a project page. There, you will find a description
about the module, links to its support page, download package, and sometimes, even
documentation. These pages are found at http://drupal.org/project/module_name,
where module_name is the desired module. Often, if there is more than one word in its title,
the words will be connected by an underscore. In our case, we will navigate to http://
drupal.org/project/Views.

You will often find that there is more than one version of the module available. You will want
the URL of the download link for the Recommended version for the right Drupal release; 7.x
for our use.

Installing Views

172

Take care when you use versions that have a suffix of Alpha, Beta, or
Dev. Alpha means that the module is raw and is for community testing,
and at this point, any of its features are subject to change. Beta is further
along, and while the features are probably 'frozen', there can still be many
bugs. Dev is a development snapshot, and can go from working to not
working on any or all features from snapshot to snapshot. None of these
is recommended for use in a production site. It is best to use a standard
release, such as 7x-3.0, without a suffix.

Installing Views
Carry out the following in order to install Views:

1.	 Navigate to the Views project page at http://drupal.org/project/views
and scroll down to the Downloads section, as shown in the following screenshot:

2.	 We can see that at this time, the recommended release of Views for Drupal 7.x is 7.x-
3.0. We will install it. On a PC, right-click over the Download link beside that release
and copy the link location. Choose the version you want, ZIP, or tar.gz. On a Mac,
control-click over the link and choose the appropriate Finder command.

Appendix A

173

3.	 Navigate to the module's install page (admin/modules/install) and paste the
URL you copied into the Install from a URL text box, and click on the Install button.

4.	 When the install has completed, click on the link to activate the new module. On the
module page, scroll down to the Views module (probably at or near the bottom of the
page) and check the boxes for Views, Views exporter, and Views UI, then click the
Save configuration button.

5.	 If the installer does not work for you, download the package (ZIP or tar.gz) to your
computer, decompress it, and use an FTP client to upload the resulting Views folder
to the directory you are using for contributed modules, which is usually sites/all/
modules.

6.	 Navigate to the modules admin page, admin/modules, and at a minimum, enable
Views and Views UI.

B
Entity Types and

Fields

This appendix discusses the details of the entity types and fields that are used in this book,
and the instructions for creating them.

The content types can be downloaded and imported by using
the Bundle Copy module (instructions are included with the
downloadable files). It can be downloaded from the code download
link on the Packt site.

Creating content type: Country
This content type is used in the Teaming two content lists recipe in Chapter 4, Creating
Advanced Views.

Details
The details of this content type are as follows:

ff Name: Country

ff Comments: None

ff Author information: None

ff Field: Area (field_country_area)

ff Type: Integer

ff Format: Text field

Entity Types and Fields

176

Creating content type: Country
Use the following steps in order to create the Country content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.
2.	 Click on the +Add content type link.
3.	 Enter Country in the Name textbox.
4.	 Enter Country information in the Description textbox.
5.	 Click on Display settings.
6.	 Clear the Display author and date information checkbox.
7.	 Click on Comment settings.
8.	 Select Hidden from the Default comment setting for new content select box.
9.	 Click on the Save and add fields button.
10.	 Click on the delete link for the Body field and confirm the deletion.
11.	 Under the Add new field enter Area in the Label textbox.
12.	 Enter country_area in the Field name textbox.
13.	 Select Text from the Type of data to store select box.
14.	 Click on the Save button.
15.	 Click on the Save field settings button.
16.	 Click on the Save settings button.

Creating content type: Course
This content type is used in the Understanding relationships recipe in Chapter 3, Intermediate
Custom Views.

Create this content type after the Department content type

Details
The details of this content type are as follows:

ff Name: Course

ff Comments: None

ff Author information: None

ff Field: Course Number (field_course_number)

Appendix B

177

ff Type: Text

ff Format: Text field

ff Field: Course credits (field_course_credits)

ff Type: Integer

ff Min: 1

ff Max: 12

ff Field: Department (field_department_ref)

ff Type: Node reference

ff Format: Checkboxes

Creating content type: Course
Carry out the following steps in order to create the Course content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Course in the Name textbox.

4.	 Enter College course in the Description textbox.

5.	 Click on Display settings.

6.	 Clear the Display author and date information checkbox.

7.	 Click on Comment settings.

8.	 Select Hidden from the Default comment setting for new content select box.

9.	 Click on the Save and add fields button.

10.	 Under the Add new field enter Course number in the Label textbox.

11.	 Enter course_number in the Field name textbox.

12.	 Select Text from the Type of data to store select box.

13.	 Click on the Save button.

14.	 Enter 36 as the Maximum length.

15.	 Click on the Save field settings button.

16.	 In the Course settings box, enter 12 in the Size of text field textbox.

17.	 Click on the Save field settings button.

18.	 Under Add new field enter Course credits in the Label textbox.

19.	 Enter course_credits in the Field name textbox.

20.	 Select Integer from the Type of data to store select box.

Entity Types and Fields

178

21.	 Click on the Save button.

22.	 Click on the Save field settings button.

23.	 In the Course settings box, enter 1 in the Minimum textbox.

24.	 Enter 12 in the Maximum textbox.

25.	 Click on the Save settings button.

26.	 Under Add new field enter Department in the Label textbox.

27.	 Enter department_ref into the Field name textbox.

28.	 Select Node reference from the Type of data to store select box. (Note that the CCK
contributed module provides this field type).

29.	 Select Checkboxes/radio buttons from the Widget select box.

30.	 Click on the Save button.

31.	 Check the checkbox for Department content type.

32.	 Click on the Save field settings button.

33.	 Click on the Save settings button.

Creating content type: Department
This content type is used in the Understanding relationships recipe in Chapter 3, Intermediate
Custom Views.

Details
The details of this content type are as follows:

ff Name: Department

ff Comments: None

ff Author information: None

ff Field: Chairman (field_department_chairman)

ff Type: Text

ff Format: Text field

ff Field: Phone (field_department_phone)

ff Type: Text

ff Format: Text field

ff Field: Degrees (field_department_degrees)

ff Type: Long text

ff Format: Text area

Appendix B

179

Creating content type: Department
Carry out the following steps in order to create the Department content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Department in the Name textbox.

4.	 Enter College departments in the Description textbox.

5.	 Enter Department name in the Title field label textbox.

6.	 Click on the Display settings.

7.	 Clear the Display author and date information checkbox.

8.	 Click on the Comment settings.

9.	 Select Hidden from the Default comment setting for new content select box.

10.	 Click on the Save and add fields button.

11.	 Under Add new field enter Chairman in the Label textbox.

12.	 Enter department_chairman in the Field name textbox.

13.	 Select Text from the Type of data to store select box.

14.	 Click on the Save button.

15.	 Click on the Save field settings button.

16.	 Click on the Save settings button.

17.	 Under Add new field enter Phone in the Label textbox.

18.	 Enter department_phone in the Field name textbox.

19.	 Select Text from the Type of data to store select box.

20.	 Click on the Save button.

21.	 Click on the Save field settings button.

22.	 Click on the Save settings button.

23.	 Under Add new field enter Degrees in the Label textbox.

24.	 Enter department_degrees in the Field name textbox.

25.	 Select Long text from the Type of data to store select box.

26.	 Click on the Save button.

27.	 Click on the Save field settings button.

28.	 Click on the Save settings button.

29.	 Click on the Save button.

Entity Types and Fields

180

Creating content type: Employee
This content type is used in the Forming a dashboard with Page, Block and Attachment
Displays recipe in Chapter 4, Creating Advanced Views.

Details
The details of this content type are as follows:

ff Name: Employee
ff Comments: None
ff Author information: None
ff Field: Department (field_employee_dept)
ff Type: Text
ff Format: Text field
ff Field: Position (field_employee_position)
ff Type: Text
ff Format: Text field
ff Field: Employee ID (field_employee_id)
ff Type: Text
ff Format: Text field

Creating content type: Employee
Carry out the following steps in order to create the Employee content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Employee in the Name textbox.

4.	 Enter Company employees in the Description textbox.

5.	 Enter Employee name in the Title field label textbox.

6.	 Click on Display settings.

7.	 Clear the Display author and date information checkbox.

8.	 Click on Comment settings.

9.	 Select Hidden from the Default comment setting for new content select box.

10.	 Click on the Save and add fields button.

11.	 Under Add new field enter Department in the Label textbox.

Appendix B

181

12.	 Enter employee_dept in the Field name textbox.

13.	 Select Text from the Type of data to store select box.

14.	 Click on the Save button.

15.	 Click on the Save field settings button.

16.	 Click on the Save settings button.

17.	 Under Add new field enter Position in the Label textbox.

18.	 Enter employee_position in the Field name textbox.

19.	 Select Text from the Type of data to store select box.

20.	 Click on the Save button.

21.	 Click on the Save field settings button.

22.	 Click on the Save settings button.

23.	 Under Add new field enter ID in the Label textbox.

24.	 Enter employee_id in the Field name textbox.

25.	 Select Text from the Type of data to store select box.

26.	 Click on the Save button.

27.	 Click on the Save field settings button.

28.	 Click on the Save settings button.

29.	 Click on the delete link for the Body field and confirm the deletion.

30.	 Click on the Save button.

Creating content type: Extension
This content type is used in the Forming a dashboard with Page, Block and Attachment
Displays recipe in Chapter 4, Creating Advanced Views.

Details
The details of this content type are as follows:

ff Name: Extension

ff Comments: None

ff Author information: None

ff Field: Employee ID (field_employee_id)

ff Type: Text

ff Format: Text area

Entity Types and Fields

182

Creating content type: Extension
Carry out the following steps in order to create the Extension content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Extension in the Name textbox.

4.	 Enter Employee extensions in the Description textbox.

5.	 Enter Extension in the Title field label textbox.

6.	 Click on Display settings.

7.	 Clear the Display author and date information checkbox.

8.	 Click on Comment settings.

9.	 Select Hidden from the Default comment setting for new content select box.

10.	 Click on the Save and add fields button.

11.	 Under Add existing field selection, select field_employee_id from the Select an
existing field select box.

12.	 Enter Employee ID in the Label textbox.

13.	 Click on the Save button.

14.	 Click on the Save field settings button.

15.	 Click on the Save settings button.

16.	 Click on the delete link for the Body field and confirm the deletion.

17.	 Click on the Save button.

Creating image style: Exhibit
This content type is used in the Changing the Frontpage view, recipe in Chapter 1, Modifying
Default Views and Image styles recipe in Chapter 5, Intermediate Custom Theming Views.

Details
The details of this content type are as follows:

ff Effect: Scale and crop

ff Width: 480px

ff Height: 640px

Appendix B

183

Creating image style: Exhibit
Carry out the following steps in order to create the Exhibit content type:

1.	 From the admin Configuration page (admin/config) click on Image styles.

2.	 Click on +Add style link.

3.	 Enter Exhibit in the Style name textbox.

4.	 Click on the Create new style button.

5.	 Select Scale and crop in the Effect select box.

6.	 Click on the Add button.

7.	 Enter 480 in the Width textbox.

8.	 Enter 640 in the Height textbox.

9.	 Click on the Add effect button.

10.	 Click on the Update style button.

Creating image style: Exhibit_teaser
This content type is used in the Changing the Front Page View, recipe in Chapter 1, Modifying
Default Views and Image styles recipe in Chapter 5, Intermediate Custom Theming Views.

Details
The details of this content type are as follows:

ff Effect: Scale and crop

ff Width: 120px

ff Height: 160px

Creating image style: Exhibit_teaser
Carry out the following steps in order to create the Exhibit_teaser content type:

1.	 From the admin Configuration page (admin/config) click on Image styles.

2.	 Click on +Add style link.

3.	 Enter exhibit_teaser in the Style name textbox.

4.	 Click on the Create new style button.

5.	 Select Scale and crop in the EFFECT select box.

6.	 Click on the Add button.

Entity Types and Fields

184

7.	 Enter 120 in the Width textbox.

8.	 Enter 160 in the Height textbox.

9.	 Click on the Add effect button.

10.	 Click on the Update style button.

Creating image style: Exhibit_block
This content type is used in the Changing the Frontpage view, recipe in Chapter 1, Modifying
Default Views and Image styles recipe in Chapter 5, Intermediate Custom Theming Views.

Details
The details of this content type are as follows:

ff Effect: Scale and crop

ff Width: 240px

ff Height: 320px

Creating image style: Exhibit_block
Carry out the following steps in order to create the Exhibit_block content type:

1.	 From the admin Configuration page (admin/config) click on Image styles.

2.	 Click on +Add style link.

3.	 Enter exhibit_block in the Style name textbox.

4.	 Click on the Create new style button.

5.	 Select Scale and crop in the EFFECT select box.

6.	 Click on the Add button.

7.	 Enter 240 in the Width textbox.

8.	 Enter 320 in the Height textbox.

9.	 Click on the Add effect button.

10.	 Click on the Update style button.

Creating content type: Gallery
This content type is used in the Changing the Frontpage view, recipe in Chapter 1, Modifying
Default Views and Image styles recipe in Chapter 5, Intermediate Custom Theming Views.

Appendix B

185

Details
The details of this content type are as follows:

ff Name: Gallery

ff Comments: None

ff Author information: None

ff Field: Image exhibit (field_image_exhibit)

ff Type: Image

ff Format: Image exhibit

Creating content type: Gallery
Carry out the following steps in order to create the Gallery content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Gallery in the Name textbox.

4.	 Enter Gallery exhibits for use on the alternate front page in the Description textbox.

5.	 Click on Display settings button.

6.	 Clear the Display author and date information checkbox.

7.	 Click on the Comment settings button.

8.	 Select Hidden from the Default comment setting for new content select box.

9.	 Click on the Menu settings button.

10.	 Clear the Main menu checkbox.

11.	 Click on the Save and add fields button.

12.	 Under Add new field enter Exhibit image in the Label textbox.

13.	 Enter exhibit_image in the Field name textbox.

14.	 Select Image from the Type of data to store select box.

15.	 Click on the Save button.

16.	 Click on the Manage display tab.

17.	 Select <hidden> from the LABEL (column) select box for the Exhibit image field
(row).

18.	 Select Image exhibit from the FORMAT (column) select box for Exhibit image (row).

19.	 Click on the CUSTOM DISPLAY SETTINGS link.

Entity Types and Fields

186

20.	 Check the Full content checkbox.

21.	 Click on the Teaser tab.

22.	 Select <hidden> from the LABEL (column) select box for the Exhibit image field
(row).

23.	 Select Image exhibit from the FORMAT (column) select box for Exhibit image (row).

24.	 Click on the Save button.

Creating content type: Home
This content type is used in the Winning that argument in Chapter 2, Basic Custom Views,
Nodes within nodes recipe in Chapter 3, Intermediate Custom Views, and Creating a view
with multiple personalities recipe in Chapter 4, Creating Advanced Views.

Details
The details of this content type are as follows:

ff Name: Home

ff Comments: None

ff Author information: None

ff Field: Zip code (field_zip_code)

ff Type: Text

ff Format: Text field

ff Field: Image exhibit (field_image_exhibit)

ff Type: Image

ff Format: Image exhibit

Creating content type: Home
Carry out the following steps in order to create the Home content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Home in the Name textbox.

4.	 Enter Homes for sale in the Description textbox.

5.	 Enter MLS ID in the Title field label textbox.

6.	 Click on the Display settings button.

Appendix B

187

7.	 Clear the Display author and date information checkbox.

8.	 Click on the Comment settings button.

9.	 Select Hidden from the Default comment setting for new content select box.

10.	 Click on the Menu settings button.

11.	 Clear the Main menu checkbox

12.	 Click on the Save and add fields button.

13.	 Under Add new field enter Zip code in the Label textbox.

14.	 Enter zip_code in the Field name textbox.

15.	 Select Text from the Type of data to store select box.

16.	 Click on the Save button.

17.	 Enter 10 into the Maximum length textbox.

18.	 Click on the Save field settings button.

19.	 Click on the Save field settings button on the next screen.

20.	 Under Add existing field select Image: field_image from the Field to share
select box.

21.	 Enter Home image in the Label textbox.

22.	 Drag the field and drop it below the Zip code field.

23.	 Click on the Save button.

24.	 Click on the Save settings button.

25.	 Under Add existing field select Image: field_product_price from the Field to share
select box.

26.	 Enter House price in the Label textbox.

27.	 Drag the field and drop it below the Home image field.

28.	 Click on the Save button.

29.	 Click on the Save settings button.

30.	 Click on the Manage display tab.

31.	 Select Inline from the LABEL (column) select box for the Zip code field (row).

32.	 Select <hidden> from the LABEL (column) select box for the Home image field (row).

33.	 Select Image medium from the FORMAT (column) select box for Home image (row).

34.	 Select <hidden> from the LABEL (column) select box for the House price field (row).
35.	 Click on the CUSTOM DISPLAY SETTINGS link.

36.	 Check the Full content checkbox.

37.	 Click on the Teaser tab.

Entity Types and Fields

188

38.	 Select Inline from the LABEL (column) select box for the Zip code field (row).

39.	 Click on Default from the FORMAT select box.

40.	 Select <hidden> from the LABEL (column) select box for the House price field (row).

41.	 Click on Default from the FORMAT select box.

42.	 Select <hidden> from the LABEL (column) select box for the Home image field (row).

43.	 Select Image medium from the FORMAT (column) select box for Home image (row).

44.	Click on the Save button.

Creating content type: Ingredient
This content type is used in the Displaying a table of entity fields recipe in Chapter 3,
Intermediate Custom Views.

Details
The details of this content type are as follows:

ff Name: Ingredient

ff Comments: None

ff Author information: None

ff Field: Quantity (field_ingredient_quantity)

ff Type: Decimal

ff Format: Text field

ff Field: Measure (field_ingredient_measure)

ff Type: Text

ff Format: Text field

Creating content type: Ingredient
Carry out the following steps in order to create the Ingredient content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Ingredient into the Name textbox.

4.	 Enter Bulk ingredient for shopping list in the Description textbox.

5.	 Click on the Publishing Options.

6.	 Enter Name in the Title field label textbox.

Appendix B

189

7.	 Click on Display settings button.
8.	 Clear the Display author and date information checkbox
9.	 Click on the Comment settings button.
10.	 Select Hidden from the Default comment setting for new content select box.
11.	 Click on the Save and add fields button.
12.	 Under the Add new field enter Quantity in the Label textbox.
13.	 Enter ingredient_quantity in the Field name textbox.
14.	 Select Decimal from the Type of data to store select box.
15.	 Select Text field from the Form element to edit the data select box.
16.	 Click on the Save button.
17.	 In Quantity field settings, click on the Save settings button.
18.	 Under the Add new field enter Measure in the Label textbox.
19.	 Enter ingredient_measure in the Field name textbox.
20.	 Select Text from the Type of data to store select box.
21.	 Select Text field from the Form element to edit the data select box.
22.	 Click on the Save button.
23.	 In the Field settings dialog box, click on the Save button.
24.	 In Measure field settings, click on the Save settings button.
25.	 Click on the Save button.

Creating content type: Product
This content type is used in the Creating a Random Ad Block recipe in Chapter 2, Basic
Custom Views and A Marketing Bundle recipe in Chapter 4, Creating Advanced Views.

Details
The details of this content type are as follows:

ff Name: Product

ff Comments: None

ff Author information: None

ff Field: Product image (field_product_image)

ff Type: Image

ff Format: Image exhibit

ff Field: Product price (field_product_price)

ff Type: Decimal

Entity Types and Fields

190

Creating content type: Product
Carry out the following steps in order to create the Product content type:

1.	 From the Admin structure menu (admin/structure) click on Content types

2.	 Click on the +Add content type link.

3.	 Enter Product in the Name textbox.

4.	 Enter Products for sale in the Description textbox.

5.	 Click on Display settings.

6.	 Clear the Display author and date information checkbox.

7.	 Click on Comment settings button.

8.	 Select Hidden from the Default comment setting for new content select box.

9.	 Click on the Save and add fields button.

10.	 Under Add new field enter Product image in the Label textbox.

11.	 Enter product_image in the Field name textbox.

12.	 Select Image from the Type of data to store select box.

13.	 Click on the Save button.

14.	 Under Add new field enter Product price in the Label textbox.

15.	 Enter product_price in the Field name textbox.

16.	 Select Decimal from the Type of data to store select box.

17.	 Click on the Save button.

18.	 Click on the Save settings button.

19.	 Enter $ in the Prefix field or any other currency symbol in the Prefix or Suffix field.

20.	 Click on the Save settings button.

21.	 Click on the Manage display tab.

22.	 Select <hidden> from the LABEL (column) select box for the Product image field
(row).

23.	 Select medium from the FORMAT (column) select box for Product image (row).

24.	 Select <hidden> from the LABEL (column) select box for the Product price field
(row).

25.	 Select default from the FORMAT (column) select box for Product price (row).

26.	 Click on the CUSTOM DISPLAY SETTINGS link.

27.	 Check the Full content checkbox.

28.	 Click on the Teaser tab.

Appendix B

191

29.	 Select <hidden> from the LABEL (column) select box for the Product image field
(row).

30.	 Select medium from the FORMAT (column) select box for Product image (row).

31.	 Select <hidden> from the LABEL (column) select box for the Product price field
(row).

32.	 Select default from the FORMAT (column) select box for Product price (row).

33.	 Rearrange the fields by dragging them so that order is Product image, Product price,
and Body.

34.	 Click on the Save button.

Creating content type: Real Estate flier
This content type is used in the Nodes within nodes recipe in Chapter 3, Intermediate
Custom Views.

Details
The details of this content type are as follows:

ff Name: Real Estate flier

ff Comments: None

ff Author information: None

ff Field: Property (field_home_nid)

ff Type: Node reference

ff Format: Select list

Creating content type: Real Estate flier
Carry out the following steps in order to create the Real Estate flier content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Real Estate flier in the Name textbox.

4.	 Enter Body text and node references for the Week's hot properties textbox.

5.	 Click on the Display settings button.

6.	 Clear the Display author and date information checkbox.

7.	 Click on the Comment settings button.

8.	 Select Hidden from the Default comment setting for new content select box.

Entity Types and Fields

192

9.	 Click on the Save and add fields button.

10.	 Under Add new field enter Property in the Label textbox.

11.	 Enter home_nid in the Field name textbox.

12.	 Select Node reference from the Type of data to store select box.

13.	 Choose Select list from the Widget select box.

14.	 Click on the Save button.

15.	 Check the box next to Home.

16.	 Click on the Save field settings button.

17.	 Select Unlimited in the Number of values select box.

18.	 Click on the Save settings button.

19.	 Click on the Save button.

Creating content type: Sponsor
This content type is used in the Creating a Dynamic Links display block and Creating
a Random Ad block recipes in Chapter 2, Basic Custom Views.

Details
The details of this content type are as follows:

ff Name: Sponsor

ff Comments: None

ff Author information: None

ff Field: Sponsor logo (field_sponsor_logo)

ff Type: Image

ff Format: Thumbnail

Creating content type: Sponsor
Carry out the following steps in order to create the Sponsor content type:

1.	 From the Admin structure menu (admin/structure) click on Content types.

2.	 Click on the +Add content type link.

3.	 Enter Sponsor in the Name textbox.

4.	 Enter Event sponsor in the Description textbox.

5.	 Enter Sponsor name in the Title textbox.

Appendix B

193

6.	 Click on the Display settings button.
7.	 Clear the Display author and date information checkbox.
8.	 Click on the Comment settings button.
9.	 Select Hidden from the Default comment setting for new content select box.
10.	 Click on the Menu settings button.
11.	 Clear the Main menu checkbox.
12.	 Click on the Save and add fields button.
13.	 Under Add new field enter Sponsor logo in the Label textbox.
14.	 Enter sponsor_logo into the Field name textbox.
15.	 Select Image from the Type of data to store select box.
16.	 Click on the Save button.
17.	 Click on the Manage display tab.
18.	 Select <hidden> from the LABEL (column) select box for the Sponsor logo field (row).
19.	 Select thumbnail from the FORMAT (column) select box for Sponsor logo (row).
20.	 Select <hidden> from the LABEL (column) select box for the Body field (row).
21.	 Drag the Sponsor logo field above the Body field.
22.	 Click on the Save button.
23.	 Click on the Full content tab.
24.	 Select <hidden> from the LABEL (column) select box for the Sponsor logo field (row).
25.	 Select thumbnail from the FORMAT (column) select box for Sponsor logo (row).
26.	 Select <hidden> from the LABEL (column) select box for the Body field (row).
27.	 Drag the Sponsor logo field above the Body field.
28.	 Click on the Save button.
29.	 Click on the Teaser tab.
30.	 Select <hidden> from the LABEL (column) select box for the Sponsor logo field (row).
31.	 Select thumbnail from the FORMAT (column) select box for Sponsor logo (row).
32.	 Select <hidden> from the LABEL (column) select box for the Body field (row).
33.	 Drag the Sponsor logo field above the Body field.
34.	 Click on the Save button.

Creating taxonomy tags
This content type is used in the Using related content: Adding depth to a term ID recipe in
Chapter 4, Creating Advanced Views.

Entity Types and Fields

194

Creating taxonomy tags
Carry out the following steps in order to create the taxonomy tags content type:

1.	 Navigate to admin/structure/taxonomy/tags/add, enter Tourist Info in the
Name field, click on the Relations link, ensure that <root> is selected in the Parent
terms list box, and click on the Save button.

2.	 Enter Dining in the Name field, click on the Relations link, select Tourist Info in the
Parent terms list box, and click on the Save button.

3.	 Enter Sightseeing in the Name field, click the on Relations link, select Tourist Info in
the Parent terms list box, and click on the Save button.

4.	 Enter Lodging in the Name field, click the on Relations link, select Tourist Info in the
Parent terms list box, and click on the Save button.

5.	 Enter Group Tours in the Name field, click on the Relations link, select Sightseeing
in the Parent terms list box, and click on the Save button.

Index
Symbols
$fields array 114
+Add button 21, 108
+Add link 10
+Add new view link 28, 46, 50, 74, 130, 156
+Create new filter group link 83
+Import link 165
.info file 142, 151, 168
.module file 142, 168

A
Access content via a taxonomy term menu 21
Add and configure button 56, 78, 104
Add and configure filter criteria button 28,

30, 32, 58, 156
Add and configure sort criteria button 34, 90
Add attachment button 130
add button 96
Add existing field section 50
Add link 28
Add new filter group link 51
Add page button 75
A different front page 15
Administrator radio button 39
administrators

user view, providing 38-41
Advanced link 92
Advanced settings box 47
AJAX

using, for page changes 58, 59
A list of all content, by letter, with author

selection 17
Analyze button 51
Apply and configure filters button 46

Apply and continue button 55, 86
Apply button 28, 39, 47, 60, 94, 121, 156
Apply default button 125
arguments 42, 44
article-comments-recent 9
attached menu

creating, for taxonomy term view 20-23
attachment

dashboard, forming with 85-89
attachment display 17
Attachment settings dialog box 17, 18
attachment view 20
author_glossary 17
Author Glossary link 18

B
backlinks

about 11
filtering, steps 12, 14

block
dynamic Links display block 32, 33
paged block display 30, 31
random ad block 33-35
template creating, steps 125
theming 124
view list page, steps 124, 125
working 126

Block display button 32
Block display option 9, 11
block displays 30
Blocks Admin page 32, 34, 45, 47
Block settings block 9
Block settings box 45, 47
Browse content menu tab 28
Bulk Export tab 167

196

bulleted list
creating, multiple content types used 46-48
creating, views used 44, 45

C
Clone function 165
Clone link 8, 10
Configure field Content: Post date box 75
Configure field Fields

 Body box 53-55
 Quantity box 54

content
about 69-71
visibility, limiting 96, 97

Content: Type configuration box 156
content lists

teaming 89-91
Content Published or Admin configuration box

30
content type

about 62
country 175
course 176-178
department 178
employee 180
extension 181, 182
gallery 184
home 186
ingredient 188, 189
product 189, 190
real estate flier 191, 192
sponsor 192, 193

Continue and edit button 28, 38, 46, 55, 58,
67, 69, 74, 78, 156

country, content type
creating, steps 176
details 175

course, content type
creating, steps 177, 178
details 176, 177

Create a label textbox 66
Create a menu link checkbox 28
Create a page checkbox 156
Create a page section 50, 74
cron command 12

custom links
producing 67, 68

D
d7vrpv_list_all_nodes() 151
dashboard

forming, with attachment 85-89
forming, with block 85-89
forming, with page 85-89

Delete button 21
department, content type

creating, steps 179
details 178

Description box 28, 34
Display comments for recent articles 8
Display format section 103
Display outline list 102
Display output line 101
Display type section 21
Display Zip total checkbox 159
Drupal 7

view installation, steps 172, 173
Dynamic filters box 24
dynamic fiters 42
Dynamic Links display block

creating, steps 32, 33

E
Edit tab 69
employee, content type

creating, steps 180, 181
details 180

entity fields table
displaying 53, 54

exhibit, image style
creating, steps 183
details 182

Exhibit_teaser, image style
creating, steps 183, 184
details 183, 184

exporter module 167
Expose button 24
extension, content type

creating, steps 182
details 181

197

F
field

file_directory_path() function 105
template creating, steps 104, 105
theming 103
view creating, steps 103, 104
working 106

field handler, view 152-156
field_zip_code 156
file_directory_path() function 105
filter 69-71
Filter Criteria panel 28, 30, 32
filtering 81-84
Filters box 10
Filters section 75
food-topics page 83
Force single checkbox 24
formatter select box 159
Frontpage view

changing 14-16

G
gallery, content type

creating, steps 185, 186
details 185

glossary view
entries, selecting for specific user 17-20

grid
new view display creating, steps 108, 109
template creating, steps 109, 110
theming 108

H
Hide if empty checkbox 21
home, content type

creating, steps 186-188
details 186

I
ImageCache 136
image styles

about 136
attachment display creating, steps 138

block display, editing 137, 138
exhibit 182
Exhibit_block 184
Exhibit_teaser 183
page display, editing 137
views list 136

import button 166
import function 166
ingredient, content type

creating, steps 188, 189
details 188

Items per page textbox 127

L
Link this field to its term page checkbox 21
list-all-nodes 151

M
Manage fields tab 50
Management menu 40
marketing bundle 77-81
Master: Add filters 8, 10
Master display 18
Menu label textbox 38
module

creating 142-151
view, creating 142

monthly archive view
about 10
filter, adding 10

multiple content types
used, for creating bulleted list 46-48

multiple displays
course list attachment creating, steps 130,

131
department list attachment creating, steps

131
page display completion, steps 132
template creating, steps 133-135
theming 130
view list page, steps 130
working 135

multiple personalities
view, creating with 74-77

196

N
Next button 8, 17, 24, 50
NID 92
nid value 68
Node: Type checkbox 8
nodes

selecting 27-29
Type configuration box 47
within nodes 65-67

node’s ID. See NID
node teasers

preparing for 50
selecting, content based 50-52
selecting, types based 50-52

node type value 68

O
OK button 36
Output this field as a link checkbox 21
Override button 21

P
page

dashboard, forming with 85-89
page changes

AJAX, using 58, 59
paged block display

creating 30
creating, steps 30, 31

Page display option 8, 11, 17
Page settings block 9, 11
Page settings box 51
Page tab 51
page template

changing 100
changing, steps 100
working 101

Paste view code here textbox 166
product, content type

creating, steps 190, 191
details 189

Product image box 55
Property configuration box 66

Q
query. See also view query
query

grouping in 62-65

R
random Ad block

creating, steps 34, 35
real estate flier, content type

creating, steps 191, 192
details 191

Recent article comments view 9
recent comments

about 8
selecting, for specific node type 8, 9

relationship
about 59
view list page 60

Remove button 18
row

template creating, steps 115, 116
theming 114
view creating, steps 115
working 116

rows
template creating, steps 117-120
theming 117
working 120

RSS feed
template creating, steps 122
theming 121
view list page, steps 121, 122
working 123

S
Save blocks button 31, 32
Save button 15, 28, 76, 79, 156
Save configuration button 51
seven theme 40
Show option 50, 67, 69, 74
Shows all new activity on system by role 24
sortable table

with footer 55-57
with header 55-57

199

Sort criteria box 39, 76
Sort Criteria section 75
Sponsor ad block 33
sponsor, content type

creating, steps 192, 193
details 192

Style output line 109
Subsets of blog posts 50
sub-theme structure and inheritance article

URL 100

T
table

new view display creating, steps 111
template creating, steps 112, 113
theming 111
view list page 111
working 114

Taxonomy: Term field 21
taxonomy tags

creating 193
creating, steps 194

taxonomy_term_menu 21
taxonomy term view

attached menu, creating 20-23
teasers_with_backlinks view 164
term

depth, adding 93-95
term’s ID. See TID
theming

block 124
field 103
grid 108
multiple displays 130
row 114
rows 117
RSS feed 121
table 111
view page 127

Theming information overlay 101
TID

about 92
depth, adding 91-93

tracker
reporting, for certain user role 23, 24

U
Update and continue button 30, 32
Update and Override button 22
Update button 8, 15, 24, 39, 61
user view

providing, for administrators 38-41

V
view

blog entry, using 74
bulk export 166, 167
bulk export, steps 167, 168
cloning 169
cloning, steps 169
creating, with module 142
creating, with multiple personalities 74--77
edit page, settings 55, 56
exporting 163
exporting, steps 164
field handler 152-156
home content types, using 74
importing 165
importing, steps 165, 166
installing, steps 172, 173
list page 55
modules admin page 173
modules install page 173
project page, URL 172
Save configuration button 173
teasers_with_backlinks view 164
using, to create bulleted list 44, 45
working 57

view content filter
using 36
using, steps 36, 37

view field
handling 152-156
styling 157
styling, steps 157, 159

View List page 85
view module 7
view page

about 8, 17
template creating, steps 127, 128

200

view template
about 101
creating 101, 102
naming 101, 102
working 102, 103

W
WHERE clause 37, 43
Wrap field in HTML box 90

theming 127
view list page, steps 127
working 129

view query
modifying 160

views_api event 151
Views Bulk Export module 152
views_default_views event 151
views.inc file 156
Views List page 28, 38
views-view.tpl.php file 101

Thank you for buying

Drupal 7 Views Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 450 pages

Over 130 easy to follow recipies backed up with real life
examples, walking you through the basic Ext JS features
to advanced application design using Sencha Ext JS

1.	 Learn how to build Rich Internet Applications with
the latest version of the Ext JS framework in a
cookbook style

2.	 From creating forms to theming your interface, you
will learn the building blocks for developing the
perfect web application

3.	 Easy to follow recipes step through practical and
detailed examples which are all fully backed up
with code, illustrations, and tips

Sencha Touch Mobile
JavaScript Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google Android
touchscreen devices with this first HTML5 mobile
framework

1.	 Learn to develop web applications that look and
feel native on Apple iOS and Google Android
touchscreen devices using Sencha Touch through
examples

2.	 Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3.	 Add custom events like tap, double tap, swipe, tap
and hold, pinch, and rotate

Please check www.PacktPub.com for information on our titles

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1.	 Learn how to use the PhoneGap mobile
application framework

2.	 Develop cross-platform code for iOS, Android,
BlackBerry, and more

3.	 Write robust and extensible JavaScript code

4.	 Master new HTML5 and CSS3 APIs

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows Phone
and Blackberry

1.	 Solve your cross platform development issues
by implementing device and content adaptation
recipes.

2.	 Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development.

3.	 Incorporate HTML5-rich media and geo-location
into your mobile websites.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Modifying Default Views
	Introduction
	Selecting recent comments for a specific node type
	Focusing the Archive view
	Filtering the backlinks
	Changing the Frontpage view
	Selecting the Glossary view entries for a specific user
	Creating an Attached Menu for the Taxonomy Term view
	Reporting Tracker activity for a certain user role

	Chapter 2: Basic Custom Views
	Introduction
	Selecting all the nodes
	Creating a Paged block display
	Creating a Dynamic Links display block
	Creating a Random Ad block
	Using a View Content filter
	Providing a user view for administrators
	Winning that argument
	Using views to create a bulleted list
	Creating bulleted lists using multiple content types

	Chapter 3: Intermediate Custom Views
	Introduction
	Selecting node teasers based on types and contents
	Displaying a table of entity fields
	Sortable table with a header and footer
	Using AJAX for page changes
	Understanding relationships
	Grouping in a query
	Nodes within nodes
	Producing custom links
	Proving a negative with a filter and an
argument

	Chapter 4: Creating Advanced Views
	Introduction
	Creating a view with multiple personalities
	Marketing bundle
	Filtering with 'or'
	Forming a dashboard with Page, Block, and Attachment displays
	Teaming two content lists
	Using related content: Adding depth to a term ID
	Using related content: Adding depth to a term
	Limiting visibility of content

	Chapter 5: Intermediate Custom Theming Views
	Introduction
	Changing the page template
	Creating and naming a view template
	Theming a field
	Theming a grid
	Theming a table
	Theming a row
	Theming rows
	Theming an RSS feed
	Theming a block
	Theming a view page
	Theming multiple displays
	Image styles

	Chapter 6: Creating Views
Programmatically
	Introduction
	Programming a view
	Handling a view field
	Styling a view field
	Fine tuning the query

	Chapter 7: Views Administration
	Introduction
	Exporting a view
	Importing a view
	Bulk exporting views
	Cloning a view

	Appendix A: Installing Views
	Installing Views

	Appendix B: Entity Types and Fields
	Creating content type: Country
	Creating content type: Course
	Creating content type: Department
	Creating content type: Employee
	Creating content type: Extension
	Creating image style: Exhibit
	Creating image style: Exhibit_teaser
	Creating image style: Exhibit_block
	Creating content type: Gallery
	Creating content type: Home
	Creating content type: Ingredient
	Creating content type: Product
	Creating content type: Real Estate flier
	Creating content type: Sponsor
	Creating taxonomy tags

	Index

