Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 1

Ruby On Rails Development
in Visual Studio®

UserR GUIDE / MANUAL TO RUBY IN STEEL

SAPPHIRESTEEL SOFTWARE
HTTP://WWW.SAPPHIRESTEEL.COM

http://www.sapphiresteel.com/

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 2

Introduction

Ruby In Steel is a Ruby IDE for Microsoft Visual Studio 2008 or 2005. Developed by
SapphireSteel Software, it is available in two principal editions:

Ruby In Steel Developer

Aimed at professional programmers, Ruby In Steel Developer is a powerful editing and
debugging environment for Ruby and Ruby On Rails. Its intelligent inference engine provides
numerous Ruby IntelliSense features; it includes the ultra-fast 'Cylon' debugger and
SapphireSteel Software’s unique drag and drop Ruby On Rails design environment, The
Visual Rails Workbench.

Ruby In Steel Text Edition

Ruby In Steel Text Edition provides project management, editing and debugging tools for
Ruby and Rails development and includes integrated debugging (but not the fast Cylon
debugger). It may either be installed ‘standalone” (in which case it also installs a ‘Ruby-flavor’
version of Visual Studio 2008) or it may be integrated into an existing version of Visual Studio
2008 if one is present on your PC.

Other Editions

From time to time, Ruby In Steel may also be made available in ‘Personal’ editions. These
may offer a subset of the features of one of the editions above. For example, IronRuby In Steel
‘Personal Edition” contains only those features needed to develop programs using Microsoft’s
IronRuby for .NET. Not all the features described in this manual apply to these editions.

This Manual

This is the official reference manual and user guide to Ruby In Steel. Note that not all the
features are available in the Text Edition.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 3

The Installation Guide

Before installing Ruby In Steel, be sure to read the Installation Guide, Installation
Instructions.pdf, supplied with the software.

To buy or download the latest versions of both the Ruby In Steel software and this
manual and to keep up to date with news and tutorials, be sure to visit the
SapphireSteel web site:

http://www.sapphiresteel.com

http://www.sapphiresteel.com/
http://www.sapphiresteel.com/
http://www.sapphiresteel.com/

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 4

Installation

Requirements: You must have Visual Studio 2008 or 2005 (Standard edition or higher),
Windows XP (service pack 2) or Vista and a Ruby interpreter (ruby.exe). Alternatively, you
may optionally install a single-language (Ruby) version of Visual Studio 2008 at no additional
cost using our ‘All-in-one” installer.

How To Install Ruby In Steel

IMPORTANT! If you need to install a free Ruby language edition of Visual Studio
2008, a Ruby interpreter, the Rails framework, the MySQL database or any
combination of these components, you can do so using our “All-in-one” installer
available on the Ruby In Steel Download page.

The Installation Guide

If you need help choosing which components to install, please read the separate Installation
Guide (PDF format) which is supplied with the software. This explains every step of the
installation procedure in detail.

Quick Install...

If you have a previous version of Ruby In Steel installed, be sure to remove this first:
Select Start Menu, then Settings, Control Panel, Add Or Remove Programs. Finally, select the
Ruby In Steel item and click the Remove button.

Unzip the Ruby In Steel installation archive into a directory of your choice (for example,
C:\temp). This directory will now contain the files needed for the installation of Ruby In Steel.

Make sure that Visual Studio is not running when installing (or uninstalling) Ruby In Steel.

http://www.sapphiresteel.com/spip?page=download

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 5

FIRST, INSTALL YOUR KEY

If you have a licensed edition of Ruby In Steel, you should have received or downloaded a
'key file' with your order. The key file is named key.bin. This must be copied into the same
directory as Setup.exe. For example, if you unzipped the installation files (including
Setup.exe) into C:\temp you must copy key.bin into C:\ temp before installing Ruby In Steel.

Marme

?sﬂup.exe
@ key.bin
@Prujectﬂggregamrz.msi

i cteelPackane . msi

If you are installing Ruby In Steel into an existing version of Visual Studio...

First ensure that you have downloaded the appropriate version of the installer (either for
Visual Studio 2005 or 2008) then follow these steps...

Double-click Setup.exe to begin installation. After a few moments you will see the Ruby In
Steel Installer Splash screen. Select all the options you wish to install and follow all directions
throughout the setup process. The Ruby In Steel installer displays this registration dialog:

® Registration

Enter your Registered User Name and Seral Number exactly as
these appear in your Order Information.

Registered User Name

John Bubyuser

Senal Number

100333333 |m Ok | | Cancel |

In the Registration Dialog, you should enter the following details:

* Registered User Name
This is the name that the product is licensed to (without quotation marks).
e Serial Number
This is the Order number which will have been sent with your order conformation.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 6

You must enter these details EXACTLY (uppercase and lowercase characters, punctuation
and spaces are significant). Click OK to confirm registration details.

If an error message appears, please verify that you have entered the user name and
serial number correctly and that the file, key.bin, has been copied into the directory
containing Setup.exe.

When complete you will see a screen stating 'Installation Complete'. Press the Close button
and you are now ready to load Visual Studio with Ruby In Steel.

Checklist On First Using Ruby In Steel

When you load Ruby In Steel for the first time, you should check that the paths to the Ruby
Interpreter and, optionally, to your database server(s), are correct:

See 'Configure Ruby and Database Paths'.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 7

Five Minute Guide To Ruby In Steel

IF THIS IS THE FIRST TIME YOU'VE USED RUBY IN STEEL, THIS STEP-BY-STEP WALKTHROUGH WILL EXPLAIN HOW
TO CREATE AND RUN YOUR FIRST PROGRAM IN A MATTER OF MINUTES...

Create a New Project

You can start a new Ruby In Steel project just as you would start any other Visual Studio

project.

Select the File menu, then New, then Project.

T3 — |
Hews Braject 2
- (=
Pregeet s Terrgiates: B
® Visus L= Wirual Siedes nvtalied templates
Radery B St
% Ofher Larguealls A by Project & ausds Prject
Deyrinned §ydner Soimons fimoert Praject
& Oither Project Tymes
My Templates
i Search Online Templates..
& repwr Bpby progect
e Rubiy T
L e G s bewt v] B ..
Sokton: (Create M S b w| [7] Create drectory for solmen
[Rubey 7 [et Sanrce Comtral
Lo [concd]

The New Project Dialog

When the New Project dialog appears, select the Ruby In Steel branch in the left-hand pane.
For now we shall create a plain vanilla Ruby project so make sure the Ruby Project icon is

selected in the right hand window.

Project types: Templates:
Visual C# Visual Studio installed templates
Ruby In Steel
Other Languades 9 Ruby Project

Distributed System Solutions £ Import Project

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 8

Give the project a name by filling out the Name: field at the bottom of the dialog (for now
enter the name RubyTest). If you wish, you may click the Browse button to select a directory,
otherwise you may accept the default location. If you check the 'Create directory for solution'
button, a new subdirectory will automatically be created for your project. Now click OK.

Projects and Solutions...

Ruby In Steel organizes Projects in the form of branches in a Solution. A project is a
group of one or more files in one or more directories. A Solution is a a group of one or
more projects. You can add new projects by right-clicking the Solution at the top of
the Solution Explorer and selecting Add, New Project. The Solution Explorer provides a
convenient way of keeping related files grouped together from one work session to
the next. For Rails programmers, it also gives you an easy way of working with the
numerous folders comprising a Rails application.

When you create a new Ruby project, an empty source code file, rubyfile.rb, is added

automatically. Optionally, you may add more Ruby code files to the Project using the
Solution Explorer. Let's do that now: right-click the indented Project branch (not the top-level
Solution itself) and select Add, then New Item...

Solution Explorer - RubyTest -~ 1 X
=2 | 3
J Solution 'RubyTest' (1 project)
2+ RubyTest
(#¥)| Buid
Febuild
Clean
- NewItem... M m Add »
:i:|| Existing Item... Add Reference...
4| Mew Folder Set as Startlp Project

When adding a new Ruby file, right-click the indented Project branch and select Add, New Item

In the Add New Item dialog, select the Ruby File item (this will create an empty Ruby file) and
give it the name, test.rb, in the field at the bottom of the dialog. Then click Add.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 9

Visual Studio installed templates

‘E?F‘.uby File
[@|Empty RullyHTML File

Now you are ready to start writing your program. Enter the following:

def sayHello(aName)

print ("Hello, ", aName)
end
puts ("What is your name?")
name = gets|()

sayHello (name)

Notice that Ruby In Steel automatically color codes the text as you enter it so that reserved
words such as def and end are obviously different from method names such as print or
sayHello and strings such as “Hello”. It also 'outlines' your code so that the body of a method
such as def sayHello can be hidden from sight by clicking the minus symbol in the 'button' to
the left of its name or made visible again by clicking the plus symbol.

Code Collapsing

Ruby In Steel has advanced 'code collapsing' capabilities. It collapses methods,
modules, classes, if..else blocks, case statements, for, while and until loops, blocks
delimited by { and } or by do and end - and more besides...

To run the program , press CTRL+F5. If there is a syntax error a window pops up to tell you.
Click the error message to locate the problem code in the editor. Fix the error and try again.
When any syntax errors are fixed, press CTRL+F5 again and your program will run inside an
interactive integrated console window, seen below the editor here...

test.rb - M
1 def sayHello(aName) jf
2 L print("Hello, ", aName)}
3L end
5. puts("what is your name?")
6. name = gets()
71 sayHello(name) —
£ >
Ruby (stopped) >~ 0 X

What i= your name?
Huw
Hello, Huw

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 10

Project Management

RUBY IN STEEL LETS YOU CREATE, IMPORT AND MANAGE COMPLEX PROJECT GROUPS COMPRISING NUMEROUS
FILES AND FOLDERS.

Create A New Project

Ruby In Steel organizes your programs in the form of one or more projects grouped together
as a Solution. To make use of all the editing and debugging features, you must create a
project to which your Ruby files are added.

How To Create A New Ruby Project

1. Select the File menu, then New, Project (or simply press CTRL+SHIFT+N).

2. In the New Project Dialog select the Ruby In Steel Project type in the left pane.

3. Select the Ruby Project icon in the right pane.

4. Enter a name for the new project and optionally browse to find an empty directory.

5. You may optionally select Create directory for solution.
6. Click OK.

vV V.V VvV VY

Importing and Converting Projects

If you have an existing Ruby or Rails project that you wish to import into Ruby In Steel, you
may either make a complete new copy of the existing project in a new directory on disk or
you may convert the project 'in place' (Developer Edition only) by creating a Visual Studio
Solution in the top-level directory of the original project.

A 'project' may be any group of files and directories on disk. In the case of a Rails
application, the top-level directory of a project is normally the folder whose name
identifies the application (e.g. \MyBlog) and which contains the various Rails
directories such as \app and \config. When imported into Visual Studio, the files and
directories will be added into a Visual Studio 'Solution file' and they will then appear
beneath a Project branch in the Solution Explorer.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 11

How To Import A Project

FOLLOW THESE STEPS TO COPY FILES TO A NEW LOCATION AND IMPORT THEM INTO A VISUAL
STUDIO SOLUTION...

vV V.V V VYV VYV

Select the File menu, then New, Project (or simply press CTRL+SHIFT+N).

In the New Project Dialog select the Ruby In Steel Project type in the left pane.
Select the Import Project icon in the right pane.

Enter a name for the new project and optionally browse to find an empty directory.
You may optionally select Create directory for solution (this is recommended).

Click OK.

The Import Project dialog now appears...

| |

Choose Directory Containing Project To Impart ..
G railsapps depot MyDepot App [:]

Import Into Tanget Directory (already selected)
G:MRiSScrapProjects Project3

Exclude optional semicolon delimited file estensions - e.g. b;log
log; oo

Exclude hidden files and directories?
[] Railz project ?

A |

QK l [Cancel

Here the first field is the source directory of the Project you wish to import. You can
click the button to the right of this field to browse and find the directory containing
this project.
The second field is the target directory (which you previously chose in the New Project
dialog) into which the old project will be copied in order to create your new Ruby In
Steel project. This field is read-only. The target directory must not be the same as the
source directory.
In the third field you may optionally specify one or more extensions of file types which
should not be imported. The file extensions should be entered following a period and
separated by semicolons like this:

Jog;.tmp;.xyz
When the 'Exclude hidden files and directories' Check Box is selected, Hidden files and
hidden directories will not be added to the imported project.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 12

> If this is a Ruby On Rails project, be sure to check the 'Rails project?' checkbox. This will
enable certain Rails-specific features for the imported project such as the One-Click
Rails Debugger.
> Before the project is imported, a 'Creation and Import Data’ dialog is displayed. This
shows the following information:
Total number of files to be copied
Solution name
Solution directory
Import from directory
Database
> You should verify that these details are correct. In particular, check the number of files
which will be copied. If you have selected more files than you actually intended (by
accidentally selecting the wrong source directory, perhaps), now is your last chance to
back out.
> If all the details are correct, click the Proceed button to begin the import process.

Ruby In Steel will copy the entire directory structure and all the files it contains to the Target
location of the new project. Any files which you have specifically excluded will be copied to
the target directory but will not be added to the Solution Explorer.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 13

Notes on Importing Projects

1) We recommend that you always create a new directory for an imported project. We caution
against attempting to copy files into a directory which already contains source files. The
project importer will overwrite any similarly named files and directories in the target
directory.

2) The “top level’ directory of your existing Rails project (that is, the one you import from) will
normally be the directory which ‘names’ the project (e.g. \Blog) and which contains various
subdirectories such as \app, \components, \config and so on. When making a copy of a
project, the Importer copies all the files in a Rails project into the new target directory. It will
not make any changes to the database or configuration files.

3) If you have created solution files using previous versions of Ruby In Steel, you may find
that the old solution files do not display correctly in the Solution Explorer. Use the Project
Importer to convert them for use with the latest version of the software.

4) The Solution Explorer cannot include file (and path) names with certain special-purpose
names or XML-specific characters such as '&' or single-quotes. The Project importer will copy
such files to the selected Target directory but will not add them to the Solution Explorer.
Omitted files will be listed in the General page of the Visual Studio Output window. You may
view all files (including those excluded from the project, by selecting Project, Show All Files).

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 14

How To Convert A Project

[Developer Edition Only]

FOLLOW THESE STEPS TO CREATE A VISUAL STUDIO SOLUTION IN THE SAME DIRECTORY AS AN EXISTING
PROJECT...

When a project is 'converted’, existing files and folders are added to the Solution
Explorer. No modifications are made to the files themselves. The Convert option may
not be available in some configurations of Visual Studio. In that case, use Import.

> Select the File menu, then Open and Convert...
> In the Convert dialog, select Ruby Converter Wizard

Available Corverters:

= |5,
EEJ |:’:}J.Ewa Language Conversion Assistant 3.0

= |
%EE Visual Basic 2005 Upgrade Wizard

=
l3,[$’VRUI:W Converter Wizard

Ruby Conwverter Wizard

¥} Add to current solution
{:} Create new solution

I Ok m.” Cancel

> Click Create New Solution if you wish to create a Solution specifically for this project. If
you already have a Solution open in Visual Studio and you wish to add your Ruby
solution as a Project in that solution, click Add to Current solution. Click OK

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 15

The Convert Project dialog appears. Here you must choose the directory containing the Ruby
(or Rails) files and directories which you wish to convert. You may click the Browse button
[...] to select a directory.

r |

Choose Directory To Convert ..
G railsappsihellowordd [:]

Mame of converted project
HelloWWarld

Exclude optional semicolon delimited file extensions - e.g. bd; log
log; 2000

Exclude hidden files and directories?

Rails project? %

| ok || cancel

> In the second field you should give a name for the converted project.

> In the third field, you may optionally specify one or more extensions of file types
which should not be imported. The file extensions should be entered following a
period and separated by semicolons like this:

Jog;.tmp;.xyz

> When the 'Exclude hidden files and directories' checkbox is selected, Hidden files and
hidden directories will not be added to the imported project.

> [f this is a Ruby On Rails project, make sure the 'Rails project?' checkbox is ticked. This
ensures you will be able to use Rails-specific features such as the One-Click Rails
debugger. Leave it unticked for other types of Ruby project.

> Click OK to convert the project and display the files in the Solution Explorer.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 16

Using The Solution Explorer

THE SOLUTION EXPLORER IS YOUR CONTROL CENTER FOR RUBY AND RAILS PROJECTS. HERE YOU CAN GROUP
TOGETHER NUMEROUS RELATED FILES AND FOLDERS AND ADD, REMOVE OR RENAME THEM AS REQUIRED.

To AbD A NEW PROJECT

Right-click the (top-level) Solution item. Select Add, New Project. Select the Project type from
the Add New Project Dialog and continue as explained earlier on how to create or import a
project.

To AbD A NEw FILE

Right-click a Project branch (indented beneath the top-level Solution item). Select Add, New
Item. Now select a file type (Ruby File creates an empty Ruby .rb file; Empty ERD File creates an
empty Rails 2 .html.erb template file; Empty RHTML File creates an empty Rails 1 .rhtml
template file). Various other types of file such as HTML, XML and text files can also be
added.

To AbD AN EXISTING FILE FROM DiIsSK

Right-click a Project branch. Select Add, Existing Item. Select a file on disk. Click Add.

To AbbD A NEW FOLDER

Right-click a Project Branch. Select Add, New Folder. This creates a subdirectory in the Project
directory.

To RENAME A FILE OR FOLDER

Select the File or Folder in the Solution Explorer. Press F2. Enter a new name.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 17

To ExcLUDE A FILE OR FOLDER FROM THE PROJECT

Right-click a File or Folder. Select Exclude From Project. This removes the item or items from
the project but does not delete them from disk.

To DELETE A FILE OR FOLDER

Right-click a File or Folder. Select Delete. Or press the Delete key on your keyboard.

Caution: Deleting a file or folder from the Solution Explorer will also delete the file or
folder on disk!

DRAG-AND-DROP To CoPY OR MOVE

You may select files or folders and move them to other locations in a solution by dragging
with the mouse. To copy rather than move files, hold the CTRL key while dragging.

To SHow ALL FILES

Normally the Solution Explorer does not display files which are not included in a Ruby or
Rails project but may, nonetheless, be present on disk (these include the Visual Studio and
Ruby In Steel solution and project files — the extensions .sln, .suo and .stproj), files with the
extension .log and files which you have specifically excluded from the project. You can force
the display of all files in the application directories by selecting Show All Files from the Project
menu; this also expands all branches of the Solution Explorer. Click the menu item again to
resume the default view. The Solution Explorer itself also has a small Show All Files button
(when a project node is selected) beneath its caption bar.

ToO SYNCHRONIZE

If tiles have been added or deleted from a project's directory outside of Visual Studio, the
display of the files in the project can be brought up to date by clicking the Synchronize button
beneath the Solution Explorer's caption bar. For more information, see: Synchronize.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 18

To OPEN A COMMAND PROMPT IN A DIRECTORY

j Open
Qpen With...

[Z]| view Code

Exclude From Project

o Cut

=3 Copy

Rename

|E Command Prompt f%

i=4| Properties

With Ruby In Steel there is no need to navigate to a directory from the system prompt. Just
right-click a file or folder in the Solution Explorer and select Command Prompt from the menu.
This opens a command window in the selected directory.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 19

File Properties

You can select a file in the Solution Explorer and set its properties in the Properties panel.
These properties can be used to configure certain operations affecting the way in which the
file will be run or built. The available properties are shown below:

Property Description

Arguments Arguments to pass to your program

BuildAction How to build/run this file

Flags Flags to pass to Ruby.exe such as -help, -w or
--version

Load Paths Specify $LOAD_PATH; this is a semicolon

delimited list (equivalent to the -I flag)

Require Files a semicolon delimited list of required files
(equivalent to the —r flag)

Working Directory The directory in which the Ruby file will run

NOTES ON BUILDACTION:

The default BuildAction for Ruby (.rb) files is Ruby; and for a Rails (.html.erb or .rhtml)
template files it is EmbeddedRuby. For other file types it may be None or Content. Other
options may be displayed but currently have no effect and are reserved for future use. You
may change these build actions as required. These are the build actions available:

Ruby - checks the Ruby syntax of the file.
EmbeddedRuby — processes the file using ERB, the embedded Ruby processor.
Content/None — takes no action.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 20

Project Properties

A number of settings can be applied to the current project using the Project Properties Pages
(available from the Project menu).

Note: If you do not specify Project properties, the properties of the current project will
automatically adopt the global options (available via Tools/Options). When specified,
however, Project properties take precedence over global properties. In addition, file
properties (set in the Properties page for a file selected in the Solution Explorer) take
precedence over Project properties. Not all properties are available in all editions of
Ruby in Steel.

There are two pages of Project Properties:

GENERAL

This page specifies the defaults for the current project. These properties are used with all
configurations for this project.

BUILD

This page allows you to modify and save named configurations which may be selectively
loaded in the current project. For example, you might save three named configurations:
Debug, Test and Release, each of which has different properties for items such as the Ruby
Interpreter, the Ruby Script Arguments or the Rails Server Port. When you wish to switch
from one configuration to another, you may select the configuration name from the drop-
down ‘Solution Configurations’ list just beneath the Visual Studio main menu.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 21

To Create a New Project Configuration

Select Build, Configuration Manager.

Click the Active solution configuration drop-down.
Click <New...>

Enter a name for this configuration.

Click OK.

Click Close.

V VV V V V

To set Build Properties for a Named Configuration

> Select Project, Project Properties.
> Select the Build tab.
» From the Configuration drop-down select a Configuration name.

> Change any properties for this configuration and click File, Save AlL

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 22

General Page Project Properties

DEBUGGER
> Allow Editing While Debugging

When true allows the code to be edited when debugging. Otherwise code file is set to
read-only

AUTOS WINDOW OPTIONS...

The following options determine which details will be displayed in the Autos window
when debugging. Be aware that there is a trade-off between completeness and speed.
When all options are enabled, there may be a noticeable delay in evaluating large data
structures. This is particularly true in Rails when - for example - the evaluation of self
may involve huge amounts of data. In general, it is better to use the Watch windows to
monitor specific variables.

Autos Window (Class Variables)
Autos Window (Global Variables)
Autos Window (Instance Variables)
Autos Window (Object Methods)
Autos Window (self)

Autos Window (Singleton Methods)

O O O O O O

> [Enable Just-In-Time Debugging
When true, an exception will trigger the debugger.

> F5 Starts Ruby
When true in a Rails project, F5/CTRL-F5 debug/run current Ruby file. When false,
they debug/run the Rails application.

> Keep Stack Frames
When true, stack frames are stored to allow navigation up and down the stack using
the Call Stack window. When false, debugging is slightly faster but there is no Call-
stack navigation.

> One Breakpoint Per Line
When true, a line containing multiple expressions will cause a single step when
debugging.

> Substitute /) for “\’

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 23

If some breakpoints are not hit, this may be due to inability to match path names due
to the mix of //" and “\” path separators. Turn this on to fix this problem. Note that this
slows the debugger so should not normally be enabled by default.

> Use the Cylon Debugger

When true, the fast Cylon debugger will be used (in those Ruby In Steel editions where
it is available). When false, the much slower Ruby debugger is used.

RAILS
> ERD Flags

Any flags to pass to the ERb (Embedded Ruby) processor.
> ERD Library Files

Library files to be used by ERb (a semicolon delimited list).
> ERDb Processor

The path to the ERb processor (if you wish to override the default).
> ERb Timeout

The time in seconds allowed for the ERb processor to complete.
> Framework

The Rails framework version (e.g. Rails1 or Rails2). This property determines the
default extension used for Rails template files.
> Rails Project

True for a Ruby On Rails Project. Used for require files, IntelliSense and debugging.

RuBy
> Default Ruby Interpreter
The path to the default Ruby interpreter (e.g. ruby.exe).

SYNCHRONIZATION
> Exclude Directories

A line-delimited list of directories to omit when synchronizing.
> Exclude Extensions
A semicolon-delimited list of file extensions to omit when synchronizing. e.g.
Axt; .svn; .log
> Exclude Files With No Extension
When True files that have no filename extension are not synchronized.
> Exclude Hidden Files and Folders

When True, files and directories with the Hidden attribute set are not synchronized.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 24

VISUAL RAILS WORKBENCH

> Automatically Update Files

This determines whether changes in the active page design (e.g. changes that affect
shared layouts and partials) are synchronized in any other open page designs when
changes made to the active page design are ‘committed” - otherwise they will not be
synchronized.
> Design time image path
The path to which to append non-rooted image files in tags at design time. This
assists in displaying images in a specific path in the page designer.
> Diff/Merge Tool
An (optional) difference/merge tool to sue when comparing backup files and archive
tile with the current ERb or page layout document.
> Diff/Merge Tool Parameters
Any parameters which you wish to pass to your Difference/Merge tool.
> Page Design Style
An optional style block which can be used to define design-time styles to help
highlight the partial (.erb-partial) and view (.erb-view) components of a composite
page design in the Visual Rails Workbench. For example, the following styles will
outline a view in a 2 pixel dashed border in Navy and partials in a 2 pixel dotted
border in Green:
<style title="erb-style" type="text/css" xmlns=""><|--
/* SapphireSteel RWB styles */
.erb-view{ border: 2px dashed; border-color:Navy; }
.erb-partial{ border: 2px dotted; border-color:Green; }
-->¢</style>
> Use Visual Rails Workbench
When true, the Visual Rails Workbench integrated environment will be activated when
you edit Rails template files. When false, a simple ERb editor will be used.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 25

Build Page Project Properties

BuILD EVENTS

>

Misc

RAILS

Post-Build Event

a command to run after the 'build' completes.
Pre-Build Event

a command to run before the build' commences.

Working Directory

The directory in which IRB, Rails, Generate and Rake commands are executed.

Rails Script

The Ruby script used to start Rails from within Visual Studio.

Rails Server

The Server to be used when running a Rails application (you must ensure that the
selected server has been installed). Selecting an item here will automatically set the
Rails Script and Web Server Script properties.

Rails Server Port

The port (e.g. 3000) to be used for the Rails server (applied to Mongrel and WEBrick
only).

Web Server Script

The script used to start the web server.

The Rails Server and Scripts. The Rails Server property determines which server Rails
Server and web Server startup files to run. For example, selecting WEBrick will cause
the file webbrick servicerb to be selected as the Rails Script and the file
webbrick_server.bat as the Web Server Script. If necessary you may edit these files in
order to change the Ruby script and the path to the server. Note that some startup
files refer to files located in your Ruby installation and may require specialist
knowledge in order to change the default values. The server startup files are located in
the \scripts directory beneath your Ruby In Steel Installation.

RuUBY

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 26

Ruby Interpreter

The path to the Ruby interpreter (e.g. ruby.exe).

Ruby Interpreter Flags

Any flags (e.g. -w or —version) to be passed to the Ruby interpreter.

Ruby Library Files

Library files to be used by Ruby (a semicolon delimited list).

Ruby Library Paths

Paths to library files (a semicolon delimited list).

Ruby Script Arguments

Any arguments to be passed to a Ruby program.

Ruby Start File

The file that Ruby runs (if left blank, Ruby runs the currently active Ruby file).
Ruby Type

Determines which type of Ruby interpreter/compiler is being used when debugging.
(e.g. Standard Ruby or JRuby).

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 27

The Editor

THE RUBY IN STEEL EDITOR BUILDS UPON THE EDITING CAPABILITIES OF VISUAL STUDIO AND ADDS 'RUBY
SPECIFIC' FEATURES...

Overview

The Ruby In Steel editor provides enhanced code-coloring and collapsing for Ruby and Rails
tiles plus automated commenting/uncommenting, multi-level undo/redo, drag-and-drop
copy and paste, code indenting, incremental search with regular expressions, code formatting
and much more...

ladventure.rb® " Sloops.rb |© multi_sxcept_err.rb multi_except2.rb ¥ X
27 —
280 class Treasure < Thing lad
29 # Treasure descends from Thing
304 def initialize(aName, aDesc, aval }E
34 =
35093 def get_value cuper(aMame, aDesc)
36 return @value @value = aval
37 k- end end
38
3199 def set_wvalue(avalue)

40 @value = avalue
41: | end
42 Lend -]

Ruby In Steel provides syntax sensitive code coloring and collapsing

Syntax Coloring

> Ruby (.rb files)
Ruby In Steel automatically colors Ruby language elements including keywords, comments
and data types such as strings, floats and integers and Ruby-specific elements.

> Rails (.erb and .rhtml files)
Ruby In Steel colors html elements such as tags, strings and comments. In addition, the
language elements of embedded Ruby code are also colored.

> Configure Coloring
The colors can be altered to taste. Select the Tools menu then Options. In the Options dialog,
select Fonts and Colors. The Visual Studio colors for elements common to all languages (e.g.
Keyword or String) are used by Ruby In Steel. There are also some language specific coloring
options which are preceded by the names Ruby (e.g. Ruby Brace) or Rails (e.g. Rails Attribute).

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 28

Code Collapsing

> Automatic ‘outlining’ / code 'folding'
Ruby In Steel outlines your code so that you can selectively hide code blocks such as classes,
modules, methods and programming constructs such as if and while blocks. In .rhtml files,
code collapses on matching tags such as <body></body>. Note that collapsing is dependent
upon correct syntax. In .rhtml files, matching pairs of opening and closing tags are required.
Click the plus (+) or minus (-) symbols to toggle code collapsing.

Ruby elements which are auto-collapsed include:
e classes
e modules
e methods
e case statements
e if blocks
e while, unless, until, for loops
e =begin/=end comment blocks
e Dblocks{and } or do and end delimited

> Optional ‘mark and collapse areas’
If code blocks aren’t automatically outlined, you can mark and collapse any code you wish
using the mouse. This lets you hide ‘free standing’ code areas or comment blocks, for
example.

> View Tooltip of Collapsed Area
For a fast view of the hidden text in a collapsed area, hover your mouse over the three dots
indicating a collapsed area [...]. This will display the hidden code in a tooltip.

> Collapse To Definitions
To collapse to all 'top-level' outlines (e.g. all the Class headers in a file containing many
classes) right-click in the editor and select, Outlining, Collapse To Definitions.

> Hide Selection
You can optionally collapse areas which are not normally collapsed (e.g. a comment block).
Mark the area using the mouse then right-click and select Hide Selection.

Use the other options on the Outlining menu (right-click in the editor) to toggle the outlining
display throughout the current file.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 29

Bracket Matching

Ruby In Steel has automatic bracket matching and highlighting. Scroll your cursor over a
bracket in order to highlight a pair of matching brackets. Press CTRL+] to move the cursor
quickly from one matching bracket to another.

name' => 'Multi-Hash',
array’ => ['one', "two', "three’, "four'],
nested array' =>

[”I” \
["wandered”,"lonely", "as",

] ["a","cloud"]

rnEStéd hash' == {"a'=="hi", '"b'=>"goodbye "}

T
T
T

Keyword..end Matching

Many Ruby constructs are delimited by an opening keyword and a closing end — for example:
class..end, module..end, def..end, while..end and until..end. You can move your cursor
between an opening keyword and the matching end using the same key combination used for
bracket matching: CTRL+].

6= module MyModule
7 [Elass MyClass
8 def x(s)

9 puts(s)
10 end

11 end

12:Lend

Here we press CTRL+] to toggle between a class definition...

6 module MyModule
7 class MyClass
8 def x(s)

9 puts(s)
10 end

11 end]]

12:L end

...and its matching end keyword.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 30

Commenting/ Uncommenting

Mark a block of code and click the Comment button (or press CTRL+E, C) to comment out the
block. To uncomment a block, click the Uncomment button on the Text Editor Toolbar (or
press CTRL+E, U). Commented blocks in Ruby source files are marked by inserting comment
characters # at the start of each line. In Rails template files, HTML comment delimiters are
used: <!-- and -->.

Smart and Block Indenting

Three code indenting styles are supported. These may be set in the TextEditor/Ruby/Tabs page
of the Options dialog. They are:

¢ None - no automatic indenting.
¢ Block - indent code align with preceding line.
e Smart - attempt to align by syntax (e.g. align end with matching def).

Automatic Code Formatting

You can reformat an entire Ruby document or a selected block of code to regularize the
indenting automatically.

FORMAT DOCUMENT
The entire contents of a Ruby code file can be auto-formatted by selecting Edit,
Advanced, Format Document (default shortcut: CTRL+E,D)

FORMAT SELECTION
The currently selected block of Ruby code can be auto-formatted by selecting Edit,
Advanced, Format Selection (default shortcut: CTRL+E,F)

Other Features

Ruby In Steel provides the same rich set of editing features available to other Visual Studio
languages including: Multiple level undo/redo (CTRL+Z; CTRL+Y), Indent/Outdent,
bookmarks and macros.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 31

Intelligent Coding Tools

[Most Features Developer edition only]

Ruby In Steel Developer provides a number of coding aids to assist in the writing of code.
These include a variety of IntelliSense tools such as 'completion lists', 'quick info' and
'parameter info' as well as in-code syntax error marking (‘wavy lines') and auto-expanding
Ruby code 'snippets'.

IntelliSense

Ruby in Steel implements the following IntelliSense features for Ruby source files:

¢ Member Completion Lists
e Keyword Completion Lists
e Variable Completion Lists
e Quick Info Tooltips

e Parameter Info Tooltips

e Snippets

Member Completion Lists

Member completion lists are drop-down lists showing the available methods, modules and
classes which may be used after a completion character is entered into the code editor. A
completion character may be either a single dot (. Jor a double colon (::) as dictated by Ruby
syntax. Where embedded documentation is provided (in the form of RDoc comments in the
source code), this documentation is displayed as a tooltip when an item is selected in the
completion list.

Hello".rs str.rjust(integer, padstr="") => new_str

W rindex -

v_ If integer is greater than the length of str, returns a new

String of length integer with str right justified

M rstr!p and padded with padstr; otherwise, returns str,
“ rstrip!

W scan "hella”.rjust(4) #=> "hello"

W zize * "helle".rjust{20] Bz " hella"

"helle".just(20, '1234") #=> "1234123412341 23 hello”

Comman All

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 32

Ruby In Steel tries to infer the type and determine the scope of an identifier in order to
display the appropriate completion list. However, bear in mind that Ruby is a dynamic
language and the formal types of identifiers are not predeclared so it may often be impossible
for Ruby In Steel to 'guess' the type of some variables.

When a specific type cannot be inferred, the completion list defaults to members of the Object
class. You may, however, specifically assert that a certain type should be assumed in order to
generate better IntelliSense. Refer to the section on Intelligent Type Inference, at the end of
this chapter, for more information.

Common and All Tabs

Often the Completion list displays two tabs - Common and All. The Common Tab generally
displays members of the current object’s class and any immediate ancestor classes. The All
Tab displays all the members shown in the Common Tab plus the members of the Object
class. Once you have selected a tab, that tab will remain the default until the other tab is
selected.

When an object is an instance of Object (or when the IntelliSense is unable to infer any specific
descendent class for a variable), an untabbed completion list is displayed showing members
of Object.

Configuring Completion Lists

Optionally you may turn off the display of Object methods and Ancestor in order to
restrict the completion lists to the members of more specific classes. The Display Object
Methods and Display Ancestor Methods option can be set in the Text Editor, Ruby,
IntelliSense page of the Tools, Options dialog.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 33

Keyword Completion Lists

alias -~
and |

AL

BEGIM
break
case

class -

]

Common All

Ruby keywords such as def, while, module and class may be selected from a completion list.
This list appears when matching characters are entered if Show completion list after a character is
typed is selected in the IntelliSense Options (for example, if you enter 'mo’, the completion list
will highlight 'module'). You can also force the completion list to appear by pressing
CTRL+Space. Keywords are displayed in the All tab. If a keyword match is unambiguous, it
may also be displayed in the Common tab.

Variable Completion Lists
Time|

g timeNow I8
W tirnerResult

@ timeTaken ‘E‘
@ timeToEnd i
W timeToStart -

Common All

The completion list will suggest variable names (including local, instance or class variables)
matching text that has been typed. Force the display of the completion list by pressing
CTRL+Space.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 34

Quick Info Tooltips

myhash| = Hash.new
myhash.values

Method values
hsh.values == array

Returns a new array populated with the values from hsh. See
also Hash#keys,

h={"s"=> 100, b" => 200, "c" == 300 }
h.ovalues #=> [100, 200, 300]

When the source code of a class or method is preceded by a comment block, the comments
will be displayed in a tooltip when the mouse hovers over a class or method name in the code
editor. When an object of a known class has been created, its tooltip displays the name of its
class. Optionally this feature may be disabled by deselecting Display RDOC In Tooltips in the
Options dialog. Documentation may also be shown in the RDOC Window.

Parameter Info Tooltips

calcTax(]
||:aI|:Tax (subTotakObject, taxRate: Object): Float |

Information on the parameters expected by a method can be displayed in a tooltip when you
are calling that method. The tooltip is triggered by the opening bracket (and the highlight
moves from one parameter to the next as the separating commas are entered. The return type
of the method is also shown. By default all parameters are shown as instances of the Object
class. If the return type can be inferred, its class is shown, otherwise NilClass is shown. To
enable more information in Parameter Info tooltips, see Type Assertions, later in this chapter.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 35

Snippets

Snippets are ready-to-use code fragments which can be inserted at the cursor position in the
code editor by entering a shortcut or selecting a named snippet from a menu. Ruby In Steel
provides a library of Ruby snippets some of which include interactive fields or 'replacement
points' into which you can enter specific values such as the names of variables.

To INSERT A SNIPPET FROM A MENU

Right-click at the point in the editor where you would like to insert the snippet. Click Insert
Snippet on the shortcut menu. Scroll down to the name of the desired snippet and double-
click it or press TAB to insert the snippet into your code.

To INSERT A SNIPPET FROM A SHORTCUT

Snippet shortcuts are short bits of text which are expanded by pressing TAB; they are listed in
the Code Snippets Manager. For example, if you have a snippet with the shortcut ifelse you
could enter the text ifelse into the code editor and press TAB to auto-expand the snippet.
Note: in order to enable TAB-expansion of snippets, 'Expand snippets by tab character’ must be
enabled in the Text Editor, Ruby, IntelliSense page of the Options dialog.

ADDING CuSTOM DATA ToO A SNIPPET

When inserted into your code, some snippets have one or more highlighted fields
(replacement points'). If you hover your mouse pointer over a replacement point, a
descriptive tooltip appears. You may edit a replacement point (say by changing it to the name
of a particular variable) and, if there are more replacement points, you may move directly
from one to the next by pressing the TAB key. Where multiple replacement points have the
same name, editing one will automatically change the others to match.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 36

EXPANSION AND SURROUNDW!ITH SNIPPETS

Most snippets are 'expansion snippets' which means that their text is simply inserted into the
code editor; if any other text happens to be selected at the time, it will be replaced by the
expanded snippet. Some snippets are also defined to be 'SurroundsWith' snippets. If you
select text in the code editor and then insert a SurroundsWith snippet, the snippet text will
enclose the selected text. For example the if snippet is a SurroundsWith snippet. Let's assume
that you have already entered the following into the code editor:

puts('hello world");

You select this text, then right-click and choose if from the Snippet menu. When the if snippet
is entered it automatically surrounds the selected text, resulting in this:

if true then
puts('hello world");

end

In this case, 'true' is a replacement point and it is selected so that you can immediately replace
it with your desired test condition.

SNIPPETS IN THE COMPLETION LIST

You may optionally place snippets into the code completion list. This is the list which appears
when you press CTRL+Space. The list will also appear when you enter text into the code
editor if the 'Show completion list after a character is typed' option is enabled. The completion list
options are specified in the Text Editor, Ruby, IntelliSense page of the Options dialog.

THE CODE SNIPPETS MANAGER

The Code Snippets Manager is selected from the Tools menu. To view the available Ruby
snippets, select 'Ruby' in the Language combo and expand the Ruby folder in the left-hand
pane. Select each snippet to view details such as its shortcut and type (‘expansion’' or
'SurroundsWith'). Click the help button ('?') at the top right of the Code Snippets Manager to
view its Visual Studio help entry.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 37

Snippet Editor

You can create your own snippets using Sniped — a snippet editor for Ruby . Sniped is
supplied with the Developer Edition of Ruby In Steel and comes with its own user guide. The
snippet editor can be found in the \Extras subdirectory of your Ruby In Steel installation
(typically located beneath C:\ Program Files\ SapphireSteel Software\).

Wavy Lines - Syntax Error Indicators

Syntax errors and warnings are shown in the code editor by a wavy underline marking the
location at which the error was detected. Note that the line appears only at the point at which
the syntax becomes unambiguously incorrect. The actual position of the error may sometimes
lie at a point in the code some way preceding the indicator. You may hover the mouse over a
wavy line indicator in order to view an explanatory message in a tooltip.

By default a blue wavy line indicates a warning;:

Teguire "empty5.rb”

|Canru:ut reguire file "empty5.rb" at line 2|

A red wavy indicates a syntax error:

module myModu Je

|Ex|:uec1jng "a constant”, found 'myMDduIE'|

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 38

Intelligent Type Inference

Ruby is a dynamic language. Among other things, this means that the types of variables are
not predeclared and a single variable may have many different types during the lifetime of a
program. This contrasts with languages such as C and Pascal in which the type of each
variable is specifically declared and an attempt to assign any other type to that variable is an
error.

While dynamic typing is useful for some programming tasks, it has the unfortunate side-
effect of making it extremely difficult to provide accurate IntelliSense. Consider the problem:
in C or Pascal, before you can use a variable x, you have to state its type — say an Array, an
Integer or a String. Once the type has been declared, the IntelliSense system knows that
whenever the variable x is encountered within a specific scope, it can treat it with certainty as
a variable of the defined type. So if x is a String and the programmer enters x followed by a
dot then the code-completion list will always display String methods.

Similarly the return type of functions are specifically declared in statically typed languages —
so if the function someFunction() is declared to be an Integer, the IntelliSense system knows
that it can always assume that the value returned by that function is an Integer.

With Ruby, no such assumptions can be made! Neither the variable x, nor the method,
someMethod(), have predeclared types. It is quite possible for x to be an Array, a String and
an Integer at various points, and within the same scope, during the execution of a program.
The method someMethod() could, equally, have varying return types depending on how that
method is called. In many cases, this makes it impossible (even in principle) for the
IntelliSense system to work out exactly which type a variable is or which type a method
returns — because the method and the variable vary their types at different times during the
same program when it runs!

The Ruby In Steel IntelliSense system deals with this problem in two ways. In some cases, it is
possible to infer the type of a variable at a given point in the code. For example, if a String
such as “Hello world” is assigned to x or the method someMethod() explicitly returns an
integer then Ruby In Steel will treat x as a string and someMethod() as an integer. If x is
subsequently assigned some other type — say an Array - then Ruby In Steel will
henceforward treat it as an array. These are relatively simple examples of type inference.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 39

In fact, Ruby In Steel's intelligent Inference Engine not only infers the type of a variable
within a given scope; it also infers its type within a given context — that is, it attempts to
determine which type a variable will have at a certain point when the program is run. This is
not foolproof, of course; Ruby In Steel analyses the code while it is still being written and the
actual types of variables may not be certain until the program is run by the Ruby interpreter.
Nevertheless, allowing for these constraints, Ruby In Steel constantly analyses your code in
the background and attempts to determine the most likely types of each variable. So, for
example, if x is a string on line 1, an Array on line 100 and an Integer on line 500, when you
move to those lines to edit your code, Ruby In Steel attempts to provide the appropriate
completion lists for the class of x at that given point in the code. The IntelliSense system
calculates completion lists based on a variety of factors such as inheritance, visibility (public,
private, class or instance), modularity and inclusion (mixed in modules).

There is currently no way, however, in which the parameters of a method can be reliably
inferred. If you wish to have better Parameter Info IntelliSense for methods, you should
consider using Ruby In Steel's Type Assertions.

Type Assertions

Type Assertions are declarations of the expected types of parameters sent to a method and
the return type of the method. These assertions are entirely optional. They are placed in a
comment block immediately preceding a method and have no impact upon the meaning of
the Ruby code itself. In other words, Type Assertions give you extra features when you are
developing with Ruby In Steel but they have no effect on the code as far as the Ruby
interpreter or any other editor or IDE is concerned.

When a method is preceded by type assertions, Ruby In Steel's Parameter Info tooltips are
able to display information on the asserted parameter and return types, helping to resolve
ambiguities and avoid accidental coding errors. Consider, for example, this method:

def addName(names, aName)
return names << aName
end

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 40

It is, in principle, impossible to determine the types of the parameters, names and aName, or
the class of the return value. Even the << is not a sufficient clue as this is defined for many
different classes in Ruby. Consequently, the addName() method could legally be called in the
following ways, in each case both the parameter and the return types being different:

addName("Fred,Mary,", "Simon")
addName(["Fred","Mary"], "Simon")
addName(["Fred","Mary"], ["Simon"])
addName(123, 456)

But let's suppose that the programmer who wrote the addNames() method had done so with
the specific intention that the first parameter, names, should always be an array, the second
parameter, aName should always be a string and the returned value should always be an
array. The programmer could, of course, document this fact somewhere — but there is no
guarantee that the person calling the method will ever read the documentation. By using
Type Assertions you can bind your documentation to Ruby In Steel's IntelliSense.

MAKING TYPE ASSERTIONS

Type assertions are entered into a comment block immediately above a method. The assertion
may include a return type and one or more arguments matching the argument list.

The syntax for assertions can be summarized like this:

:return: => <ReturnType>
:arg: <ArgName> => <ArgType>
<Optionally More Args...>

Note: When no return type is given, NilClass is assumed. The argument assertions
should be entered in the same order as the actual parameters. The names of
arguments used in the assertions will be used by IntelliSense even if those names
differ from those used in the actual parameter list. If more arguments are asserted
than actually exist, the superfluous assertions are ignored. If fewer arguments are
asserted than actually exist, the extra arguments will default to Object when there is a
return value and to NilClass when there is no return value..

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 41

Example:

#:return:=>Array

#:arg:names=>Array

#:arg:aName=>String

def addName(names, aName)
return names < aName

end

Given the assertions above, the parameter info will now show the following;:

addName (|

|E|I:|I:|NE|IT|E (mnames:Array, aMame:String): Array |

Automating Type Assertions

You can add a type assertion comment block over a method by entering two # characters on a
blank line above the method. For example, let's assume you have this method:

def addName(names, aName)
return names << aName
end

If you enter ## onto the line above this method, Ruby In Steel will automatically insert the
following comment block:

#:return: => Object
#:arg: names => Object
#:arg: aName => Object

You may now edit this to show the desired types. For example:

#:return: => Array
#:arg: names => Array
#:arg: aName => String

Those types will now be displayed by IntelliSense.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 42

The IntelliSense Librarian

The IntelliSense Librarian is an optional tool which pre-compiles selected Ruby files and
makes their IntelliSense information available to your project. This has three main benefits:

e It provides enhanced Rails IntelliSense including ‘database IntelliSense’

Enhanced IntelliSense is automatically provided for Ruby On Rails projects. This includes
code completion and other IntelliSense features such as documentation tooltips for
ActiveRecord, ActionController, ActionView and related classes and methods. You may also
generate application-specific database IntelliSense based on the database schema.

e It makes additional IntelliSense available to Rails and other web frameworks

When using a frameworks such as Ruby On Rails it is frequently possible to refer to classes
and methods even though the source files in which those classes and methods are defined are
not specifically ‘required” in your code. This is because the framework references the
necessary files at runtime. The Ruby In Steel IntelliSense engine - in common with the Ruby
interpreter itself - only works with complete ‘runnable” Ruby programs. Normally this means
that IntelliSense is only provided for classes in the current file or any classes that are required
or included in accordance with Ruby syntax. However, you can bypass this limitation by
creating precompiled libraries of any additional files required by Rails or another framework.
When you add the library files to the Solution Explorer, your code will have access to all the
relevant IntelliSense information just as though they had been ‘required’ explicitly in your
Ruby code.

e Itincreases the speed of parsing large source code libraries

Some Ruby libraries (for example, date or yaml) are very large and complex and some
libraries may also ‘require’ many other Ruby files. As the Ruby In Steel IntelliSense engine
interprets and analyses source code in order to provide accurate code completion, the
analysis of very complex source code files may have an adverse effect upon the speed of code
completion. In most cases, you will not alter the code in these required libraries, so it would
be more efficient if the IntelliSense engine did not constantly reanalyze the source code. When
you compile the code into a library, the IntelliSense engine will obtain information from the
library instead of analyzing the Ruby source code, resulting in a speed improvement.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 43

NOTE: Many Ruby programmers may never need to use the IntelliSense Librarian.
For most ordinary Ruby programs, our automatic IntelliSense engine will provide the
full range of code completion features almost instantly. You only need to use the
Librarian if you need the additional capabilities described above.

CREATING A NEW INTELLISENSE LIBRARY

The following provides a simple example of using the Librarian to generate an IntelliSense
Library from some Ruby source files and automatically add that Library to the currently

loaded project.

YVV VYV YVYVY

Y VvV

Click the Librarian menu item on the Ruby menu or Ruby toolbar.

This loads the Librarian.

Click Files/Add Files.

In the Open dialog, select one or more source code files and click ‘Open’.

Your selected files will now be added to the ‘Available Files’ list.

Click the “Add All’ (right-facing double arrow) button to add all available files to the
‘Selected Files’ list.

Ensure the “Add generated library to project’ option is checked.

Click the Generate button.

When prompted, enter a file name, without an extension - such as mylib. Then click
‘Save’.

The compiler will now generate an IntelliSense library based on the selected source
tiles. After a short while (depending on the size and complexity of the library), a dialog
will inform you that the Library generation is complete. Click ‘OK’.

Click “Exit’ to close the Librarian. You will now see your Library beneath the Solution
Explorer ‘References’ node in your Project.

The IntelliSense information is now available for use in your project even to those
source files which do not explicitly ‘require’ the original Ruby code files.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 44

Librarian Reference

Once you have started the Librarian by clicking the Librarian icon you will see this dialog:

Fubry Librarian fo] @]
Files

Foralabie Fies) Selected Fles

Ml Full Path hame Full Path

arey_sason b CAVEProgacts lisle b CoVEPrpectshittle
aray_ndex i CANVEProsscts'lete data_save b CAVSPresects ditle
array_roe CANEPropsct s lele dr_sermy i CONVEPrepactshittie
arayld CAVSProjects’itle 1)

ey 1 CANSProjects’letle_ 2 |

sty 1 CANSPropects’dezie J

erlti_perary CANSProgects’lile

sacphirs b CANSProsscts’letle s

ar CAVSProjects'\ b

w2 CANSPropects'Rub

Available Files List Selected Files List
CoAWS Pregascts Mislabaakusfubn 2 _sourca'Listhe Book Of Riubey\ 5 avray | i
| Add generated ey 10 prossct

The IntelliSense Librarian
THE FILES MENU
The Files menu has the following items...

> ADD DIRECTORY
This opens a dialog from which you may select a directory. All the Ruby source files in the
selected directory will be added to the IntelliSense library. Subdirectories are not added.
However, files that are ‘required” in the source files will be added even if the required files
are in different directories. Click ‘OK’ to save all the source files from the selected directory
into the Librarian’s “Available Files’ list.

> ADD FILES
This opens a dialog from which you may select one or more Ruby source files. In this dialog,
you may press Shift when clicking the mouse in order to select multiple files. Click ‘Open’ to
save the selected files into the Librarian’s “Available Files’ list.

> CLEAR

This deletes all files from the “Available Files” list. This has no effect on the original files
stored on disk.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 45

THE RAILS MENU

This menu is only available when the current project is a Rails project. This should be set by
default for rails projects and can also be selectively enabled by Project/Properties. The Rails
menu has the following items...

» BUILD RAILS LIBRARY

Ruby In Steel auto-generates a pre-compiled Rails IntelliSense library and you should not
normally need to use this option unless you install a significantly new version of Rails which
requires additional IntelliSense. When you use this, you may need to browse to the
directories containing the relevant Rails source code. The Rails directories are normally
located beneath your Ruby \ gems directory.

For example: c:\ruby\lib\ruby\ gems\ 1.8\ gems\
You may need to browse to specific directories.
For example: c:\ruby \lib\ruby \ gems\ 1.8\ gems \ activerecord-2.0.2\1ib \ active_record \
The relevant Rails directories are shown below - here, we substitute <Ruby\Gems> for the

actual Ruby\gems path on your system. The version numbers of the directories (here 2.0.2)
will vary according to the installed version of Rails:

Active Record: <Ruby\ Gems> \ activerecord-2.0.2\1ib\ active_record \
Action Controller: <Ruby\ Gems> \ actionpack-2.0.2\1ib\ action_controller\
Action View: <Ruby\ Gems> \ actionpack-2.0.2\1lib\ action_view \ helpers\
Unit Test: <Ruby\ Gems> \ activerecord-1.15.3\lib\ active_record \

You may select or deselect Rails generator options by clicking the check boxes alongside each.

Please note: Rails IntelliSense generation is a very time-consuming process which
may take 15 minutes or longer. Visual Studio will not be available for use during this
time. Please wait. Do not shut down Visual Studio until the Rails IntelliSense generation has
completed. A progress bar shown at the bottom of the Visual Studio environment
indicates the approximate time to completion. At the end of the process you will see a

dialog informing you that the Rails IntelliSense Library was built successfully.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 46

> DATABASE INTELLISENSE

Database IntelliSense is designed to provide code completion within Rails views (inside
embedded Ruby templates such as new.html.erb) and is generated from the database schema
files which are created when you perform Rails migrations. A schema file is normally found
in the Rails \db directory. Note that if your schema is not visible, you may need to
synchronize the Solution Explorer (Ruby/Synchronize).

ToO CREATE DATABASE INTELLISENSE:

> Select the schema file (normally schema.rb) when prompted and click ‘Open’.
» Click “OK” when asked to confirm that you wish to build the database schema.

THE BUTTONS

> RIGHT ARROW

Add highlighted file in the Available Files list to the Selected files list.
> LEFT ARROW

Remove the highlighted in the Selected Files list file from the Selected files list.
> DOUBLE-RIGHT ARROW

Add all files in the Available Files list to the Selected files list.
> DOUBLE-LEFT ARROW

Remove all files from the Selected files list.

> GENERATE

This compiles an IntelliSense library (a ‘symbol table”) using information from the files in the
Selected Files list. When you select ‘Generate” a dialog will prompt you for a file name. You
should enter a descriptive file name (without an extension) such as ‘mynumericlib’. The
extension “.rst’ (Ruby Symbol Table) will be added automatically. You may save the library
into any directory but we recommend using the default *\ SymbolTables” subdirectory which is
stored beneath your \ AppData\ Local folder.

Note: If you wish to add the generated library to the current project (this is the
default), make sure that the “Add generated library” option is selected.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 47

Example:
Let’s assume that your schema.rb contains this code:

create_table "posts", :force => true do |t|
t.string "title"
t.text "body"
t.datetime "created_at"
t.datetime "updated_at"
end

Now in your Posts controller, (posts_controller.rb), let's assume you have the following
method:

def show
@post = Post.find(params[:id])
etcetera...

end

With database IntelliSense you can now enter a dot after the variable, @post, and you will see
methods defined for the database columns listed in the ‘Common’ page. These database
methods will also be available in the ‘All" page along with many other methods for a Post
object...

@post_body = @post. body
respond_to do |7 :
format. hrml # %[N
format.xml { =% created_at
?i"d V title
en W updated_at
GET /Jposts/new Common Al
GET /posts/new, =
def new

-f-[‘.'":lSt = POST. new

Database IntelliSense is also available for the instance variable matching the controller name
(e.g. @post) when you are writing code in a view (e.g. \posts\show.html.rb) between
embedded Ruby tags (<% and %> or <%= and %>).

> EXIT
The Exit button closes the Librarian.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 48

To Add Libraries to A Project

If you have previously created a Library file (a ‘Ruby Symbol Table” with the extension .rst)
which you wish to use in the current project, follow these steps:

>
>

Y

In The Solution Explorer, right-click the References node and select “Add Reference’.
Select the Browse tab and either select one of the listed .rst files or, if necessary,
browse to the directory containing it (the default is \ AppData\ Local\ SapphireSteel
Software\ SymbolTables).

Select the library (.rst) file(s) and click the Add button.

When all the desired library files have been added, click OK.

The libraries should now be listed beneath the References branch of the Solution
Explorer.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 49

Code Navigation

[Some Features Developer Edition only]
Ruby In Steel has a variety of tools to help you find the code you are looking for.

Navigation Bars let you locate classes and methods in the current document

Go To Definition helps you find the definition of variables, methods and classes
Bookmarks can mark places in code so that you can navigate back to them quickly
Find and Replace tools let you search through one file or an entire project

The Ruby Explorer locates code and documentation of classes and methods

vV V.V VY

Navigation Bars

At the top of the code editor window you will see a navigation bar containing two drop-
down combo boxes.

e MyModule w || @ SaboFixnum W
19 @ Sabc:Fixnum
20 # @abc:Fixnum
21 #iaiMyarrayClass
22 (=) ABC:Fixnum %
23 # abcdefghi:Fixnum
24 i aMethod{aMame:Object)
25 i testmethod{anarray:Object, aString:Object)
26 # 1:5tring

The box on the left-hand side lists any classes and modules in the current code file. The box to
its right lists methods, constants and variables. You can select an item from either of these
combo boxes in order to locate its definition in the code editor.

Go To Definition

Right-click the name of a method, class or variable in your code and select Go To Definition
from a popup menu in order to locate the definition of the selected item. If the definition is in
a required file or a Ruby Class Library file, the file will be automatically loaded into the
editor. If the definition is in one of the C-language files of the Ruby class library, a Ruby
documentation file containing the embedded documentation and empty Ruby-syntax
declarations ('stubs') of the original C-language classes and libraries will be loaded.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 50

Boolkmarks

You can place bookmarks at specific locations in your code in order to be able to return to
those locations quickly. Bookmarks can be managed using the Bookmarks Window (available
from the Views, Other Windows menu) or from the Text Editor Toolbar. Bookmarks are
documented in more detail in the main Visual Studio help system.

Find and Replace

Ruby In Steel supports all the default Visual Studio Search tools to let you find and replace
text in the current document or in multiple files. Optionally you can search with wildcards
and regular expressions. Searching tools are available from the Edit, Find and Replace
submenu.

Incremental Search

You can search incrementally in the current document by entering a sequence of characters. A
highlight will move through the code to find the first occurrence of matching text (if any).
Incremental Searching is available on the Advanced, Edit submenu (shortcut: CTRL+I).

Go To Line

You can move your cursor to a specific line number using the Go To dialog (shortcut:
CTRL+G) from the Edit menu.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 51

The Ruby Explorer

Ruby Explorer - 0 X
H- ¥ Mumeric ~
+- “i% Object N |
+ \@ OhjectSpace

G Predsion

% incuded

iy prec

i prec_f

W prec_i
“I¥ Proc

\@ Process

+- “i% Range |

The Ruby Explorer is a class browsing tool which can be used to view an alphabetical outline
of Ruby classes and methods. The Explorer shows the classes of the standard Ruby library
plus the classes defined in the current project. The methods of each class can be viewed by
clicking the + symbol to the left of the class name.

You can double-click a class or method name in order to navigate to its source code (if
available) and any embedded documentation. Much of Ruby's class Library is written in the
C language; in these cases, the Ruby Explorer will load up a Ruby documentation file which
has been generated from the original C file and it will navigate to the documentation relating
to the selected class or method.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 52

The Debugger

RUBY IN STEEL INCLUDES INTEGRATED DEBUGGING TO HELP TO FIND AND FIX ERRORS IN RUBY AND RAILS
APPLICATIONS. THESE ARE THE ESSENTIAL FEATURES OF THE DEBUGGER...

Ruby In Steel Developer uses our fast 'Cylon” Debugger by default; the slower Ruby
Debugger is provided with the Text Edition. Not all debugging operations are
available in the Text Edition Debugger.

Breakpoints
Breakpoints » 1 X
New'|>(|l=:)|ﬂaﬂ |Calumns'
Mame i
0y |Disal:u|e All Breakp-:uin13|

[w]i@ file_find2.rb, line 24 character 1
& ColourCode_test.rb, line 93 character 1
& deep_debugging.rb, line 41 character 1 "

Ruby In Steel lets you add breakpoints to your Ruby programs by clicking in the margin of
selected code lines. You can selectively enable/disable selected (or all) breakpoints in this
breakpoints window. You can also remove an existing breakpoint by clicking it in the margin
of the code editor.

Note: Once a breakpoint has been added, you may right-click it (in the margin) in order to set
a number of conditions as explained in the following pages...

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 53

Break On Hitcount

Breakpoint Hit Count @I

A breakpoint is hit when the breakpoint location is reached and the condition is
satisfied. The hit count is the number of times the breakpoint has been hit.

When the breakpoint is hit:

[break when the hit count is greater than or equal to v] 4

break always

break when the hit count is equal to

break when the hit count is a multiple of

break when the hit count is greater than or equal to ¥ Cancel
To break after a specific piece of code has executed a certain number of times, add a

Breakpoint Hit counter. Do this by right-clicking the breakpoint and selecting a condition such
as ‘break when hitcount is multiple of from the drop-down list. Add the integer value to test.

Conditional Breakpoints

51 nute "Thic i +roaciiragl = £i+1 dmcnort "
Breakpoint Condition [@
& des
When the breakpoint location is reached, the expression is evaluated and the breakpoint
is hit only if the expressicon is true or has changed. 5
-0
[¥] Conditicn:
ETestval == "Stop" 88 x == 100 && i > 6 e
@ Is true
() Has changed
[QK] [Cancel]
78 1]
O 7o T |
2N L
1 | 1] F
Watch 1 - 1
Mame Value Type
¥ $Testval "Stop" String
L 100 Fixnum
L 7 Fixnum

If you only want to break when a condition (a test of one or more values) is met, create a
Conditional Breakpoint. This can be entered in normal Ruby syntax.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 54

Run Macro On Break

Run a macro:
’ Macros.RubylnSteelMacros.RubyModule. AddRubyDocumentComment -]

[¥] Continue execution

oK || cance |

You can attach a macro to a Breakpoint - for example, you could write or record a macro to do
anything from popping up a dialog box to inserting comments into your code - and this will
run when the breakpoint is hit.

Tracepoints
sgclass Thing
6: @sacTassvar = 100
S def initialize{ aName, aDescription
® o
When Breakpoint Is Hit R

%

Specify what to do when the breakpoint is hit.
Print a message:

race on: Function: $FUNCTION, & new Thing cbhject is being initialized

If you wish to be alerted that a piece of code has executed but you don’t want execution to
break you should add a Tracepoint. When a Tracepoint is hit it will print the specified
message to the Output window without causing the program to stop.

Tracepoints are set by right-clicking a breakpoint and selecting the ‘Print a message’ option in
the dialog. You may place the names of variables between curly brackets (for example,
@xxx) in order to display their current values. The keyword $FUNCTION displays the
name of the currently executing method.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 55

Break On Exception

6l

62

&S Sh O Ch
1 emoen B

puts "This is treasurel: #{tl.inspect}"”
x=x,/0

Microsoft Visual Studio

ZeroDivisionError (divided by 0) in
l & CVSProjects/littlebookofrubyZ_source/LittleBookOfRuby/3/
line 62

If Just-in-time Debugging is enabled (Tools, Options, Projects and Solutions, Ruby In Steel), a
debugging session will break when an exception occurs. When this happens you can examine

the state of the program using the usual range of debugging windows.

Locals window

Locals «~ 0 x
Mame Value Type ~
g hnewz L3 Hash
= @ multhash {..} Hash

W@ name” "™MultiHash® String
= i thash2 {..} Hash
@ 1 “one” String
@2 Ttwo" String
w3 “three” String L

f.ﬁ Locals | Autos

The Locals window automatically monitors and displays the values and types of local
variables and you can 'open up' items such as arrays and hashes in order to drill-down into

variables.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 56

Autos Window
Autos -~ 1 %
Mame Value Type ~
= i Global variables
W 5l nil il

- g 5 L] Array

w [0] "C:\WProgrz String

w [1] "ubygems.| String

w [2] Tubygems String
w [3] hronfig.rl String |

F2] Locals | &) Autos

The Autos Window optionally displays the values and types of global, class and instance
variables, object methods and singleton methods available, plus self. The information
displayed may be configured globally for all new projects (Tools, Options, Projects and Settings,
Ruby In Steel) or for just the current project (Project, Properties). Note that some projects may
require the evaluation of large amounts of data - particularly for self. If debugging seems
slow, you may want to experiment with the settings for this window.

Watch Window

Watch 1 -~ 1 X
Mame Value Type ~

= "nestedarray” [Array

w [0] T String

= e 1 [..] Array

W [0] “wandered” String

W [1] Tonely™ String

@ [2] “as” String

= @ [3] [.] Array

% @ [0] a" String
@ [1] “dloud” String "

You can enter the names of variables (or drag and drop variables from the editor window) in
the Watch window. Ruby In Steel Developer lets you 'drill-down' into watch variables to
view finer levels of detail. For example, you can open up Arrays and Hashes to view the

objects they contain. To drill-down, click the + symbol to the left of each variable to open up
sub-branches of information.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 57

Quick Watch Window
QuickWatch L= B =]
Expression: [Reevaluate]
[1,2,3,[4,5,6]].flatten.reversefiRg
| AddWatch |, |
WValue;
| Name U ——
Fixnum
Fixnum
Fixnum
Fixnum
Fixnum
Fixnum -
Close] ’ Help]

The Quick watch window (available on the main Debug menu) is a convenient place for trying
out expressions. Here, for example, you might ask Ruby to evaluate an expression such as the
following;:

[1,2,3,[4,5,6]].flatten.reverse
The result (the two arrays merged into one and reversed) can be inspected in a “drill down’

Quick Watch viewer. If you want to place a permanent watch on a variable or expression,
click the “Add Watch’ button to place it into a docked Watch window.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 58

Immediate Window

Immediate Window ~ 01 X
1 + 4 P

;hE11D world”. reverse
"dirow olleh”™
item

& multiarr | [...]
+# @ [0]|[...]
=1 @ [|[..]
¢ [0
W [1]]2
¢ [z
4 v [3]]4 | '

The Immediate Windows is useful for trying out bits of code when stopped at a breakpoint.
Here you can evaluate simple expressions such as:

1+2

And you can enter assignments such as:

myarray =[1,2,3,[4,5,6,[7.89]l]

You can also evaluate expressions such as:

newarray = myarray.reverse

The Immediate window has no convenient way of displaying complex data structures, so an
array, for example, will be shown simply as [..]. However, when you evaluate local variables
these will automatically be shown in the Locals window. Alternatively you can hover over a
variable name in the Immediate window in order to drill down into it.

The Immediate window includes the ability to copy and paste text and you can press the up

and down arrow keys to scroll back and forth through the sequence of previously entered
expressions.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com - page: 59

Dynamic Debugging

When stopped at a breakpoint Cylon lets you edit the values of variables in debug windows
such as Watch and Locals. Select a variable and click to put it into Edit mode...

| Mame | Value | Type -
<(x3203db4 = Treasur
" (now somewhat tarnished)" String
100 Fiznum
<0x3293ch0= Treasur
B

Lg Breakpoints | 5] Locals ||f"l.,_":_‘| Call Stack |Immediate Window |

You can even change the type of a variable in this way. Here the Fixnum, X, is selected and
the variable is now being assigning a Treasure object, t1...

| Marne | Value | Type &
‘C:tg t1 <0x3233db0> Treasure
@description " (now somewhat tarnished)" String
¥ @name "A rusty Elvish Spear" String
¥ @value 100 Fixnurm
42 <0x3233cac> Treasure
? I} Fixnurm

Lg Breakpoints | 5] Locals |r$'-'_L| Call Stack |Irr1rned|'ate Window |

Now, x has been assigned 11 and its class type is now Treasure rather than Fixnum...

| Mame | Value | Type -
= 4t <0x3293db4> Treasure
@description " (now somewhat tarnished)" String
¥ @name "A rusty Elvish Spear"
¥ @value 100 Fixnum
% t2 <0x%3293ch0=> Treasure
= %y <0%3293db4>
¥ @description " (now somewhat tarnished)" String
¥ @name "4 rusty Elvish Spear" String
¥ @value 100 Fixnum

L Breakpoints 2] Locals |r,'-,t.,_"j Call Stack |Immediate Window |

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 60

Evaluate Expressions In The Ruby Console

When stopped at a breakpoint, you may evaluate expressions or you may call Ruby methods
in the Ruby Console. To evaluate a variable, simply enter its name.

|Flu|:uy (running) ~ 01 X
(10%3) 45 [A
22

"Hello world".downcase.reverse
"Hello world".downcase.reverse
"dlrow olleh™

(]
< | @
Hover and Drill-Down In The Ruby Console
|R|_|I:|y' (running) -« 1 X |

12, "two"], [3, "three"]

a4 r

»

: :1' "DnE":

<

multihash [...} |
¥ "name” ™
¥ :hash2 £
¥ :hash3 {.
¥ "nested hash™ |{
¥ “array” [
¥ "nested array” | [
W [0] |"I i

ERAON [

¥ [0] |"wandered”

¥ [1] r1l:II'|E|':||'r

@ [2] "

= @ [3]|[..]

W

[c]
<] T v [] 'daud%} (3]

(foEE®E

When you have stopped at a breakpoint, you can enter the name of a variable into the
editable part of the integrated Ruby console. Hover the mouse over the variable name to view
drill-down details of that variable.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 61

Hover and Drill-Down in the Ruby Editor

= & multihash |{...} |

).merge(mu® @ L';:;helr

{.
™
thashz2 {..
L.
i.
L.
L.

Llti-Hash™

ot

thash3
"nested hash”
“array”
‘nested array”
W [0]|T

w [1][..]

¥ [0] | "wandered®
@ [1] | Tonely™
¥ [7] | as”

5 ¢ [3]L.]

-_m

W [0] |"a
40=>2,30=>31) 1 ¢ 11| Gou

| [T
LU VL S S OF %

When paused at a breakpoint, you can hover the mouse over a variable name in the code
editor in order to display drill-down details of that variable.

Tracing with Step Into / Step Over / Step Out

|'E Step Into) Fi1 |
[;E Step Over L& F10
=| Step Out Shift+F11

When you hit a breakpoint, press F10 to continue tracing through the current block of code
(Step Over) or F11 to trace into any methods called by the current code (Step Into) or
SHIFT+F11 (Step Out) to step out of the current method and continue from the next line of the
calling routine. These commands are also available on the Debug menu.

Run To Cursor

|*_E Run To Cursor h |

Right-click a line of source code and select ‘Run To Cursor’ from the popup menu. Your
program will pause on the selected line and you can then use the debugging features (trace,
watch etc.)

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 62

Call Stack
Call Stadk - 01 X
Mame Language
'+ set_description Ruby
set_name % Ruby
(main) Ruby

When your code is running several methods deep you can see this in the Call Stack pane.
Double-click items to navigate through the stack. (Call stack navigation available in
Developer Edition only).

How To Use THE CALL STACK

In effect, the Call Stack lets you ‘trace backwards’ through the execution of your Ruby
programs. Each time you step into a new method with the debugger, a new entry is added to
the call stack. So, if you enter method x, the call stack shows x along with (optionally) some
other information such as the name of the source file and the line number. (Right click the
Call Stack window and select options from a popup menu to configure the visible details). If
some code in the x method calls the y method, the call stack will show entries for x and for y.
These are not just static indicators of the methods which your program has passed through;
they are active ‘moments’ in the flow of execution which can be recalled just by clicking each
entry in the call stack.

So if, for example, you have a parameter called aString which has the value “hello world”
when it is passed to x; has been changed to “HELLO WORLD” by the time it is passed to y
and has become “DLROW OLLEH” when it arrives at z, you can flip up and down the call
stack, recalling each point of execution and view the changing values of aString at each point.

Tip: View the changing values of variables in the Watch or Local window as you
navigate the Call Stack.

This even works with recursive methods. If a method calc increments a variable sum as it
repeatedly calls itself, you can navigate up and down each separate instant at which the calc
method was recursively called to check on the changing value of sum.

STOP DEBUGGING

Press SHIFT+F5 to stop debugging.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 63

Run, Debug, Build

Run

A) IN THE RuBY CONSOLE
To run a program without debugging inside the Visual Studio environment...
Press CTRL+F5 or CTRL+2.
Or select Ruby menu, Ruby Run.
Or select Debug menu, Start without debugging.
You can now interact with the program within the Ruby Console (if this is not visible, select
the View menu, then Other Windows and Ruby Console).

The Ruby Console may either be placed in its own tabbed page or it may be docked or
'floated’. You can change its tabbed, docked or floating behavior by right-clicking its
caption bar and making a selection from a popup menu.

B) IN A COMMAND WINDOW

To run a program without debugging inside a popup 'command window'...
Press CTRL+1.
Or select Ruby menu, Ruby command.

Debug

To run a program with debugging... press F5
Or select Debug menu, Start Debugging.

Build To Check For Syntax Errors

Build Solution and Rebuild Solution examine the files in a project and report on any syntax
errors. Unlike the Build option for compiled languages, Ruby In Steel's Build/Rebuild does not
create an executable file.

To Build a Solution, select Build, Build Solution.

To Rebuild a Solution, select Build, Rebuild Solution.
You can view the progress of the error checking in the Output window. Errors are reported in
the Error List. Build only checks those files which failed a previous Build or have been
changed since a previous Build; Rebuild checks all files.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 64

As part of the Build process, Steel creates a \ SyntaxCheck directory containing a record of all
the documents built (these are 0-length files). If you wish, you can remove this directory by
selecting Clean Solution from the Build menu. Once this is done, the next time you perform a
Build, all the files in the solution will be checked (that is, Build will perform the same action
as Rebuild).

Setting The BuildAction Property

Properties -~ 1 X
deep_debugging.rb File Properties -
Arguments
BuildAction Ruby w
Flags Ruby
Load Paths EmbeddedRuby %
Require Files Content
Working Directary |Mone

BuildAction
Action to take on Build

Build and Rebuild only check those files with a BuildAction property. The
BuildAction of Ruby (.rb) files is, by default, Ruby; the BuildAction of Rails (.rhtml)
files defaults to EmbeddedRuby. If you want to exclude a file from the syntax
checking performed by Build, select that file in the Solution Explorer and, in the
Properties window, change its Build Action property to None.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 65
Compile
The Compile option on the Build menu (CTRL+F7) is used to recompile the IntelliSense
database. If, for any reason, the IntelliSense is not up to date with your changes, you may

select this to force a re-parse of IntelliSense data. Note: IntelliSense requires syntactically correct
code. If any syntax errors are flagged, you should correct these before selecting the Compile option.

Error List

Error List ~ 1 X
|0 1 Error ||| 1\ 1 Warning ||| i) 2Messages |
Description File Line Column Project A
O 1 unexpected token - 'Object’ .rb 133 41
& 2 Cannotrequire file "empty5S.rb™at testfie.rh 1 1 TheBookOfRuby
line 1
(i) 3 Requiring "empty5.rb” testfile.rb 1 1 TheBookOfRuby e

Ruby ... | =] Output | [Error ... || Task List | CgBreak... |3 Book... |€3History [EgFind ... |ZaFind ...

The Error List window shows message on a separate row; it displays the name of the file in
which the problem occurs and the line on which Ruby believes a syntax error to be found.
Click the item to locate the problem line of code.

There are three types of message which may be displayed in this window: Error, Warning
and Message. You can toggle the display of these messages by selecting the appropriate tabs.
In the code editor, the location of an error is indicated by a red wavy line; the location of a
warning is indicated by a blue wavy line.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 66

Ruby and Rails Tools

A SET OF TOOLS AND DIALOGS IS AVAILABLE ON THE RUBY MENU AND TOOLBAR. THIS IS A GUIDE TO THEIR
PRINCIPAL FEATURES...

The Ruby Toolbar and Menu

(some items only in Developer Edition)
The Ruby menu and Toolbar provide access to a number of tools for use with Ruby and Rails.

Ruby Run Ctrl+2
Ruby Command Ctrl+1
IRE

One-Click Rails Debugger
Start Server

Rake

Gems

Generate

Synchronize

Ruby Explorer

FSTRER S S @

Ruby Docurnentation

Reszet Fonts and Colors

Register
About

The Ruby Menu

4 9

PRaeUCEZ e OEER A

The Ruby Toolbar
THE RuBY TooLs

Ruby Run - runs the currently active file in a docked window

Ruby Command - runs the currently active file in a system (‘command') window
IRB - runs the Interactive Ruby shell

One-Click Rails Debugger — starts debugging a Rails project

Start Server — starts a server (for Rails)

Rake — displays a toolwindow to run Rake

Gems - loads a dialog to install a Gem package

Generate — displays a toolwindow to run Rails generate scripts

Vv V.V V V V VY

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 67

Synchronize — synchronizes the Solution Explorer with files on disk
Ruby Explorer — loads the Ruby code and documentation explorer
Ruby Documentation - displays RDOC window

Reset Fonts and Colors - restores font and color defaults

Register - displays dialog to register this copy of Ruby In Steel
About - displays version and registration details of Ruby In Steel

Vv V.V V VYV

More information on Ruby Run and Ruby Command can be found in the chapter 'Run, Debug,
Build'; the One-Click Debugger is described the chapter, 'Rails Development'; the Ruby Explorer
is described in the chapter, 'Code Navigation'. The remaining tools are described below.

RuUBY TOOLBAR

The Ruby Toolbar can be displayed by selecting it from the View/Toolbars menu. Some items
(such Start Server and One-click Rails Debugger) are only displayed when the current project is
a Rails Project.

RuUBY MENU

The items on the Ruby menu duplicate the items on the Ruby Toolbar. As with the Ruby
Toolbar, some items are only displayed when the current project is a Rails Project.

Note: If you wish to enable additional menu and toolbar items in a non-Rails project,
set the Rails/Rails Project property to true in Project/Properties. You will need to close
and reopen the solution for this change to take effect.

IRB — The Interactive Ruby Shell

IRB is a Ruby tool which lets you interact with a Ruby interpreter at a command prompt.
Click the IRB icon to run IRB.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cCOM — page: 68

Generate (Rails)

[Developer Edition Only]

Generate El
Script Action script Value(s)
controller) Myapp
integration_test [
mailer
migration {(*) Generate () Destroy
model |
plugin []Pretend [] Quiet
scaffold ; Force [] Backtrace
session_migration _i :
weh_service v [skip [] svn

ruby script/generate controller MyApp --force

Use the Generate window to run Rails scripts without having to go into a command prompt.

SCRIPT ACTION (GENERATOR)

The script action - also known as a 'generator' - is the name of the script you wish to run. A
list of script actions is provided as standard and this list can be modified by the user. The
default list includes commonly used scripts such as controller, model, scaffold and migration.

SCRIPT VALUE

The script value is the name of the item you wish to create (or destroy). For example, if you
wish to generate a controller named MyBlog, you would enter MyBlog into the Value field.

GENERATE/DESTROY

You should select either the Generate or Destroy radio button depending on whether you wish
to create (generate) or remove (destroy) an item.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 69

OPTIONS

The following options are provided, shown here with their script equivalents and a brief
explanation of their effects:

Option Script Arg

pretend --pretend Run but do not make any changes.

force --force Overwrite files that already exist.

skip --skip Skip files that already exist.

quiet --quiet Suppress normal output.

backtrace --backtrace Debugging: show backtrace on errors.

svn --sun Modify files with subversion. (Note: svn must be in path)

RUNNING/EDITING THE SCRIPT

As you make selections and enter values, the generator script will be automatically entered
into the text field at the bottom of the window. If you wish to edit this, you may do so. When
the script is complete, you may run it by pressing the 'Go' button. This will generate (or
destroy) the selected item(s). The Solution Explorer will be updated to show the changes.

CUSTOMIZING THE SCRIPT ACTION LiIST

Edit Scripts M=%

Enter script names {one perling)...

controller -
integration_test |l
mailer

migration

model

plugin

scaffold
session_migration
web_service
controller
integration_test
mailer

migration

model

[oK][Cancel]

To change the available script actions, click the [...] button at the top right of the Script Action
list and enter new actions, one per line, or delete existing actions. Click OK to confirm your
edits. The edited Script Action list will now be used as the default.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 70

PLACING THE GENERATOR WINDOW

If you need to use the Generator window regularly, you may wish to dock it in the Ruby In
Steel environment. Right-click its caption bar, select 'Dockable’ and drag it to place it in a
dock site. If you use it irregularly or you wish to place it on a non-primary monitor, right-
click and set to 'Floating'. Click the caption bar 'Close' button when you have finished using
the window. You can also use the window as a tabbed document page.

Start Server

When developing Ruby On Rails applications you must start a web server in order to run or
debug.

e You do not normally need to click Start Server when using WEBrick or Mongrel.
e You do need to click Start Server when using LightTPD.

MORE INFORMATION

Ruby In Steel provides built-in support for the WEBrick, Mongrel and LightTPD servers. The
Start Server button runs the currently selected server script. When using LightTPD, you must
run the server explicitly by clicking the Start Server button. When using Mongrel or WEBrick,
the server will be started automatically when you begin debugging by pressing F5 or clicking
the One-Click Rails Debugger icon.

For step-by-step guidance on installing LightTPD for use with Cylon, refer to the
documentation in the /Documentation directory beneath your Ruby In Steel

installation.

You can start your selected server by clicking the Start Server button on the Ruby menu or
toolbar. Options to configure the server are available by selecting the Tools menu, then
Options, Projects and Settings, Ruby In Steel. For more information, see Configure Debug Sript

and Server Script.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 71

Rake
[Developer Edition Only]

Rake has its own item on the Ruby menu (it also has its own ‘leat” icon on the Ruby toolbar).
You may use this to display the Rake window which provides an alternative to running rake
from the command prompt.

Rake]

Rake Action
db:migrate [:]

db:schema:version
db:sessions:dear
db:sessions;create
db:test:prepare

rake db:migrate

A default list of Rake actions is provided and you may select one of these by clicking it. The
complete rake script is shown in the text field at the bottom of the window. This script can be
edited. To run the script, press the 'Go' button.

Note: Rake files are run from a default directory. If you wish to run rake in a different
directory, you can change the Rake Working Directory for the current project in the
Project Properties page.

CUSTOMIZING THE SCRIPT ACTION LiIsT

To change the available rake actions, click the [...] button at the top right of the Rake Action
list and enter new actions, one per line, or delete existing actions. Click OK to confirm your
edits. The edited Rake Action list will now be used as the default.

PLACING THE RAKE WINDOW

If you need to use the Rake window regularly, you may wish to dock it in the Ruby In Steel
environment. Right-click its caption bar, select 'Dockable' and drag it to place it in a dock site.
If you use it irregularly or you wish to place it on a non-primary monitor, right-click and set
to 'Floating'. Click the caption bar 'Close’ button when you have finished using the window.
You can also use the window as a tabbed document page.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 72

Gems

[Developer Edition Only]

Gems

geminatall |redcloth —version "3.0.4"

| ok %l[Cancel |

Use the Gems dialog to attempt to find and install add-on Ruby Gems packages. Enter the
name of the Gem and any additional parameters into the text field and click OK. So, for
example, entering this...

redcloth --version "3.0.4"
...is equivalent to running the following command from the system prompt:

gem install redcloth --version "3.0.4"

Synchronize

If the files and folders shown in the Solution Explorer are not 'up to date' with the files and
folders in your project directory on disk, click the Synchronize button to update the Solution
Explorer. The display may become unsynchronized if you add, move or rename files from
'outside’ Visual Studio (for example, by using the Windows Explorer or running scripts from
a command prompt). The Solution Explorer also has a Synchronize button.

By default, if the Solution Explorer contains more than one project and no project is selected,
Synchronize operates on the active project only. If you wish to synchronize a different project,
you can do so by selecting a specific project node in the Solution Explorer. You may select
multiple projects by CTRL-clicking two or more project nodes. You may then synchronize the
selected projects. In multi-language solutions (for example, if you have a mix of Ruby In Steel
and C# projects) Synchronize ignores non Ruby In Steel projects.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 73

SETTING SYNCHRONIZATION OPTIONS

Before synchronizing, you may want to specify certain types of files and directories which
you wish to exclude — for example, hidden directories or files with specific extensions. This
will avoid cluttering the Solution Explorer by displaying files which you don't intend to edit
or directories (such as backup or version-control directories) which form no part of the
project.

To set these properties, select the Project menu then Properties. In the Properties dialog box,
find the Synchronization group. To exclude files with no extension following a dot (such as
Rails scripts, for example), set Exclude Files With No Extension to true. To exclude directories
and files with the hidden attribute, set Exclude Hidden Files and Folders to True; to include
them, set this property to False. To omit files with specific extensions, enter a semicolon-
delimited list of file extensions into the Exclude From Synchronization field, like this:

Jog;.txt;.xxx

Note: Certain files names cannot be added to the Solution Explorer (for example, file
names containing ampersands '&' are not allowed). If you want to view all the files in
the project directories on disk — including hidden files and directories, files with
illegal names and files which have been excluded from synchronization, select Project,
Show All Files. The Show All Files menu item is a toggle which displays or hides files
which are not a part of the project. Synchronization, on the other hand, permanently
adds files to the project (though these can be selectively removed by right-clicking in
the Solution Explorer and selecting Exclude From Project).

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 74

Ruby Documentation

Rubry Docurnentation - 1 X

B11ows programmers to programmatically define a schema in a portable "
DSL. This means you can define tables, indexes, etc. without using SQL
directly, so wour applications can more easily support multiple

databases.

m

Usage: -

ActiveRecord: : 5chema . define do
create table -authora do |t]
t.column “name, satring, ‘null => falae
end

|_‘&Errnr List

¥ Ruby CDHED|E|j Ruby Docurnentation |;‘| Output|

This displays an RDOC window in which you can browse formatted documentation from
any embedded RDOC comments above methods and classes. Hover over an identifier in the
code editor in order to display any associated documentation.

Reset Fonts and Colors

Selecting this option resets all the colors and fonts to their default values. This may be useful
if you have changed the settings or if the fonts are not currently displaying correctly. You
may want to save your current color scheme before using this option.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 75

Rails Development

RUBY IN STEEL CAN HELP YOU TO CREATE, IMPORT EDIT AND DEBUG RUBY IN RAILS APPLICATIONS.

The Rails New Project Wizard
STEP | = START A NEW RAILS PROJECT

Select the File menu, New, Project, Ruby In Steel, Rails Project
Enter project name (e.g. MyBlog) in the Name Field
Optionally browse to set the location of the project
Optionally, select Create Directory For Solution

Click OK

Vv V.V V V

Create Rails Project @

Select database server Database types
@ MySQL +| Development

SGL Server Production
Mone Test

Database settings

Database: MyBlogDB
User: root
Passward: mypassword
Host: localhost

|Test Connection | QK Rg| Cancel

STEP 2 - SET UP THE DATABASE

In the Create Rails Project dialog: In order to create a new database for your Rails application,
enter a name for the database, a user name which should previously have been set up in your
database server, a database password (if you have one) and a host. If you do not wish to create
a database (if one already exists or you plan to create the database at a later stage), select None
in the Select Database Server options. Otherwise, select MySQL or SQL Server (this latter choice
should also be selected for Microsoft’s SQL Express) and select one or more Database types.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 76

Note: the database types correspond to the three types traditionally used by Rails.
You may select one or more of these. Ruby In Steel automatically generates databases
with the suffixes _development, _production and _test and these suffixes are appended
to the database name. For example, if you have named the database: MyRailsApp and
selected Development and Test database types, Ruby In Steel will create two
databases named MyRailsApp_development and MyRailsApp_test. All the necessary
configuration information will also be written into a database.yml file as required by
Rails. If you do not select a database server (if you chose None), a database.yml file will
be created but you will need to edit it by hand in order to add details corresponding
to any databases which you create.

EXAMPLES OF CREATING DATABASES

> MySQL
Note: You must have MySQL installed; it can be downloaded from http://dev.mysqgl.com/.
This example assumes that you have set up a user name (here ‘root’) and a host (here
‘localhost’). In this example, it is assumed you have left the database password unspecified.
The database will be named “MyBlog” and you may select the Development, Production and Test
database types. This is what you would enter into the Database Settings fields of the Create
Rails Project dialog:

Database: MyBlog

User: root
Password:
Host: localhost

> SQL Server
Note: You must have SQL Server installed; a free edition called SQL Express can be
downloaded from http://msdn.microsoft.com/vstudio/express/sql/. This example assumes
that you have set up a user name (here ‘john’), a password (‘secret’) and a host (here
“\SQLEXPRESS’). The database is named ‘MyBlog’ and the Development database type only is
selected. This is what you would enter into the Database Settings fields of the Create Rails
Project dialog:

Database: MyBlog
User: john

Password: secret
Host: ASQLEXPRESS

http://dev.mysql.com/
http://msdn.microsoft.com/vstudio/express/sql/

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 77

Verify The Database Connection

You may verify the connection to your database by clicking the ‘Test Connection’
button prior to proceeding.

: s
: Test Connection ¥

If a Connection is made, a message similar to the following will appear...

Rails Wizard [E3m]

[0] My5QL connection test succeeded

oK [

If the Connection cannot be made an error message will be shown. If this happens,
you need to check that the paths to the database server are correct (Tools, Options,
Projects and Solutions, Ruby In Steel) and that your user name, password and host
details are all entered correctly in the Create Rails Project dialog.

After you click OK to close the Create Rails Project dialog, a page of information about the new
project appears (this shows the Solution Name, the Solution Directory and Database).

Creation and Import Data

Total number of files to be copied |[n|:|ne - new project) |

Solution name: |I"J11_.rBI|:|g Project |

Solution directany: |G MRiSScrapProjects MyBlogProject |

Import from directony: |[nu:une - new project) |

Database: |rrr'_.'sql |

| Poceed || Cancel |

You should verify that the details are correct and, if so, click Proceed to continue.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 78

All being well, Ruby In Steel will now display all the files and directories of your new Rails
application in the Solution Explorer. If you encounter any problems you may want to check
that you have installed your database server correctly and that the user name, password and
host which you entered into the Rails Project dialog match the details which you previously
set up in the database server.

Note: Database creation will fail if you attempt to create a database with a name
which already exists. Check the Visual Studio Output pane (press CTRL+W, O) to see
any error messages.

The ERb Editor and the Visual Rails Workbench

When working with Rails templates (files with the default extension .html.erb in Rails 2 and
.rhtml in Rails 1) you have the option of using either the ERb Editor or the Visual Rails
Workbench.

The Erb Editor provides basic editing features such as code coloring and collapsing and
snippets. You may use this editor if you only need to make simple editing changes to Rails
template files.

The Visual Rails Workbench is an integrated visual development environment which
provides all the code editing features of the ERb Editor plus drag and drop page design tools,
code navigation utilities and import/export features. You should use the Visual Rails
Workbench if you need to make pixel-perfect changes to the design of your views or if you
wish to export and import pages to external editors such as Adobe Dreamweaver or
Microsoft Expression Web.

TO SELECT YOUR ERB ENVIRONMENT.

1) For all new projects:

Go to: Tools, Options, Projects and Solutions, Ruby In Steel.

Find the Visual Rails Workbench group.

Set the option for Use Visual Rails Workbench to true (or false to use ERb editor).

2) For the current project only:

Go to: Project, Project Properties.

Find the Visual Rails Workbench group.

Set the option for Use Visual Rails Workbench to true (or false to use ERb editor).

You will need to close and reopen any View templates for the changed option to be enabled.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 79

The ERb Editor

The ERb Editor displays syntax coloring for HTML and embedded Ruby code. When
working with complex HTML, the Visual Studio HTML editor is a better choice. The HTML
editor supports embedded styles (CSS) and JavaScript coloring; HTML tag-matching using
clickable tags beneath the editor and IntelliSense features such as completion lists for HTML
attributes. Switch between the editors to take advantage of the special features of each. You
will be prompted to save unsaved changes before switching.

e To switch to from the ERb editor to the HTML editor, press ALT+H
e To switch from the HTML editor to the ERDb editor, press ALT+]

These shortcuts only apply to the ERb editor and not the Visual Rails Workbench.

ERb Code Coloring And Folding

Rails .erb or .rhtml templates are displayed with syntax sensitive code coloring which
supports the coloring both of HTML and embedded Ruby code. Code collapsing in .erb or
.rhtml files is performed on HTML tags.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 80

Ruby On Rails IntelliSense
[Developer Edition Only]

Providing IntelliSense for Ruby files in a Rails application poses a special challenge due to the
fact that the relationships between Ruby On Rails code files are not specified by 'requiring'
other files in the code itself. Related code files are only 'wired together' when the Rails system
processes them after the application is deployed. This explains why the Ruby interpreter itself
is unable to run Ruby On Rails code files in the normal way.

Ruby In Steel addresses this problem by attempting to work out the implicit relationships
between Ruby On Rails code files at design time so that the IntelliSense system can then gain
access to the appropriate methods to display in code completion lists. For example, if your
application includes a controller that descends from ApplicationController you may press
CTRL+Space to view ApplicationController and ActionController methods. It is not always
possible to infer the actual types of instance variables in Rails code files.

NOTE: You may add additional IntelliSense to Rails (including Database-specific
IntelliSense) using the IntelliSense Librarian.

If you need access to files which are not automatically required, you can also specify
additional files to be required and parsed for IntelliSense. Do this by selecting the file for
which you need IntelliSense in the Solution Explorer; then add the full paths to the required
tiles in the Require Files property of the Properties panel. Each file path must be separated by a
semicolon. A quick way of obtaining the path to a file is to open that file in Visual Studio,
click its editor tab and select Copy Full Path. This path can then be pasted into the Require Files
property field.

Note: In order for Ruby On Rails files to have access to IntelliSense, you must ensure
that the Rails Project property is set to true (in the Project Properties dialog). This
property is set to true by default when you create, import or convert a Rails project. If
you change the value of the Rails Project property you should close and reopen any
files open in the editor in order to reinitialize their IntelliSense.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 81

Integrated SQL Server Development

If you use Microsoft’s SQL Server (or the free SQL Express) as your database server you can
create and edit tables right from within the Visual Studio environment itself. Open the

database in the Server Explorer (View, Server Explorer)...
Server Explorer ~ 1 X

[#]]| fi i

= |j] Data Connections A
- [, huw_dell\sglexpress. test19_de
= &. huw_dell\sglexpress, test23_de
#- [Database Diagrams
= £ Tables

- L3 views

- [Stored Procedures
- @ Functions i |
- L3 Synonyms

- O T_w:-esl . M

—

< | m . | (>
Has.. 3BT |Qls.. @G- B

..and edit the tables and column properties...

dbo.Posts: Ta__develn-pment}] ¥ x
Column Mame Data Type Allow Mulls | [
@ id int] =
title varchar{255)
B created_at datetime| M
datetime
Column Properties dedmal(13, 0)
float =
image
int E
— money
E:DW r'iulls nchar(10)
Data Type PPE(E hd M
| rranasan |

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 82

The Visual Rails Workbench
[Developer Edition Only]

The Visual Rails Workbench is an integrated coding and visual design environment for Rails
applications. Your Rails pages can be edited in two ways...

Rails Templates and Full Page Design

1: <hl style="color: #CCO000"=Please Enter New __|
it <%= error_messages_for :post %= (1
50 <% form_for @post do || %=
GiF =p>
7 | <b=Post Title
 -
o A F Fawtr FAaaTlA G+ A el ace e M Aet
4 | i [3
‘u"iewI[EF‘lb] Page (Design) - Tools -

Rails Templates: By default, page designs in Rails are defined in the form of ‘document
fragments’ (Layouts, Views and Partials) comprising a mix of Ruby and HTML code. These
are not valid HTML pages and cannot be edited using a normal web page designer. When a
Rails application is run, Rails executes the embedded Ruby and assembles an HTML page by
processing and combining multiple template files.

new.html.erb [composite:RWB] | show.html.erb | scaffold.css*] ¥ X

input.textareas
|erb::tit|e g (W
o &, =

' width: 332px
‘Please Enter New Post... Text of Post... | height: 2200

il al
4| 11} [}

O Split | & Source E||-:p>||-=input.textareas>| |E|

View (ERb) - Pagel[Design] * | Tools -

Full Page Design: The Visual Rails Workbench processes and combines the ERb templates at
design-time - in effect emulating the runtime behavior of Rails in order to provide an editable
‘composite’ HTML page derived from the ERb templates. This gives you the ability to move
and resize existing controls and adjust properties for pixel-perfect design using Visual Studio
or a third-party web editor such as Adobe Dreamweaver.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 83

Note: The Visual Rails Workbench only operates on the design and layout elements of a
page. It does not interact with any “model” data referenced by embedded Ruby code.

Features of the Visual Rails Workbench

VVVVVYVYVVYVVYVYVYYVYVYY

Full page editing of complete web pages (“composites” of Rails layouts/views/partials)
Drag and Drop design - add controls from a toolbox

Set properties using the Property panel

Resize and move controls using mouse or keyboard

Split view code/form editing

Toggle ERb/RHTML editing between HTML editor and Rails (Ruby-aware) editor
Round-tripping between “web format” HTML and ‘Rails format” ERb/RHTML

Edit code as ERb/RHTML or as HTML

Document Navigator navigates document structure (HTML)/or methods (ERB/Ruby)
Quick navigation between controller and view

Import/Export to other web page design tools

Save/restore named ‘versions’ of page designs to/from an archive of work in progress
Auto-backup of changes to templates

Support for Rails 1 and Rails 2

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 84

Enable The Visual Rails Workbench

The Visual Rails Workbench may be enabled selectively for the currently active project or
globally for all new projects. When it is not enabled, the much simpler (non-visual) ERb code
editor will be used for editing Rails templates.

ENABLE FOR ALL NEW PROJECTS

To make the Visual Rails Workbench the default for your Rails projects, select Tools, Options,
Projects and Solutions, Ruby In Steel and ensure that the option, Use Visual Rails Workbench is set
to True. Every new project will now use the Workbench. This option will not affect the
currently loaded project.

E Rails
Framework Railsl
Rails Filter Jog
Rails Server WEBrick
Rails Server Port 3000
Uze Visual Rails Weorkbench True

E Ruby
Ruby Interpreter False ™

ENABLE FOR CURRENT PROJECT

To enable the Visual Rails Workbench for the currently loaded project, select Project, Project
Properties and ensure that the option, Use Visual Rails Workbench is set to True. If you are
currently editing any View templates, close these and reopen them to edit them in the Visual
Rails Workbench.
Refresh Project Toolbox Iterns
RailsBlogTest Properties... .

Rails Server Port _éufﬁlﬂﬂ
Use Visual Rails Workbench RIS

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm - page: 85

The Visual Rails Workbench Environment

There are two linked coding and design workspaces: the Rails Editor and the HTML Page
Designer. You may toggle between these workspaces by clicking one of the buttons at the
bottom-left of the Visual Rails Workbench window:

| View (ERb) - |[i] Page (Design) |-|

72NN

Rails Editor] HTML Designer]

(template code) (visual design)

THE RAILS EDITOR

You may edit ‘native Rails template’ code (.rhtml or .html.erb views, partials and layouts) in
the Rails Editor...

m new.htmlerb posls.htmi.erbrindeu.htmi.erbI/shuw.htmi.erbl ¥ X

-+ @ f0bject -
=hl style="color: #CCO000"=Please Enter Mew PoOst...</hlx

| J

=%= error_messages_for :post X

=% form_for @post do |f]| %=

E =p=
zb=Post Title</b=<br /= !
<%= f.text_field :title, :class == "textareas", :size [T
- </p>
B =p=
=h=Text of Post...</bs=<br /=
<%= f.text_area :body, :cols == "60", :rows == "10",
- </p>
B =p=
=%= f.datetime_select :created_at %=
</p>
E =p=
L <%= f.submit "Create", :style == "width: 548px" X==</p=
<% end %

=%= link_to "Back’, posts_path %=

1 | 1] [b

‘l.l’iewl[ERb]l I Page (Design) -~ | Tools -

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 86

THE HTML PAGE DESIGNER

When you need to work with the visual design, you can switch to the HTML Page Designer...

dl
X

new.htmlerb [composite:RWB] | posts.html.erb | index.html.erb |

SAPPHIRESTEEL SOITWARE

www.sApphiResTeel.com

m

Please Enter New Post...

iPust Title
E| erb::title

i’|1’ext of Post...

Ii -1‘ [1l 3

o split | & Seurce | [4][<htmi>][<body>| [¥]

View (ERb) - ([Page (Design) |~|| Tools -

> The currently active workspace (Rails Editor or HTML Page Designer) is indicated by
an icon on one of the two buttons at the bottom of the workspace.

> The text on the Rails Editor button indicates the type of template file being edited -
(Layout, View or Partial).

» The HTML Page Design button is only displayed when a View template is loaded - a
View is required in order to construct a full HTML page for the visual designer.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 87

The Rails Editor

The Rails Editor is where you will enter and edit the code of Rails templates. If you don’t
need to use the visual design features of the Rails Workbench, you will probably spend all
your time working here.

The Rails Editor has two editing modes - one of which is optimized for embedded Ruby,
while the other is optimized for editing HTML.

ERB MoODE

L <=/p> ; -
InsertS :
o <p> nsertSnippet
<%= T.datetin 3 BT
<%= datetime_ =) form for

< =
= -::';E =]l form_ta g_create

L <%= f.submi &l labelfor
=% end %= =l linkto

2l linktoid
=l rails tags

— =] rails tags (equals)
[@] View (ERb) ~ | Par) text area

<¥= Tink_to '
4| 1

This gives you access to the features of the Ruby In Steel embedded Ruby editor including
color coding of Ruby code, snippets and quick navigation (right-click) between a controller
and a view.

HTML MODE
<hl style="color: #CCO0000">Please
=b=Text of o ‘
<%= f.text_: “ inhert -
- </p> i Aqua K
=== ‘¢ Black
<%= f.datetime_: _
% datetime se- uP
L = p= ‘i# Fu'thsia
=P ‘L Gray
4| m ‘g Green
L4 Design | O Split | ' @ Lime o

‘l.n‘iewl[HTI"u"IL:l - | Page (Design) - | Tools -

This gives you access to the features of the Visual Studio HTML editor such as code
completion for JavaScript and styles.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 88

TOGGLE RAILS EDITOR MODE

4 HTML

ERb
@] View (HTML) i

™

To toggle editing modes, click the arrow-head selector to the right of the Rails Editor button.

The HTML Page Designer

The HTML Page Designer allows you to edit the loaded view in HTML format. This displays
HTML controls - such as buttons and Text Areas and allows you to add new controls by
dragging and dropping from the Toolbox.

| Toolbox ~ 3 X
| ® HTML .|
| # Embedded Ruby (Model) |
' = Embedded Ruby (Non-mod... |
| R Pointer

@) Input (Submit)

labl| Input (Text)

abl] Input (File)

*

new.htmlerb [composite:RWB] ‘

| Input (Password)
Input (Checkbox)
(% Input (Radio)

.0l Input (Hidden) p|
25 Text Area

@ Image 2008 >|[August >|[9 ~| _[20 »|.[09 ¥]

Create |

=]

m

' DateTime Picker ‘ \

=5 Select

Three groups of tools are available:
» HTML - Standard HTML controls
> Embedded Ruby (Model) - Rails data-aware controls that will be translated to ERb
> Embedded Ruby (Non-model) - Rails controls that will be translated to ERb

See Rendering Visual Components for more details on these controls.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 89

Constructing An HTML Page From Rails (ERb) Templates

When you switch to the HTML Page Designer, the View is automatically inserted into the
Layout template to which it belongs. Any Partials required by the View are also inserted in
the appropriate locations. The Rails Workbench then ‘translates” the embedded Ruby code
and (where possible) substitutes the HTML which corresponds to that code. For example, if
an ERDb view template contains this...

<%= f.datetime_select :created_at %>

..when loaded into the HTML Page Designer, the following code is substituted:

<span erb:name="erb:datetime_select" erb:blockvar="erb:f"
erb:method="erb::created_at" ><select id="f_:created_at_1l1i" name="f[:created_at(1i)]">
<option value="2002">2002</option>

<option value="2003">2003</option>

<option value="2004">2004</option>

...(etcetera)

Note that the Rails Workbench defines the erb namespace to keep track of translated
elements such as

IMPORTANT: You must not edit any elements containing references to the erb
namespace!

When you move from the HTML Page Designer back to the Rails Editor, the HTML code is
translated back to ERb format (HTML templates containing embedded Ruby).

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 90

Using The Visual Page Designer

In the HTML Page Designer, you may:

> Resize controls by dragging using the mouse.
> Alter Properties using the Properties Panel...

|}
textarea.textareaskl, ..

]

Modify Style

Category:
Font |
Blodk
Background
Border

Box
Paosition
Layout

List

Table

font-family:
font-size:
font-weight:
font-style:
font-variant:

text-transform:

a .
Diir Itr -
(] Dizabled
Mame | _
ReadOnly =
EoEmmm [
.Ijﬂ Rundt
Style L
>
> Set Styles (in the current file) using the Style Property and Style editing dialogs...
(FI=]
Arial, Helvetica, sans-serif E
medium IE‘ = [Px text-decoration:
|E| [underline
N [overline
tal
e IE‘ [line-through
small-caps IE‘ More Colors
none E| F:

Preview:

Description:

color:

AA

font-family: Arial, Helvetica, sans-ser
small-caps; text-transform: none

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 91

> Set Styles in an attached CSS Style Sheet by loading CSS file into editor...

margin-bottom: 20px; i - [export
background-color: EFofofo; i“ £ lib
@ inherit - w- [log
#errorexplanatior =@ Transparent] = 5 public
text-align: Tel - eI i [images
font-weight: bo _ Black : = -
padd'l ng: pr 5[.U Javascripts
font-size: 12py ~@ Blue = [stylesheets
margin: -7px; ‘¢ Fuchsia Pl 4] scaffold.css
background-colc =§ Gray » htaccess
colaor: #Ff; & Green - e
1 -] 404.html
o @] 422 html

> Toggle Design/Split/Source

scaﬁaid.*rpusls_cuntmiier.rb)fﬂm-htm Lerb [composite:RWE] ¥ x

Client Objects & Events * (Mo Events) -

<b=Post Title</b=

<input erb:name="erb:text_field"” class="textareas" 5 =
- p= |

= >

1 style="color: #CC0O000"-Please Enter New Post...</h -
1 | i [3

Please Fnter New Post... ©
: input.textareas
|erh::title _ é

1
1 o
[

4 | 1} [3

L4 Design S:J-urr:{: | EH-:fu:l-rm.‘-‘||-=p>||-=input.textareas>| |E|

Wiew (ERb) - Pagel{DesigH] * | Tools -

The HTML (Page Designer) has three buttons: Design, Split and Source - to select the visual
designer, a split view (Designer and HTML code editor) or the HTML Code Editor alone.

You may also click tag elements to the right of these three buttons (e.g. <form> <p> etc.) to
navigate through the tags surrounding the currently selected element.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 92

Page Design (Code) View

There are two ways of viewing the HTML code of a page design.

L4 Design | O Split
View (ERb) - | [ig] Page (Design) ~

In the Page (Design) view you may click Source or Split to edit the code using Microsoft’s
HTML Editor. this gives you access to editing features such as HTML and CSS Style code-
completion.

: Design
4 : v | Code[s
View (ERb) ~ |[[i@] Page (Code) ~

Switch to Page (Code) view the code arranged in color-coded blocks highlighting those
elements of the HTML page which were generated from specific Rails (ERb) templates: for
example, a Layout, a View and one or more Partials.

</div>
</ dive

[}
I I

<hl=My Blog</hl=

<p=Enter a post</p>

<a erb: "erb:link_to" erb:code="erb:83"
<a erb:namk="erb:link_to" erb:code="erb:83"
=/ dive

[R s I S T

</ body>
< /htm] =

[0 O O [T O O, Y, Y [

(K]
I

If you wish to edit code in Page (Code) view (shown above), double-click one of the colored
areas to place that area into edit mode. You will be prompted to commit any changes when
you move back into the Rails View (ERb) editor.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 93

The Visual Rails Workbench Tools

The Visual Rails Workbench Tools menu provides access to a number of tools. The items on
the Tools menu vary according to the active editing view. The largest number of items are
available in the HTML Page Designer (both the Design and the Code view)...

The Document Outline

The Document Outline is a tree-structured window that shows you a hyperlinked outline of
the currently active document. To view the Document Outline, select Tools, Document Outline
(alternatively, select the View menu then Other Windows, Document Outline):

Document Cutline I
lag

Reconstruct Page
Archive

Import

Export

Commit

Tools =

HTML PAGE DESIGNER - CODE VIEW

shiow.htrl.erb [composite:RWE] =

El-- “composite_show html erb
EID app wiews\layoutstposts tml e
appwiews \posts‘show Html erb
=
P appwiews \posts‘show Html erb
D appwiewsayoutsposts.html erb

1 | i [»

View (HTML) - |[igf] Page (Code) H Toals ~

In Page Designer (code view), the Document Outline shows component parts of the composite
HTML web page corresponding to Rails templates (Layout, View, Partials) defining this page.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 94

HTML PAGE DESIGNER - DESIGN VIEW

Document Outline

oty <STYLE>

-~

[¢2] <TITLE=
L.E2 <%= controller.action_nar

2] <link>

m

iJ <SCRIPT=>
<BODY> R
] C\VSProjecs\Ruy\RisBlo]
1 «p=

M <p=

...E8 <%= flash[:notice] %>

| VIEW-BEGIM
If |

}

-

View (HTML) - |[i@] Page (Design)[7|| Tools -

In Page Designer (design view), the Document Outline shows the HTML structure of the web

page.

RAILS EDITOR (ERB MODE)

show.html.erb [view:RWE]

=

show html erb
(€7 render

ik to

€3 link_to

View (ERb)

[

Page (Design) -

Tools -

When you view Rails Templates as ERb in the Rails Editor, the Document Outline shows all
the embedded Ruby (code between <%..%> and <%=..%> tags. It does not show other HTML

tags.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 95

RAILS EDITOR (HTML MODE)

Document Qutline =]
=] c_show.html.erb
.23 <%= render :partial => post, ... %>

EE < %= link_to 'Edit’, edit_pos ... %=
LEE <%= link_to 'Back’, posts_pat ... %>

o
[view (HTMU)Lg~|| Page (Design) - | Tools +

When you view Rails Templates as HIML in the Rails Editor, the Document Outline shows
all standard HTML tags (including embedded Ruby).

CSS STYLESHEET

(S5 Qutline - C:\WSProjects\Ruby\RailsBlog... [E]
g Style Sheet

-1 Elements

- Classes

----- @ fieldWithErrors

----- 4 diviuploadStatus

----- @ div.progressBar

----- >
----- 4 div.progressBar div.backgraund
----- @ textareas

- Element ID=s

Y ZerrorExplanation
..... 3@ Blocks b

»

m

m
(L8]

When a stylesheet (with the extension .css) is loaded, the Document Outline shows styles
grouped by category - such as Elements, Classes and Element IDs.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 96

RuUBY

posts_controller.rb
= def new
=l def edit
=i def create
=i def update
- =l def destroy
EI@ module MyModule
54
Loz def myMethod L}

m

1

4|

I

When working in a Ruby (.rb) code file, the Document Outline shows the names of modules,
classes and methods.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 97

Reconstruct Page

If you wish to scroll back any changes you have made but which have not yet been
committed, select Reconstruct Page. This will rebuild the page from the ERb template files
(Layout, View, Partials) which define it.

Archive

Use the Archive to save ‘working backups’ of your page designs. You can save named
designs into the Archive so that you may save and reload named versions of your designs.
Archived designs are saved under the \~intermediate directory in your Rails project. The
\~intermediate directory is reserved for Ruby In Steel ‘working’ files and is not displayed in
the Solution Explorer. You should regard archives files as temporary. To save final page
designs, you should use Export.

Page Design Archive @

Page Design Mame
BlueAndViolet Design

Archived Page Designs
AutumnlLeaves Design

BasiclDesign
GreyAndBlack Design
MNamow Design
ScrapWark

Temp

WideDiesign

2000

Compare | | Save | Load I“ | Close |

Before reloading an archived design, you may click the Compare button to view the
differences between the current page and the archived version. You will need to have a
‘merge’ or ‘differencing’ tool installed in order to compare files. There are several such tools
freely available such as Restore previous versions of backed up Rails view templates or whole
HTML format Rails web pages using the Visual Rails Workbench and a differencing tool such
as WinMerge (http://winmerge.org/) and DiffMerge (http://www.sourcegear.com/diffmerge/). A
Differencing Tool may be installed globally in the Ruby In Steel Options page or for just the
loaded project in Project Properties.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 98

Archives Don’t Restore? Check Your, Styles!

If it seems that changes which you’ve made to page are not restored when you load a
design from an archive, you may want to check if some styling information is being
saved into a separate stylesheet file rather than into the HTML of the page itself. For
example, let’s assume that you have assigned a class to a text area. If you look at its
tag in the HTML code, the text area will begin like this:

<textarea erb:name="erb:text_area"...

Somewhere between the opening < and the closing > delimiter may be a style (‘class’)
name:

class="textareas"

This class may be defined in a linked stylesheet (a file with the extension .css), like
this...

textareas {
background-color: #FFFFDF:;
width: 721px;

Now when you change properties of the text area - such as its width, these changes
will be saved into the stylesheet, not into the HTML of the page itself. When archived
pages are loaded, the styles in the existing stylesheet will be applied to the text area so
that there will be no visible change due to reloading the archive. If you wish the
changes to be saved into the HTML, remove the styles (the classes) from the HTML
tags or place the styles into the HTML page itself rather than into a separate
stylesheet. Alternatively, you may wish to save multiple named versions of your
stylesheets to allow you to load and test different sets of styles.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 99

Import

Use this option to load a previously saved ‘composite” HTML page based on the current
view. For example, if you are working on a composite of edit.html.erb you wish to reload a
design saved with the name classic_edit_page.html. When you reload the page, it will
completely replace the page design in the editor. We recommend that you always save your
current design prior to importing a saved design so that you can easily restore it if you wish.

Export

Use this option to save the current ‘composite’” HTML page. We recommend using a
descriptive name when saving to allow you easily to identify a design if you decide to reload
it later on.

By default, page designs are saved under the \export\Page Design directory in the current
Rails project. This directory retains the relative links to other directories containing images
and styles. This is convenient if you need to work on a design using a third-party web design
tool. You may export to any other location but if you do so, you may lose the links to styles
and images.

Commit To Save Changes

When you have made changes to a page design in the HTML Page Designer you need to
commit to save those changes back to the original Rails ERb templates from which the page
was generated.

Document Cutline
Reconstruct Page
Archive

Import

Export

Commit L\:. |I

Tools -

To Commit Changes, select Tools, Commit.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 100

If you leave the HTML designer (by switching back to the Rails Editor) and there are unsaved
changes, you will be asked whether or not you wish to commit those changes.

Visual Rails Weorkbench |

N The composite has been medified. Do you want to commit your
¥ changes?

| ovesly || Mo || cancel

IMPORTANT: You must commit your changes in order to disassemble and translate
an HTML page into its component Rails-format template files. Saving the page using

File, Save will only save a temporary copy!

Rails Editor Tools

When you are working in the Rails (View, Layout or Partial) Editor, the Tools menu lists two
options: Document Outline and Backup. The Document Outline has been described previously.

Rails Editor Backups

Automatic incremental backups of your ERb-format templates are saved when changes are
made (these may result either from edits made to the template code or from changes
committed in the HTML Page Designer). If you wish to backtrack to an earlier version of a
specific Rails-format template file (for example, a view template called show.html.erb), you
should select Tools, Revert in the Rails Editor, pick a backup from the list and click the Revert
button.

Document Cutline

Revert [!

Tools =

You may select and preview a specific version of the template before reverting...

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 101

As with Page Design Archives, you may compare the differences between the currently
loaded template and a backup prior to restoring the backup. You need to have a differencing
tool installed in order to do this...

r !

@ WinMerge - [show.html.erb - show.html.bakd7] = =[]
@ File Edit View Merge Tools Plugins Window Help - [=
OEE| el | | | | B3 | |
Location Pan x | ¢ logTest\appviews\posts\show.html.erb | C\...diate\app\wviews\posts\show.html.bak07

[1 <hl style="color: #C 1 khl style="color: #C(-
2 2
3 <%= error messages I« 3 <%= error messages f«
4 4
S5 <% form for @post do S <% form for @post do|E
& «“p> & <p>
— L 7 Post Title</b: 7 Post Title</b:
8 <%= f.text field 8 <%= f.text field
9 </p> S </p>
10 10
11 <p> 11 <p>
12 Text of Posi| 12 Text of Posi
13 <%= f.text_area 13 <%= L.text area
14 <p>
15 enbsp; </}
16 <D= s
4 [bl [om b
Ln:1 Col1/63 Ch:1/63 RO DOS Lml Col1/57 Ch:1/57 RO Das
Ready 3 Differences Found

Here a backup is being compared using the WinMerge differencing tool.

Archives or Backups?

The Rails Workbench automatically backs up changes made to Rails (ERb) templates.
Changes to the HTML page designs are not automatically backed up but can be
explicitly saved into the Archive. The Archive and the backups are complementary: if
you restore a backup of a Rails-format template (such as a View), only that one selected
template file will be restored. A new HTML page will be constructed using this restored
template when you switch to the HTML Page Designer. On the other hand, if you
load a named HTML page design from the Archive, all the Rails template files (Layout,
View, Partials) corresponding to that page design will be generated when you commit
your changes.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 102

ERb / HTML Round-Tripping - How It Works

When you move from the Rails Editor to the HTML Page Designer, the original code of your
Rails Templates is assembled and translated in order to form a complete, editable HTML
‘composite” page.

To understand how this works, let’s assume that you load the View template, edit.html.erb
into the Rails editor. When rendered as a web page in the running application, this View will
be ‘contained” by a Layout template called posts.html.erb and it will itself contain a Partial
called _dataentry.html.erb.

The Visual Rails Workbench constructs a representation of this runtime web page at design-
time. It does this by inserting the Partial into its containing View and inserting the View into
the Layout. It then translates any embedded Ruby code which relates to design and layout
into the corresponding HTML. The end result is that you now have an editable HTML page
that was created from several ERb-format Rails templates. If you switch to the Page(Code)
editor and view the Document Outline (from the Workbench Tools menu), the structure of
this ‘composite’” HTML page becomes clear. The HTML areas which correspond to the
original Layout, View and Partial templates are color-coded in the editor and shown on
branches in the Document Outline:

27 kp style="color: green"=<%= flash[:notice] %=</p>

290kdiv erb:name="erb:yield” erb:cof ent="erb: Tayout”
30| lkhl=Editing post</hl=

31

12| <= errur_maf?ages_fur lpost %=

33

J4MHf=div erbinam|{ = erb:render” erb:cq Jtent="dataentry"
350 <form erb:nal p="¢{ _ _
3615 <p> - it.htrl.erk [c] Layout (=]
37 View =N] comporosis_cait bl e

fS) - appwiewsayouts posts html.erb

:*E . Partial apptwisws \postshedit html e

Zl | < f;;ﬂp'“ —— appwiews \posts'_dataentry html e
47 L apptwisws \postshedit html e

433| <p= E] appwisws\layouts'\posts html erb

44 Body<,/b><}

45 <textarea erk

46: - </p= |_I%Team |J edit.ht... |=3]Soluti. |‘§ Macro... |

n I
View (ERb) ~- F'age{Cu:u:Ie] * | Tools =

Here in the Page (Code) editor, you can navigate the ‘composite’ HTML page which has been constructed from
Rails (ERb) Layout, View and Partial templates. The corresponding areas of the HTML page are color-
highlighted in the editor and shown as branches in the Document Outline.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm - page: 103

Rendering Visual Components

HTML ‘components’ - interactive elements such as text edit areas and buttons - may either be
defined in the original Rails templates or they may be added in HTML Page Design Editor by
dragging and dropping components from the Toolbox onto the web page.

The Visual Rails Workbench takes care of translating these components to and from HTML
and ERb format when you switch between working in the HTML Page Design Editor and the
Rails code editor.

[Toolbox >~ I X
| HTML
[Embedded Ruby (Model) |
=/ Embedded Ruby (Non-model)
R Pointer
@) Input (Submit)
(ol Input (Ted) |
abl| Input (File)

#% Input (Password)
Input (Checkbox)
(%) Input (Radio)

;b Input (Hidden)
2] Text Area

- Image

=] Form

7] DateTime Picker
Ry

=s Select

There are three types of component in the Toolbox, arranged in groups (HTML, Embedded
Ruby (Model) and Embedded Ruby (Non-model):

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 104

HTML COMPONENTS

These are normal HTML components and no translation is done when moving between the
HTML Page Designer and the Rails Editor.

Example

In HTML Designer:

<input id="Text1" type="text" />
In Rails Editor:

<input id="Text1" type="text" />

EMBEDDED RUBY (MODEL) COMPONENTS
These are ‘Rails-aware’” controls. When you move from the HTML Page Designer to the Rails
Editor, they will be translated into embedded Ruby format including dummy “block form
variables’ (by default, f).
Example
In HTML Designer:
<input erb:blockvar="erb:f" erb:method="erb::myName"
erb:name="erb:text_field" name="erb:f[:myName]" size="30" type="text"
value="erb::myName" />

In Rails Editor:

<%= f.text_field :myName, :size => "30" %>

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 105

EMBEDDED RUBY (NON-MODEL) COMPONENTS

These are ‘Rails-aware” controls. When you move from the HTML Designer to the Rails
Editor, they will be translated into embedded Ruby format but will not include “block form
variables’.

Example

In HTML Designer:

<input erb:name="erb:text_field_tag" name="TextFieldName" type="text" />

In Rails Editor:

<%= text_field_tag "TextFieldName" %>

Note that when you have made changes to a form design in the HTML Page Designer you
will be prompted to save or ‘commit’ those changes when you switch to the Rails Editor.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 106

Supported Commands and Limitations

The Visual Rails Workbench translates the following Rails commands to and from HTML:

check_box
check_box_tag
content_for
datetime_select
file_field
file_field_tag
form_for

form_tag
hidden_field
hidden_field_tag
image_submit_tag
image_tag
javascript_include_tag
link_to
password_field
password_field_tag
radio_button
radio_button_tag
render

select

select_tag
stylesheet_link_tag
submit

submit_tag
text_area
text_area_tag
text_field
text_field_tag

The range of supported commands will be extended in future revisions and we welcome
suggestions and requests from users.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 107

The Visual Rails Workbench does not currently support sequential commands. For example,
this ERb code...

<%= link_to image_tag %>

..will translate image_tag as text in the HTML editor. However, this will be correctly
retranslated into the original ERb code when you return from the HTML editor to the Rails
editor.

‘Ignore Markers’ (erb:ignore)

If you wish specific Rails commands to be passed between the Rails and HTML editors
verbatim (without being translated), you should include the text "erb:ignore” inside the tags.
This is called an “ignore marker’. You may remove ignore markers prior to deploying your
application. If, on the other hand, you wish to leave an ‘ignore marker’ in place you should
ensure that it is syntactically correct. Only when it forms part of correct syntax will Rails be
able to process the command at runtime. For example, let's assume that you want the
following to be passed to the HTML editor verbatim...

<%= link_to posts_path %>
The syntax of the Rails link_to command requires the link name as its first argument, and

optional hash of options and HTML options as the second and third arguments. The third
argument would be the best place in which to put the ignore marker, like this:

<%= link_to posts_path, {}, { :ignore => "erb:ignore" } %>

This will be passed verbatim to the HTML editor. When the Rails application is deployed, the
resulting HTML will be rendered like this:

/posts

As far as the Visual Rails Workbench is concerned, the erb:ignore marker may be placed at
any point between the enclosing Rails <% tags %>. However, unless it forms part of correct
Rails syntax, the command may not be processed accurately at runtime. That is why it is best
to adhere to valid Rails syntax.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 108

Any items associated with the erb:ignore marker (such as the symbol :ignore in the example
above) are optional and are only required for compatibility with Rails syntax. If you wish the
runtime HTML generation to validate, you may wish to use standard HTML attributes - for
example, use :id instead of :ignore:

<%= link_to posts_path, {}, { :id => "erb:ignore" } %>

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 109

Debugging Rails Applications

Ruby In Steel provides debugging for Rails applications in addition to ‘pure Ruby’ programs.
The Developer Edition features two debuggers — the fast 'Cylon' debugger and the slower
Ruby debugger.

Dedicated support is provided for the following web servers:
> WEBTrick
> Mongrel
> LightTPD

Which Server Should You Choose?

It is entirely up to you which server you use. WEBrick or Mongrel may already be installed
with your Rails installation and, in most cases, it will be easier to use one of these two servers.
LightTPD, on the other hand, may be somewhat faster and it is favored by some users.
LightTPD does require additional effort to install and configure, however.

How To Start The Rails Debugger

There are two ways in which a Rails debugging session can be started:

» Click The One-Click Rails Debugger (in the Rails menu or toolbar) [Developer Edition
Only]
» DPress F5 (or select Start Debugging from the Debug menu)

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 110

WHICH TO USE - F5 OR THE ONE-CLICK RAILS DEBUGGER?

In most cases, it makes no difference whether you start Rails debugging using F5 or the One-
Click Rails Debugger.

However, bear in mind that the One-Click Rails Debugger always assumes that you wish to
debug a Rails application. Consequently, if the Rails Project property is set to False, it will ask
you whether you wish to debug the project as a Rails application anyway.

A ICEE PRI Y

This is not a Rails project, Do you want to continue?

[Yes l [Mo]

However, when the Rails Project property is False, F5 adopts the default behavior for a Ruby
(non-Rails) project and attempts to run the currently active Ruby source file.

If you are debugging a Rails application but need the option to debug selected Ruby
files too, set the Rails Project property to False. Use F5 to debug a selected Ruby file;
use the One-Click Rails Debugger to debug the current Rails project. Otherwise (if you
only need to debug the Rails project) make sure that the Rails Project property is set to
True (this is the default for Rails projects) and start debugging using either F5 or the
One-Click Rails Debugger as you prefer.

For information on setting the Rails Project property, refer to: Project Properties

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 111

Create A Rails Project...

Create a Ruby On Rails project in the usual way (select New | Project| Ruby In Steel and click
Rails Project).

Select A Server...

You may select your server in Tools | Options | Projects and Solutions | Ruby In Steel (for all future
projects) or Project| Properties (for just the current project). In the Rails group find Rails Server
and select the desired option. Optionally you may also change the Rails server port (this affects
Mongrel and WEBrick only). Its default value is 3000. If this port is already in use (say by
another server), set it to some other values (such as 3003).

Click and Debug...

Set breakpoints in any Ruby source files. Then, to start debugging, press F5 or select One-click
Rails Debugger from the Ruby menu. After a few seconds (be patient, this is not
instantaneous!) the server will start up and display output similar to the following in the
Ruby console...

Ruby (running) -~ 0 X
=»> Rails application started on http://0.0.0.0:300|»
=» Ctrl-C to shutdown server; call with —-help for

[2006-08-05 15:14:19] INFC WEBrick 1.3.1

[Z2006-08-05 15:14:19] INFCO ruby 1.8.4 (2005-12-24

[2006-08-05 15:14:19]) INFQ WEBrick::HTTPServerfst
W

¢ 2]

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 112

Problems...?

- If you can’t see the Ruby Console, you can load it by selecting the View menu, Other
Windows, then Ruby Console.

- If error messages appear in the Ruby Console, check that you have correctly set all
the properties as explained earlier and that another instance of the WEBrick or
Mongrel server is not already running. Fix the problems and try again...

- If a message pops up saying "This is not Rails project. Do you want to continue?", this
mean that a property indicates that this is not a Rails application. Click "Yes" to run it
as Rails anyway. Or set a project property to mark this as a Rails project.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 113

Run Rails Application In Web Browser

Once you have started debugging a Rails application, you may load up a Web Browser in
order to interact with it (this may either be a standalone browser or the integrated browser in
Visual Studio - you can load this from the menus: View, Other Windows, Web Browser).

In the address bar, enter the full address to your Rails application just as you would if
running it normally. For example, you might enter: http://localhost:3003/blog — that is, the
full address, including the host name and port, to your application. Let's assume you put a
breakpoint on a method which is called when you enter a new post; you now click the New
post link in the web browser which runs the bit of code you want to debug...

STOP ON BREAKPOINT

14 L end
15
167 def show
- 17 @post = Post.tind(params|[:1c
18 - end
19

207 def new

@ 21
221 end

23 I

247 def create

25 @post = Post.new(params|[:post])
26 if @post.save

27 flash[:notice] = "Post was succ
28 redirect_to :action => 'list'
29 else

30 ander raction => "new'’

The result is that the debugger stops on the line with the breakpoint...

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 114

DEBUG
| Watch 1 > 1 x
| Mame | Value |Type [1
@ @post nil il

= @ list [..] Array

= “g [0] <0x5029428 > Post
= @ @attributes £} Hash =

@ body” "Taday I took the dog for a long walk™ String

@ "tte” 'N&'r.ﬁ.h:underﬁ.ll Mew Post” String

@ id” "1" String
@ “created_at’ "2006-12-15 20:47:00 String R |

“ 1] <0x50293ec Post

¢ [2] <0%50293b0 > Post
@ Theaders Lo} Hash M

And now you can use all the usual Ruby In Steel debugging features to trace through the
code and monitor variables and expressions in the various debugging windows.

Debug ERb

In addition to debugging ‘pure Ruby’ (for example, in controllers), you may also place
breakpoints on embedded Ruby in Rails templates. When you stop at a breakpoint, all the
usual debugging features are available.

]_(jé =% fTor post in Annsts %l

11} trs = # post| <dbirowz |
12} <td><%=h po @ id: 4
13 <td=<%=h po| ¥ title: o™
14} ¥ body: Syyy”
15! m W created_at: ["2008-01-30 11:25:00°
: . = o updated_at: | "2008-01-30 11:25:357 -
Watch 1 (=
Mame Yalue Type =
= & @posts [...] Array
W [0] <dh:row:= Post 2
W id: 2 Fixnum
W title: "Hurrah! My 2nd post!" String —
¥ body: "I'm really picking up speed no String
¥ created_at: "2008-01-27 10:49:00" String
W updated_at: "2008-01-27 10:49:58" String
W [1] <db:row: Fost
¥ [2] <db:row= Post =
|§Watch 1 |£Generate |’f Rake |;-| Output | = .&utcsl

%=</td
delete

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 115

Code Color Options

Ruby In Steel provides syntax sensitive coloring for Ruby (.rb) and Rails (.erb and .rhtml) files.
In Ruby source files. The following global coloring options assigned in Visual Studio are used
when appropriate: Strings, Comments, Numbers, Keywords, Identifiers and Plain Text,
plus a range of other 'system-wide' options such as Selected Text, Inactive Selected Text, indicator
margin, bookmark, breakpoint and so on. There are additional Ruby-specific coloring options.
Rails template files (.erb and .rhtml) have their own coloring options for HTML tags (the
global Visual Studio HTML colors are not used) while embedded Ruby in .erb and .rhtml files
adopts your selected Ruby-specific colors. All colors can be set in the Options dialog

Customization

(Environment, Fonts and Colors) available from the Tools menu.

Ruby Brace

Ruby Class Definition
Ruby Class Variable
Ruby Constant

Ruby Global Variable
Ruby Instance Variable
Ruby Method Call

Ruby Method Definition
Ruby Module Definition
Ruby Regular Expression
Ruby Symbol

Rails Attribute Name
Rails Attribute Value
Rails Element Name
Rails Entity

Rails Layout

Rails Partial

Rails Serverside Script
Rails Tag Delimiter

Rails View

colorsof (), {}and []

colors of class name declarations (e.g. class MyClass)
colors of class variable

colors of Constant names

colors of Global variables

colors of Instance variables

colors of Method name reference (e.g. aMeth)

colors of Method name declarations (e.g. def aMeth)
colors of Module name declarations

colors Regular Expressions

colors of symbols such as :mysymbol

colors of HTML attributes such as width or bgcolor
colors values of HTML attributes

colors of HTML elements such as <td> or <head>
Colors elements such as

Layout color in Rails Workbench (Code View)
Partial color in Rails Workbench (Code View)

colors of <% <%= and %> tags

colors of Rails tag delimiters

View color in Rails Workbench (Code View)

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 116

Color Options For Other Windows

Many other Visual Studio windows may be selected from the Show Settings For drop-down
list in the Options dialog, Environment/Fonts and Colors pane. For example, here you can alter
the colors of the Watch and Locals window or All Text Tool Windows such as the Output
window. To alter the colors of the interactive console, select Ruby Console from the list.

Options (Projects and Solutions)

You may set a number of global options which will become the defaults for all new Ruby In
Steel Projects in the Options dialog (Tools, Options, Projects and Solutions, Ruby In Steel). Note
that changes made to these options will only affect new projects. Existing projects will retain
the options that were in force at the time of their creation. These global options are a subset of
the options available as Project Properties. The Project Properties always override the global
options.

Please refer to the Project Properties documentation for more information.

Global Options include the following items which are not available as Project Properties:

DATABASE

> MySQL Path
The optional path to MySQL (e.g. \mysql\bin)
> SQL Server Path
The optional path to SQL Server (e.g. \Tools\binn)

(Note: You may optionally use other database servers with your Rails applications but
these will not be automatically supported by the Rails New Project Wizard).

RAILS

> Rails Filter
A semicolon delimited list of file extensions which you wish to exclude from the
Solution Explorer when creating a Rails project - e.g.: .log;.txt

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 117

Editing Options

The Ruby and Rails editing options are set under the Text Editor branch of the Options dialog
(available from the Tools menu). Use the Ruby options to set defaults for Ruby code and the
ERb options (optionally) to override some of these settings when working with Rails (.erb or
.rhtml) templates.

GENERAL OPTIONS

These include a variety of options which are listed for all Visual Studio languages. Where
certain options are not applicable, they are grayed out. For Ruby In Steel, the relevant
options are:

> Auto list members — to provide IntelliSense code completion
Parameter information — to provide IntelliSense Parameter tips
Enable Virtual Space — enter code (or comments) into any blank area of the editor
Word Wrap — causes long lines to wrap automatically
Show Visual Glyphs for Word Wrap — displays a small graphic where text wraps
Apply Cut or Copy — cut or copy blank lines (when disabled, blank lines are ignored)
Line Numbers - displays line number in the left-hand margin
Enable single-click URL navigation — URLs become hyperlinks (CTRL+LeftMouseBtn)

Vv V.V V VvV VYV

TABS

Here you can set code Indenting and Tabbing options (Developer Edition only):
> None — no automatic indenting options will be applied
> Block — when you press Enter, the new line will align with the line above it
> Smart — when you press Enter, the new line will align according to syntax

You can also specify the Tab and Indent sizes in this dialog and set an option to determine
whether Tabs are entered as Tab characters or as sequences of space characters.

FORMATTING
> Automatically format complete block on ‘end”
Format code between a Ruby keyword and end after end is entered
> Automatically add ‘end” after ‘class’, “det’ or ‘module’
Insert end keyword automatically after class, def or module

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 118

Ruby IntelliSense Options

You can specify a variety of options to configure the IntelliSense features available in your
Ruby code files (Developer Edition only).

COMPLETION LISTS
[Developer Edition Only]

> Show Completion List After Character Is Typed
The completion list will appear when alphanumeric characters are typed and any
matching text pattern will be selected in the list.
> Show Keywords
Keywords such as def, class and module will be included in the completion list.,
> Show Globals
Global variables (beginning with $) will be included in the completion list.
> Show Class Names & Constants
Class names and constants will be included in the completion list.
> Show Snippets
Code snippets will be included in the completion list.
> Enter key is a commit character
Inserts selected item into code editor on Enter (Tab is the default).

SNIPPETS

> Expand Snippets By Tab Character
When this is selected, you can enter the shortcut of a snippet and press the Tab key
in order to cause the snippet to be inserted into the code editor.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 119

INTELLISENSE MEMBER SELECTION

[Developer Edition Only]
> Display Object Methods
When this is selected, the methods defined in Ruby's Object class will be included
in completion lists along with the methods of descendant classes. You may wish to
disable the display of Object methods in order to limit the size of completion lists.
> Display Ancestor Methods
When this is selected, the methods defined in Ancestors of the current object’s class
will be included in completion lists.

RDoc DisPLAY
[Developer Edition Only]
>Display RDOC in Tooltips
When selected any documentation entered into a comment block above a class,
module or method definition will be displayed in a tooltip when the mouse pointer
hovers over an identifier of the appropriate type in the editor.

PARSING
[Developer Edition Only]
>Require File Depth
This value determines the number of 'levels' of required files which are parsed in
order to provide IntelliSense. If the value is 0, no required files are parsed. If it is 1,
only files required by the current code file are parsed; if it is 2, files which are
required by the files required by the current file are also parsed and so on.

When setting the 'require file depth’, bear in mind that there is a trade-off between
completeness and efficiency. Some Ruby class libraries may require files to many
levels. In such a case the greater the required file depth, the more complete the
IntelliSense provided. However, the IntelliSense Inference Engine consequently has to
do far more work. As a result, the speed at which the code completion lists are
updated to reflect any editing changes may deteriorate. As a general rule, we suggest
accepting the default Require file depth of 2.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 120

>Provide IntelliSense While Debugging

When this option is enabled, background parsing continues while debugging to
ensure that IntelliSense and code formatting information is kept up to date. So (for
example), if you enter new code while debugging, code-folding will be applied to it;
if you debug into other source files, code completion information will be available. If
this option is disabled, only the code formatting and completion information which
was already parsed prior to debugging will be available. You may wish to disable
this option to ensure the fastest response time during debugging

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 121

Automating Ruby In Steel With Macros

Ruby In Steel Developer comes with a simple Macro library and a keyboard settings file
which you can load up in order to assign some ‘hotkeys’ to selected macros.

The Macro Library contains a number of Visual Basic functions to help you to customize
Ruby In Steel by adding various additional editing and project management features for
Ruby and Rails projects. These include macros to add and remove user-defined pairs of tags
to and from marked blocks, to paste Ruby code and enclose the pasted code <% and %> tags
in Rails RHTML files, and macros to move quickly to and from between a Rails Controller
and its associated View.

A library of utility macro functions is supplied to assist in customizing the existing macros.

The Ruby In Steel macro library is located in the /Extras/Macros folder beneath your Ruby In
Steel installation. A separate guide, MacrosandKeyboardSettings.pdf (in the /Documentation
folder beneath your Ruby In Steel installation) provides a detailed guide to using and
customizing the macro library.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 122

JRuby and IronRuby

In addition to supporting the standard Ruby (1.8.6) interpreter, Ruby In Steel Developer also
supports the Sun Microsystems’ Java-based JRuby interpreter and Microsoft’s IronRuby for
the Dynamic Language Runtime on .NET.

JRuby Support

When JRuby is selected as the Project Type, you will be able to run your programs in the
docked interactive console and debug them using JCylon - a JRuby version of the Cylon
debugger. Most of the debugging features of Cylon are also provided by JCylon but we do
not guarantee absolute parity between the two debuggers.

To SELECT JRUBY
For the current project:

> Select Project, Properties. Find the Ruby group and set Ruby Type to JRuby.
For all new projects:

> Select Tools, Options, Projects and Solutions, Ruby In Steel. Find the Ruby group and set
Ruby Type to JRuby.

SETTING UP JRUBY

JRuby is not included as part of the standard installation of Ruby In Steel. In order to use
JRuby you need to have Java and the Java SDK (version 6) installed as well as JRuby itself.

SapphireSteel Software does not offer support relating to the installation of JRuby. It is
the responsibility of the user to ensure that a working installation is in place before

attempting to use JRuby from within Ruby In Steel.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 123

INSTALL THE JDK

Before you trying to run JRuby, you must have Java and the Java Development Kit (JDK)
installed and operational. If you haven’t got Java and the JDK you should go to the Sun
Microsystems Java site to download and install everything you need: http://java.sun.com/
Be sure to install JDK 6. Earlier versions of the JDK are not supported.

INSTALL JRUBY

For the latest downloads of JRuby follow links on the JRuby site at http://jruby.codehaus.org.
Download one of the Zip archives containing the JRuby binaries (e.g. jruby-bin-1.1.zip) and
extract it into a directory on your local hard disk (e.g. C:\jruby-1.1). I shall refer to this
directory as the ‘JRuby directory” - it is the directory which contains the first level of JRuby
subdirectories - notably \bin and \Iib.

Note: You may have problems if you install JRuby in a directory whose name includes
a space character. To avoid this, be sure to avoid spaces in the directory name.

You now need to set an environment variable, called JRUBY_HOME to point to the JRuby
directory. You can do that from the Windows Environment Variables dialog. To load this, select
Start Menu, Settings, Control Panel. In the Control Panel, double-click System to show the
System Properties dialog. Click the Advanced tab or link, then the Environment Variables
button. Beneath System Variables (or User variables if you plan to set this up for a named
user), click the New button. Now enter JRUBY_HOME as the Variable name and the full path
to the installed JRuby directory (in my case, that’s C:\jruby-1.1\ —be sure to add the trailing
“\’) as the variable value. Click OK.

Now add the JRuby \bin directory to the system path. You can either add the full path or you
can simply add bin to the end of the JRUBY_HOME variable. You can do this once again from
the “‘Environment Variables’ dialog. Select the PATH variable; click the “Edit” button, scroll to
the end of the existing path, add a semicolon followed by the path to the JRuby \bin directory.
In my case, I added:

;%JRUBY_HOME%Dbin

Click OK to close the dialog. Then click OK to close the Environment Variables dialog.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 124

You can now test it out by opening a command prompt (Start Menu, Run, Enter cmd and click
OK) and entering...

jruby -v
It is possible, at this point that you may see a message stating;:
You must set JAVA_HOME to point at your Java Development Kit installation

If so, you need to verify that you have installed the Java Development Kit and that there is a
variable specifying its directory. This variable is set up in the same way we set up
JRUBY_HOME earlier. In the Environment Variables dialog, click the New System Variables
button and enter JAVA_HOME as the variable name, followed by the path to the JDK. For me
that happens to be C:\Program Files\ Java\jdk1.6.0_05\. Click OK and OK again to close the
two dialogs.

Open a new command prompt (don’t try to re-use any open command windows as they will
not automatically adopt any changes made to the environment) and, once again, enter:

jruby —v
All being well, JRuby should bow respond with its version number, like this:
ruby 1.8.6 (2008-03-28 rev 6360) [x86-jruby1.1]

If not, then you need to verify all the preceding steps: Java and the JDK must be installed,
JRuby with its ready-to-run libraries (*.jar’ files in its \Iib directory) must also be installed and
the various environment variables and paths must be set up as explained above. Once you get
JRuby to respond with its version number you are ready to use it in Ruby In Steel. Note, if
Ruby In Steel was running at the time you set up your Java or JRuby environments, you will
need to restart Visual Studio before using JRuby with your projects.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 125

VERIFY YOUR INSTALLATION

35, puts RUBY_PLATFORM

@ 36 Iﬂﬁm
37; ENV_JAVA.each{ [e| puts(e)

Watch 1 =]
| | Mame | Value | Type -
¥ RUBY_VERSION "1.8.6" String ||
¥ RUBY_PLATFORM "java" String
B¢ ENV_JAVA [
— @ "jruby.script" "jruby.bat" String
— # "user.variant" "™ String
— # "java.vm.versior "10.0-b19" String
— # "line.separator" "\" String
— « "file.encoding" "Cpl252" String
— @ "sun.boot.class.| "C:\\Program Files\\Java\\idkl String ™

FlWatch1 |g Generate |; Rake |£| Cutput |;="':|Autu:|5

As explained earlier, you will need to set your Ruby Type to JRuby. To verify that JRuby is
indeed being used, create a simple Ruby (.rb) file and evaluate the following:

puts RUBY_PLATFORM
puts RUBY_VERSION
ENV_JAVA.each{ |e| puts(e)}

RUBY_PLATFORM should evaluate to ‘java’”. RUBY_VERSION should show a number such
as 1.8.6 and ENV_JAVA should display numerous items relating to your Java installation.

If you wish to run Rails using JRuby, you will need to set up the JRuby On Rails system in
advance by installing a number of gems. Refer to the JRuby site and Wiki for assistance.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 126

IronRuby Support

At the time of writing, Microsoft’s IronRuby is still in development and, currently, it neither
provides full compatibility with standard Ruby nor has all the features required for full and
seamless integration with Visual Studio and .NET. Ruby In Steel’s IronRuby support has
‘alpha’ status and should be regarded as provided for exploration of IronRuby rather than for
application development. We shall upgrade our IronRuby support as the IronRuby project
itself progresses. Our current support for IronRuby includes a drag and drop form designer
(with some limitations), Ruby editing and project management.

VP ronRubyApphcetion] - Microsolt Visusl Studse = >]
Fle Edt View Project Bwld Debog Took Test Ruby Window Help
M-Sl 48 . - 2 b Debug * Ay CPU « () mam AL b s B
o 8 A | T % @ 5 4 e o= 0 3 & & 1 5: PSENLpr9.
b Formlsb | advindsb| sdventureclassessb | Stant Page - X | Solution Explorer - Sohubion Trenlsb.. » 3 X
2 “SFem) v Gbuttenl Click{senderObject, e0bject) Bl E
H def Forml_Loadsender, e =1 3 System.Drawing =
Qimp = createadventure .l 3 System.Windows.Feems
= SystemXmi
o Propertees
def buttoni_click(sender, @ Resourcessess
processinput(sender, Text,.1o ' adventureclassessd
' sdantab
- ¥ formisb

m ' ! W) Foeml designer.rd
%) Formd resx
P Progum

Form b [Design] -

sAix 1

f - . "~ .
w2 Ruby bn Steel - bonRuby Advent SYEIE
i s LI Decumen... 5 Sohution E... [¥ Macso £x

Propenties -3 X

buttonl System Windows Forms. Button -

s ldli | ¥
S bttont Chck v -
ChentSizeChanged [ETITS =Y
ContextMenuStripCl butten3_Click
Controladded butteed_Chick
Controtfemoved | buttonS_Chick
CurserChanged Forenl _Load
DockChanged

" —
Chick
Occurs when the component it chcked.

Q00

- Qg9 0

gdoo
'

9 Emor List] Gutput
Ready

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 127

ToO START AN IRONRUBY PROJECT.

> Select File, New Project, navigate to IronRuby project type branch and select Iron Ruby
Windows Application.

Alternatively, you may select IronRuby Console Application in order to run text-mode
applications in the docked Ruby Console. The steps below assume you have created a
Windows application.

> Name the project and click OK.

> You will now see a blank form. Use the Toolbox to drop on components.
e.g. Drop on a button (button1) and a textBox (textBox1).

» Double-click a control to generate en event-handler for its default event or select a
named event fro the Properties panel Events pane.
e.g. Double-click buttonl to create this method in the code editor:

def buttonl_Click(sender, e)
end
» Edit the event-handler code.
e.g.
def buttonl_Click(sender, e)
textBox1.Text = "Hello world"
end
» Press CTRL+F5 to run.

Please refer to the SapphireSteel web site for more information on IronRuby including details
of any updates.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 128

Appendix

The Ruby In Steel All-In-One-Installer

If you already have Visual Studio, Ruby and (optionally) Rails installed, you need only install
Ruby In Steel itself. However, if you need to set up Ruby, Rails or a database (MySQL) Server
- or if you don’t own Visual Studio and wish to install a free Ruby-specific copy of Visual
Studio 2008, you should use the All-in-one Installer. This lets you install some (or all) of the
following:

Ruby

Rails

Gems

MySQL

Visual Studio 2008 (free edition)

.NET 3.5

YV YV VYV

The All-in-one Installer is documented in a separate PDF document supplied with the Ruby
In Steel software: Installation Instructions.pdf.

The current installation packages for Ruby In Steel are available from the download page:

http://www.sapphiresteel.com/spip?page=download

Setting Up Ruby and Rails

If you choose not to use the All-in-one Installer, you may install Ruby (and Rails) using other
installers. Some options are described below...

How To Install Ruby

The Ruby One-Click Installer provides a simple way to install Ruby along with some useful
libraries. This may be obtained from: http://www.ruby-lang.org/en/downloads

http://www.sapphiresteel.com/spip?page=download
http://www.ruby-lang.org/en/downloads

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 129

How To Install Rails
INSTALL RUBYGEMS

First, make sure you have Gems installed. Gems is a package manager for Ruby which helps
to install programs from disk or over the Internet. You will need to be connected to the
Internet when installing Rails.

Your Ruby installation may already include Gems. To verify this, go to the command prompt
(Start Menu->Run (or Search), enter cmd and click OK). At the prompt enter: gem. If you see a
screen of help information on RubyGems, all is well. If not, you need to install Gems. The
download link and installation instructions can be found here:
http://www.rubyonrails.org/down.

Once Gems is installed, go to the command prompt and enter:
gem install rails --include-dependencies

RubyGems will now connect to the internet, download and install all the Rails libraries and
utilities. Once it is complete you can verify the installation by entering at the prompt:

rails -v

This will display the version number of your Rails installation.

http://www.ruby-lang.org/en/downloads

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 130

How To Install MySQL

If you are working with Rails, you will need to install a database. While there are quite a few
possible choices available to you, one of the most widely used is MySQL. You can download
and install MySQL for free. However, if you've never used MySQL before, you may find
some of the setup options confusing. Here, we'll try to guide you through the process to
avoid potential problems...

The MySQL main site is at http://www.mysqgl.com/ and from here you can navigate to the
download page for the current version.

DowNLOAD MYSQL

We shall assume that you will be using the free edition of MySQL. This is available for
download on the http://dev.mysql.com/downloads/ page. The current version, at the time of

writing, is MySQL 5 Community Server. The name and version number will, of course, change
over time. Download whichever is the current (not upcoming, alpha or beta) release. Choose
the specific version recommended for your operating system (there may be different versions
for Win32 and Win64, for example).

You will need to scroll some way down this page to locate the Windows installers. You can
either download the complete MySQL package or the smaller Windows Essentials package.
The complete package contains extra tools for database developers but these are not required
for simple Rails development. For most people, therefore, the smaller Windows Essentials
download file is the one to get.

You should click the ‘Pick A Mirror’ link alongside this option. You will then be shown a
questionnaire which you can fill out if you wish. If you don’t wish to do so, just scroll down
the page and pick a regional download site. Click a link and save the file, which will be
named something like (the numbers may differ): mysql-essential-5.0.41-win32.msi, to any
convenient directory on your disk.

INSTALL MYSQL

Once the download has completed run the program by selecting Open or Run in the
download dialog if this is still visible, or by double-clicking the installation file via Windows
Explorer.

http://www.mysql.com/
http://dev.mysql.com/downloads/

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.com — page: 131

Note: During the installation of MySQL some advertising screens may appear. Click
the buttons to move through these. Some security warnings may also prompt you to
verify your intention to install the software. When prompted, you should click the
necessary options to continue with the installation.

The first page of the Setup Wizard will now appear. Click the Next button.

You can either leave the Typical setup option selected if you are happy to install the software
into the default MySQL directory beneath C:\Program Files\. If you want to install to some
other directory, however, select Custom. Then click Next. Click Change to change the
directory.

When you are ready to move on, click Next. You will see the screen stating ‘Ready To Install
the Program’, verify that the destination folder is correct, then click the Install button.

Depending on the version of MySQL you may now either be shown some promotional
screens or you may be prompted to create a new MySQL account which will let you receive
news of changes and updates. These are not an essential part of the software installation and
you may click the Next or Skip buttons to move on through the installation.

The Wizard Completed dialog now appears. Click the Finish button.

CONFIGURE MYSQL

In fact, this isn’t the end of the installation after all. With some installers, a new screen pops
up now welcoming you to the MySQL Server Instance Configuration Wizard. If this does not
occur, you will need to load this yourself. Click the Start menu, then Program->MySQL-
>MySQL Server 5.0 (or whichever version number you are using) then MySQL Server Instance
Config Wizard. Click Next.

Assuming that this is the first time you’ve installed MySQL on this machine, you can select
Standard Configuration (if you are upgrading from an older version of MySQL you need to
select Detailed Configuration — that is beyond the scope of our simple setup guide). Click
Next.

In the next dialog, leave the default options selected (i.e. Install As Windows Service; Service
Name = "MySQL" and Launch the MySQL Server automatically). Then click Next.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 132

In the next screen, leave ‘Modify Security Settings’ checked and enter the same password (of
your choice) into the first two text fields. You will need this password later so remember it or
write it down in a secure location. If you may need to access MySQL from another computer
you can check “Enable root access from remote machines’. Then click Next.

Note: The default MySQL user name is ‘root’. The password is the one you just entered.
You will need both these items of information later when creating Rails applications.

The next screen just gives you some information about the tasks that are about to be
performed. Click the Execute button.

If you have previously installed or configured MySQL, you may see an error message
which tells you to Skip the installation. You may click Retry to see if you can bypass
this problem. If not, press Skip and then restart the MySQL configuration process,
selecting Reconfigure Instance and Standard Instance when prompted.

When everything is installed this screen appears. Click Finish.
And that’s it!

Just to test that everything’s working, you can open the MySQL command line client. You can
do this from the MySQL group on the Windows start menu. A “DOS box” will appear and you
will be prompted to enter your password. Once you've entered this, you will be welcomed to
the MySQL monitor with a mysql> prompt. Enter \/ for some help. Enter quit to exit.

CONFIGURE MYSQL IN RuBY IN STEEL

Finally, you should check the paths to MySQL in Ruby In Steel. Load Visual Studio. Select
Tools->Options->Projects and Solutions->Ruby In Steel. Verify that the MySQL Server path is set
to the \bin directory into which MySQL Server was installed (e.g. C:\ Program Files\ MySQL
Server 5.0\bin). You may browse to locate the install directory if necessary. Then click OK.

You should now be all set up to use MySQL with Ruby In Steel.

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 133

More Information

On Ruby In Steel

Visit the SapphireSteel Software web site for regularly updated information, hints and tips on
using Ruby In Steel:

http://www.sapphiresteel.com

Or link straight to the Developers' Blog:

http://www.sapphiresteel.com/-Blog-

We also have a discussion and support forum at:

http://www.sapphiresteel.com/forum/

Tutorials and FAQ

If you have a technical problem, be sure to see if this has been answered on the FAQ:

http://www.sapphiresteel.com/-FAQ-

We also have a number of tutorials:

http://www.sapphiresteel.com/-Tutorials-

http://www.sapphiresteel.com/
http://www.sapphiresteel.com/-Blog-
http://www.sapphiresteel.com/forum/
http://www.sapphiresteel.com/-FAQ-
http://www.sapphiresteel.com/-Tutorials-

Ruby In Steel User Guide and Manual (1.3) - www.sapphiresteel.cOm — page: 134

On Ruby

If you are learning Ruby, you can download a free tutorial E-Book including all the source
code, The Little Book Of Ruby:

http://www.sapphiresteel.com/The-Little-Book-Of-Ruby

Links to additional sources of lessons and documentation can be found on the Ruby
Documentation site:

http://www.ruby-doc.org/

On Rails

The primary source of online information on Rails is the Ruby On Rails web site:

http://www.rubyonrails.org/

http://www.sapphiresteel.com/The-Little-Book-Of-Ruby
http://www.ruby-doc.org/
http://www.rubyonrails.org/

	Introduction
	Ruby In Steel Developer
	Ruby In Steel Text Edition
	Other Editions
	This Manual
	The Installation Guide

	Installation
	How To Install Ruby In Steel
	The Installation Guide
	Quick Install...
	Checklist On First Using Ruby In Steel

	Five Minute Guide To Ruby In Steel
	Create a New Project

	/ Project Management
	Create A New Project
	How To Create A New Ruby Project
	Importing and Converting Projects
	How To Import A Project
	Notes on Importing Projects
	How To Convert A Project
	Using The Solution Explorer
	File Properties
	Project Properties
	To Create a New Project Configuration
	To set Build Properties for a Named Configuration
	General Page Project Properties
	Build Page Project Properties

	The Editor
	Overview
	Syntax Coloring
	Code Collapsing
	Bracket Matching
	Keyword..end Matching/
	Commenting/ Uncommenting
	Smart and Block Indenting
	Automatic Code Formatting
	Other Features

	Intelligent Coding Tools
	IntelliSense
	Member Completion Lists
	Common and All Tabs
	Keyword Completion Lists
	Variable Completion Lists
	Quick Info Tooltips
	Parameter Info Tooltips
	Snippets
	Snippet Editor
	Wavy Lines – Syntax Error Indicators
	/ Intelligent Type Inference
	Type Assertions
	Automating Type Assertions
	The IntelliSense Librarian
	Librarian Reference
	To Add Libraries to A Project

	Code Navigation
	Navigation Bars
	Go To Definition
	Bookmarks
	Find and Replace
	Incremental Search
	Go To Line
	The Ruby Explorer

	The Debugger
	Breakpoints
	Break On Hitcount
	Conditional Breakpoints
	Run Macro On Break
	Tracepoints
	Break On Exception
	Locals window
	Autos Window
	Watch Window
	Quick Watch Window
	Immediate Window
	Dynamic Debugging
	Evaluate Expressions In The Ruby Console
	Hover and Drill-Down In The Ruby Console
	Hover and Drill-Down in the Ruby Editor
	Tracing with Step Into / Step Over / Step Out
	Run To Cursor
	Call Stack

	Run, Debug, Build
	Run
	Debug
	Build To Check For Syntax Errors
	Compile
	Error List

	Ruby and Rails Tools
	The Ruby Toolbar and Menu
	IRB – The Interactive Ruby Shell
	Generate (Rails)
	Start Server
	Rake
	Gems
	Synchronize
	Ruby Documentation
	Reset Fonts and Colors

	Rails Development
	The Rails New Project Wizard
	The ERb Editor and the Visual Rails Workbench
	The ERb Editor
	ERb Code Coloring And Folding
	Ruby On Rails IntelliSense
	Integrated SQL Server Development

	The Visual Rails Workbench
	Rails Templates and Full Page Design
	Features of the Visual Rails Workbench
	Enable The Visual Rails Workbench
	The Visual Rails Workbench Environment
	The Rails Editor
	The HTML Page Designer
	Constructing An HTML Page From Rails (ERb) Templates
	Using The Visual Page Designer
	Page Design (Code) View
	The Visual Rails Workbench Tools
	The Document Outline
	Reconstruct Page
	Archive
	Import
	Export
	Commit To Save Changes
	Rails Editor Tools
	Rails Editor Backups
	ERb / HTML Round-Tripping - How It Works
	Rendering Visual Components
	Supported Commands and Limitations
	‘Ignore Markers’ (erb:ignore)

	Debugging Rails Applications
	Which Server Should You Choose?
	How To Start The Rails Debugger
	Create A Rails Project...
	Select A Server...
	Click and Debug...
	Run Rails Application In Web Browser
	Debug ERb

	Customization
	Code Color Options
	Color Options For Other Windows
	Options (Projects and Solutions)
	Editing Options
	Ruby IntelliSense Options
	Automating Ruby In Steel With Macros

	JRuby and IronRuby
	JRuby Support
	IronRuby Support

	Appendix
	The Ruby In Steel All-In-One-Installer
	Setting Up Ruby and Rails
	How To Install Ruby
	How To Install Rails
	How To Install MySQL

	More Information
	On Ruby In Steel
	Tutorials and FAQ
	On Ruby
	On Rails

